2022年山东省烟台龙口市市级名校中考数学猜题卷含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(共10小题,每小题3分,共30分)
1.如图,点E在△DBC的边DB上,点A在△DBC内部,∠DAE=∠BAC=90°,AD=AE,AB=AC.给出下列结论:
①BD=CE;②∠ABD+∠ECB=45°;③BD⊥CE;④BE1=1(AD1+AB1)﹣CD1.其中正确的是( )
A.①②③④ B.②④ C.①②③ D.①③④
2.下列计算正确的是( )
A.=±3 B.﹣32=9 C.(﹣3)﹣2= D.﹣3+|﹣3|=﹣6
3.=( )
A.±4 B.4 C.±2 D.2
4.如图,AD是⊙O的弦,过点O作AD的垂线,垂足为点C,交⊙O于点F,过点A作⊙O的切线,交OF的延长线于点E.若CO=1,AD=2,则图中阴影部分的面积为
A.4-π B.2-π
C.4-π D.2-π
5.由4个相同的小立方体搭成的几何体如图所示,则它的主视图是( )
A. B. C. D.
6.A、B两地相距180km,新修的高速公路开通后,在A、B两地间行驶的长途客车平均车速提高了50%,而从A地到B地的时间缩短了1h.若设原来的平均车速为xkm/h,则根据题意可列方程为
A. B.
C. D.
7.如图,已知∠AOB=70°,OC平分∠AOB,DC∥OB,则∠C为( )
A.20° B.35° C.45° D.70°
8.如图,BC⊥AE于点C,CD∥AB,∠B=55°,则∠1等于( )
A.35° B.45° C.55° D.25°
9.一、单选题
如图: 在中,平分,平分,且交于,若,则等于( )
A.75 B.100 C.120 D.125
10.如图,四边形ABCD中,AD∥BC,∠B=90°,E为AB上一点,分别以ED,EC为折痕将两个角(∠A,∠B)向内折起,点A,B恰好落在CD边的点F处.若AD=3,BC=5,则EF的值是( )
A. B.2 C. D.2
二、填空题(本大题共6个小题,每小题3分,共18分)
11.如图,正方形ABCD的边长是16,点E在边AB上,AE=3,点F是边BC上不与点B、C重合的一个动点,把△EBF沿EF折叠,点B落在B′处,若△CDB′恰为等腰三角形,则DB′的长为 .
12.如图,△ABC与△DEF位似,点O为位似中心,若AC=3DF,则OE:EB=_____.
13.关于x的一元二次方程x2+2x+k=0有两个不相等的实数根,则k的取值范围是_____.
14.对于实数a,b,我们定义符号max{a,b}的意义为:当a≥b时,max{a,b}=a;当a<b时,max{a,b]=b;如:max{4,﹣2}=4,max{3,3}=3,若关于x的函数为y=max{x+3,﹣x+1},则该函数的最小值是_____.
15.如图,正方形ABCD边长为3,连接AC,AE平分∠CAD,交BC的延长线于点E,FA⊥AE,交CB延长线于点F,则EF的长为__________.
16.如图,在△ABC中,∠ACB=90°,∠B=60°,AB=12,若以点A为圆心, AC为半径的弧交AB于点E,以点B为圆心,BC为半径的弧交AB于点D,则图中阴影部分图形的面积为__(保留根号和π)
三、解答题(共8题,共72分)
17.(8分)我们定义:如果一个三角形一条边上的高等于这条边,那么这个三角形叫做“等高底”三角形,这条边叫做这个三角形的“等底”.
(1)概念理解:
如图1,在△ABC中,AC=6,BC=3,∠ACB=30°,试判断△ABC是否是”等高底”三角形,请说明理由.
(1)问题探究:
如图1,△ABC是“等高底”三角形,BC是”等底”,作△ABC关于BC所在直线的对称图形得到△A'BC,连结AA′交直线BC于点D.若点B是△AA′C的重心,求的值.
(3)应用拓展:
如图3,已知l1∥l1,l1与l1之间的距离为1.“等高底”△ABC的“等底”BC在直线l1上,点A在直线l1上,有一边的长是BC的倍.将△ABC绕点C按顺时针方向旋转45°得到△A'B'C,A′C所在直线交l1于点D.求CD的值.
18.(8分)为了解中学生“平均每天体育锻炼时间”的情况,某地区教育部门随机调查了若干名中学生,根据调查结果制作统计图①和图②,请根据相关信息,解答下列问题:
本次接受随机抽样调查的中学生人数为_______,图①中m的值是_____ ;求本次调查获取的样本数据的平均数、众数和中位数;根据统计数据,估计该地区250000名中学生中,每天在校体育锻炼时间大于等于1.5h的人数.
19.(8分)已知一个矩形纸片OACB,将该纸片放置在平面直角坐标系中,点A(11,0),点B(0,6),点P为BC边上的动点(点P不与点B、C重合),经过点O、P折叠该纸片,得点B′和折痕OP.设BP=t.
(Ⅰ)如图①,当∠BOP=300时,求点P的坐标;
(Ⅱ)如图②,经过点P再次折叠纸片,使点C落在直线PB′上,得点C′和折痕PQ,若AQ=m,试用含有t的式子表示m;
(Ⅲ)在(Ⅱ)的条件下,当点C′恰好落在边OA上时,求点P的坐标(直接写出结果即可).
20.(8分)先化简,再求值:,其中x=,y=.
21.(8分)解不等式组:,并把解集在数轴上表示出来.
22.(10分)如图,在长方形OABC中,O为平面直角坐标系的原点,点A坐标为(a,0),点C的坐标为(0,b),且a、b满足+|b﹣6|=0,点B在第一象限内,点P从原点出发,以每秒2个单位长度的速度沿着O﹣C﹣B﹣A﹣O的线路移动.a= ,b= ,点B的坐标为 ;当点P移动4秒时,请指出点P的位置,并求出点P的坐标;在移动过程中,当点P到x轴的距离为5个单位长度时,求点P移动的时间.
23.(12分)先化简,再求值:,其中x满足x2-2x-2=0.
24.某食品厂生产一种半成品食材,产量百千克与销售价格元千克满足函数关系式,从市场反馈的信息发现,该半成品食材的市场需求量百千克与销售价格元千克满足一次函数关系,如下表:
销售价格元千克
2
4
10
市场需求量百千克
12
10
4
已知按物价部门规定销售价格x不低于2元千克且不高于10元千克
求q与x的函数关系式;
当产量小于或等于市场需求量时,这种半成品食材能全部售出,求此时x的取值范围;
当产量大于市场需求量时,只能售出符合市场需求量的半成品食材,剩余的食材由于保质期短而只能废弃若该半成品食材的成本是2元千克.
求厂家获得的利润百元与销售价格x的函数关系式;
当厂家获得的利润百元随销售价格x的上涨而增加时,直接写出x的取值范围利润售价成本
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、A
【解析】
分析:只要证明△DAB≌△EAC,利用全等三角形的性质即可一一判断;
详解:∵∠DAE=∠BAC=90°,
∴∠DAB=∠EAC
∵AD=AE,AB=AC,
∴△DAB≌△EAC,
∴BD=CE,∠ABD=∠ECA,故①正确,
∴∠ABD+∠ECB=∠ECA+∠ECB=∠ACB=45°,故②正确,
∵∠ECB+∠EBC=∠ABD+∠ECB+∠ABC=45°+45°=90°,
∴∠CEB=90°,即CE⊥BD,故③正确,
∴BE1=BC1-EC1=1AB1-(CD1-DE1)=1AB1-CD1+1AD1=1(AD1+AB1)-CD1.故④正确,
故选A.
点睛:本题考查全等三角形的判定和性质、勾股定理、等腰直角三角形的性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考选择题中的压轴题.
2、C
【解析】
分别根据二次根式的定义,乘方的意义,负指数幂的意义以及绝对值的定义解答即可.
【详解】
=3,故选项A不合题意;
﹣32=﹣9,故选项B不合题意;
(﹣3)﹣2=,故选项C符合题意;
﹣3+|﹣3|=﹣3+3=0,故选项D不合题意.
故选C.
【点睛】
本题主要考查了二次根式的定义,乘方的定义、负指数幂的意义以及绝对值的定义,熟记定义是解答本题的关键.
3、B
【解析】
表示16的算术平方根,为正数,再根据二次根式的性质化简.
【详解】
解:,
故选B.
【点睛】
本题考查了算术平方根,本题难点是平方根与算术平方根的区别与联系,一个正数算术平方根有一个,而平方根有两个.
4、B
【解析】
由S阴影=S△OAE-S扇形OAF,分别求出S△OAE、S扇形OAF即可;
【详解】
连接OA,OD
∵OF⊥AD,
∴AC=CD=,
在Rt△OAC中,由tan∠AOC=知,∠AOC=60°,
则∠DOA=120°,OA=2,
∴Rt△OAE中,∠AOE=60°,OA=2
∴AE=2,S阴影=S△OAE-S扇形OAF=×2×2-.
故选B.
【点睛】
考查了切线的判定和性质;能够通过作辅助线将所求的角转移到相应的直角三角形中,是解答此题的关键要证某线是圆的切线,对于切线的判定:已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.
5、A
【解析】试题分析:几何体的主视图有2列,每列小正方形数目分别为2,1.
故选A.
考点:三视图
视频
6、A
【解析】
直接利用在A,B两地间行驶的长途客车平均车速提高了50%,而从A地到B地的时间缩短了1h,利用时间差值得出等式即可.
【详解】
解:设原来的平均车速为xkm/h,则根据题意可列方程为:
﹣=1.
故选A.
【点睛】
本题主要考查了由实际问题抽象出分式方程,根据题意得出正确等量关系是解题的关键.
7、B
【解析】
解:∵OC平分∠AOB,∴∠AOC=∠BOC=∠AOB=35°,∵CD∥OB,∴∠BOC=∠C=35°,故选B.
8、A
【解析】
根据垂直的定义得到∠∠BCE=90°,根据平行线的性质求出∠BCD=55°,计算即可.
【详解】
解:∵BC⊥AE,
∴∠BCE=90°,
∵CD∥AB,∠B=55°,
∴∠BCD=∠B=55°,
∴∠1=90°-55°=35°,
故选:A.
【点睛】
本题考查的是平行线的性质和垂直的定义,两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.
9、B
【解析】
根据角平分线的定义推出△ECF为直角三角形,然后根据勾股定理即可求得CE2+CF2=EF2,进而可求出CE2+CF2的值.
【详解】
解:∵CE平分∠ACB,CF平分∠ACD,
∴∠ACE=∠ACB,∠ACF=∠ACD,即∠ECF=(∠ACB+∠ACD)=90°,
∴△EFC为直角三角形,
又∵EF∥BC,CE平分∠ACB,CF平分∠ACD,
∴∠ECB=∠MEC=∠ECM,∠DCF=∠CFM=∠MCF,
∴CM=EM=MF=5,EF=10,
由勾股定理可知CE2+CF2=EF2=1.
故选:B.
【点睛】
本题考查角平分线的定义(从一个角的顶点引出一条射线,把这个角分成两个完全相同的角,这条射线叫做这个角的角平分线),直角三角形的判定(有一个角为90°的三角形是直角三角形)以及勾股定理的运用,解题的关键是首先证明出△ECF为直角三角形.
10、A
【解析】
试题分析:先根据折叠的性质得EA=EF,BE=EF,DF=AD=3,CF=CB=5,则AB=2EF,DC=8,再作DH⊥BC于H,由于AD∥BC,∠B=90°,则可判断四边形ABHD为矩形,所以DH=AB=2EF,HC=BC﹣BH=BC﹣AD=2,然后在Rt△DHC中,利用勾股定理计算出DH=2,所以EF=.
解:∵分别以ED,EC为折痕将两个角(∠A,∠B)向内折起,点A,B恰好落在CD边的点F处,
∴EA=EF,BE=EF,DF=AD=3,CF=CB=5,
∴AB=2EF,DC=DF+CF=8,
作DH⊥BC于H,
∵AD∥BC,∠B=90°,
∴四边形ABHD为矩形,
∴DH=AB=2EF,HC=BC﹣BH=BC﹣AD=5﹣3=2,
在Rt△DHC中,DH==2,
∴EF=DH=.
故选A.
点评:本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了勾股定理.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、36或4.
【解析】
(3)当B′D=B′C时,过B′点作GH∥AD,则∠B′GE=90°,
当B′C=B′D时,AG=DH=DC=8,由AE=3,AB=36,得BE=3.
由翻折的性质,得B′E=BE=3,
∴EG=AG﹣AE=8﹣3=5,
∴B′G===33,
∴B′H=GH﹣B′G=36﹣33=4,
∴DB′===;
(3)当DB′=CD时,则DB′=36(易知点F在BC上且不与点C、B重合);
(3)当CB′=CD时,
∵EB=EB′,CB=CB′,
∴点E、C在BB′的垂直平分线上,
∴EC垂直平分BB′,
由折叠可知点F与点C重合,不符合题意,舍去.
综上所述,DB′的长为36或.故答案为36或.
考点:3.翻折变换(折叠问题);3.分类讨论.
12、1:2
【解析】
△ABC与△DEF是位似三角形,则DF∥AC,EF∥BC,先证明△OAC∽△ODF,利用相似比求得AC=3DF,所以可求OE:OB=DF:AC=1:3,据此可得答案.
【详解】
解:∵△ABC与△DEF是位似三角形,
∴DF∥AC,EF∥BC
∴△OAC∽△ODF,OE:OB=OF:OC
∴OF:OC=DF:AC
∵AC=3DF
∴OE:OB=DF:AC=1:3,
则OE:EB=1:2
故答案为:1:2
【点睛】
本题考查了位似的相关知识,位似是相似的特殊形式,位似比等于相似比,位似图形的对应顶点的连线平行或共线.
13、k<1
【解析】
根据一元二次方程根的判别式结合题意进行分析解答即可.
【详解】
∵关于x的一元二次方程x2+2x+k=0有两个不相等的实数根,
∴△=,
解得:.
故答案为:.
【点睛】
熟知“在一元二次方程中,若方程有两个不相等的实数根,则△=”是解答本题的关键.
14、2
【解析】
试题分析:当x+3≥﹣x+1,
即:x≥﹣1时,y=x+3,
∴当x=﹣1时,ymin=2,
当x+3<﹣x+1,
即:x<﹣1时,y=﹣x+1,
∵x<﹣1,
∴﹣x>1,
∴﹣x+1>2,
∴y>2,
∴ymin=2,
15、6
【解析】
利用正方形的性质和勾股定理可得AC的长,由角平分线的性质和平行线的性质可得∠CAE=∠E,易得CE=CA,由FA⊥AE,可得∠FAC=∠F,易得CF=AC,可得EF的长.
【详解】
解:∵四边形ABCD为正方形,且边长为3,
∴AC=3,
∵AE平分∠CAD, ∴∠CAE=∠DAE,
∵AD∥CE, ∴∠DAE=∠E, ∴∠CAE=∠E, ∴CE=CA=3,
∵FA⊥AE,
∴∠FAC+∠CAE=90°,∠F+∠E=90°,
∴∠FAC=∠F, ∴CF=AC=3,
∴EF=CF+CE=3+3=6
16、15π−18.
【解析】
根据扇形的面积公式:S=分别计算出S扇形ACE,S扇形BCD,并且求出三角形ABC的面积,最后由S阴影部分=S扇形ACE+S扇形BCD-S△ABC即可得到答案.
【详解】
S阴影部分=S扇形ACE+S扇形BCD-S△ABC,
∵S扇形ACE==12π,
S扇形BCD==3π,
S△ABC=×6×6=18,
∴S阴影部分=12π+3π−18=15π−18.
故答案为15π−18.
【点睛】
本题考查了扇形面积的计算,解题的关键是熟练的掌握扇形的面积公式.
三、解答题(共8题,共72分)
17、(1)△ABC是“等高底”三角形;(1);(3)CD的值为,1,1.
【解析】
(1)过A作AD⊥BC于D,则△ADC是直角三角形,∠ADC=90°,根据30°所对的直角边等于斜边的一半可得:根据“等高底”三角形的概念即可判断.
(1)点B是的重心,得到设 则
根据勾股定理可得即可求出它们的比值.
(3)分两种情况进行讨论:①当时和②当时.
【详解】
(1)△ABC是“等高底”三角形;
理由:如图1,过A作AD⊥BC于D,则△ADC是直角三角形,∠ADC=90°,
∵∠ACB=30°,AC=6,
∴
∴AD=BC=3,
即△ABC是“等高底”三角形;
(1)如图1,∵△ABC是“等高底”三角形,BC是“等底”,
∴
∵△ABC关于BC所在直线的对称图形是 ,
∴∠ADC=90°,
∵点B是的重心,
∴
设 则
由勾股定理得
∴
(3)①当时,
Ⅰ.如图3,作AE⊥BC于E,DF⊥AC于F,
∵“等高底”△ABC的“等底”为BC,l1∥l1,l1与l1之间的距离为1,.
∴
∴BE=1,即EC=4,
∴
∵△ABC绕点C按顺时针方向旋转45°得到△A'B'C,
∴∠DCF=45°,
设
∵l1∥l1,
∴
∴ 即
∴
∴
Ⅱ.如图4,此时△ABC等腰直角三角形,
∵△ABC绕点C按顺时针方向旋转45°得到,
∴是等腰直角三角形,
∴
②当时,
Ⅰ.如图5,此时△ABC是等腰直角三角形,
∵△ABC绕点C按顺时针方向旋转45°得到△A'B'C,
∴
∴
Ⅱ.如图6,作于E,则
∴
∴
∴△ABC绕点C按顺时针方向旋转45°,得到时,点A'在直线l1上,
∴∥l1,即直线与l1无交点,
综上所述,CD的值为
【点睛】
属于新定义问题,考查对与等底高三角形概念的理解,勾股定理,等腰直角三角形的性质等,掌握等底高三角形的性质是解题的关键.
18、(1)250、12;(2)平均数:1.38h;众数:1.5h;中位数:1.5h;(3)160000人;
【解析】
(1) 根据题意, 本次接受调查的学生总人数为各个金额人数之和, 用总概率减去其他金额的概率即可求得m值.
(2) 平均数为一组数据中所有数据之和再除以这组数据的个数; 众数是在一组数据中出现次数最多的数; 中位数是将一组数据按大小顺序排列, 处于最中间位置的一个数据, 或是最中间两个数据的平均数, 据此求解即可.
(3) 根据样本估计总体, 用“每天在校体育锻炼时间大于等于1.5h的人数” 的概率乘以全校总人数求解即可.
【详解】
(1)本次接受随机抽样调查的中学生人数为60÷24%=250人,
m=100﹣(24+48+8+8)=12,
故答案为250、12;
(2)平均数为=1.38(h),
众数为1.5h,中位数为=1.5h;
(3)估计每天在校体育锻炼时间大于等于1.5h的人数约为250000×=160000人.
【点睛】
本题主要考查数据的收集、 处理以及统计图表.
19、(Ⅰ)点P的坐标为(,1).
(Ⅱ)(0<t<11).
(Ⅲ)点P的坐标为(,1)或(,1).
【解析】
(Ⅰ)根据题意得,∠OBP=90°,OB=1,在Rt△OBP中,由∠BOP=30°,BP=t,得OP=2t,然后利用勾股定理,即可得方程,解此方程即可求得答案.
(Ⅱ)由△OB′P、△QC′P分别是由△OBP、△QCP折叠得到的,可知△OB′P≌△OBP,
△QC′P≌△QCP,易证得△OBP∽△PCQ,然后由相似三角形的对应边成比例,即可求得答案.
(Ⅲ)首先过点P作PE⊥OA于E,易证得△PC′E∽△C′QA,由勾股定理可求得C′Q的长,然后利用相似三角形的对应边成比例与,即可求得t的值:
【详解】
(Ⅰ)根据题意,∠OBP=90°,OB=1.
在Rt△OBP中,由∠BOP=30°,BP=t,得OP=2t.
∵OP2=OB2+BP2,即(2t)2=12+t2,解得:t1=,t2=-(舍去).
∴点P的坐标为(,1).
(Ⅱ)∵△OB′P、△QC′P分别是由△OBP、△QCP折叠得到的,
∴△OB′P≌△OBP,△QC′P≌△QCP.
∴∠OPB′=∠OPB,∠QPC′=∠QPC.
∵∠OPB′+∠OPB+∠QPC′+∠QPC=180°,∴∠OPB+∠QPC=90°.
∵∠BOP+∠OPB=90°,∴∠BOP=∠CPQ.
又∵∠OBP=∠C=90°,∴△OBP∽△PCQ.∴.
由题意设BP=t,AQ=m,BC=11,AC=1,则PC=11-t,CQ=1-m.
∴.∴(0<t<11).
(Ⅲ)点P的坐标为(,1)或(,1).
过点P作PE⊥OA于E,∴∠PEA=∠QAC′=90°.
∴∠PC′E+∠EPC′=90°.
∵∠PC′E+∠QC′A=90°,∴∠EPC′=∠QC′A.
∴△PC′E∽△C′QA.∴.
∵PC′=PC=11-t,PE=OB=1,AQ=m,C′Q=CQ=1-m,
∴.
∴.
∵,即,∴,即.
将代入,并化简,得.解得:.
∴点P的坐标为(,1)或(,1).
20、x+y,.
【解析】
试题分析:根据分式的减法和除法可以化简题目中的式子,然后将x、y的值代入即可解答本题.
试题解析:原式= ==x+y,
当x=,y==2时,原式=﹣2+2=.
21、则不等式组的解集是﹣1<x≤3,不等式组的解集在数轴上表示见解析.
【解析】
先求出不等式组中每一个不等式的解集,再求出它们的公共部分就是不等式组的解集.
【详解】
解不等式①得:x>﹣1,
解不等式②得:x≤3,
则不等式组的解集是:﹣1<x≤3,
不等式组的解集在数轴上表示为:
.
【点睛】
本题考查了解一元一次不等式组,熟知确定解集的方法“同大取大,同小取小,大小小大中间找,大大小小无处找”是解题的关键.也考查了在数轴上表示不等式组的解集.
22、(1)4,6,(4,6);(2)点P在线段CB上,点P的坐标是(2,6);(3)点P移动的时间是2.5秒或5.5秒.
【解析】
试题分析:(1)根据可以求得的值,根据长方形的性质,可以求得点的坐标;
(2)根据题意点从原点出发,以每秒2个单位长度的速度沿着的线路移动,可以得到当点移动4秒时,点的位置和点的坐标;
(3)由题意可以得到符合要求的有两种情况,分别求出两种情况下点移动的时间即可.
试题解析:(1)∵a、b满足
∴a−4=0,b−6=0,
解得a=4,b=6,
∴点B的坐标是(4,6),
故答案是:4,6,(4,6);
(2)∵点P从原点出发,以每秒2个单位长度的速度沿着O−C−B−A−O的线路移动,
∴2×4=8,
∵OA=4,OC=6,
∴当点P移动4秒时,在线段CB上,离点C的距离是:8−6=2,
即当点P移动4秒时,此时点P在线段CB上,离点C的距离是2个单位长度,点P的坐标是(2,6);
(3)由题意可得,在移动过程中,当点P到x轴的距离为5个单位长度时,存在两种情况,
第一种情况,当点P在OC上时,
点P移动的时间是:5÷2=2.5秒,
第二种情况,当点P在BA上时,
点P移动的时间是:(6+4+1)÷2=5.5秒,
故在移动过程中,当点P到x轴的距离为5个单位长度时,点P移动的时间是2.5秒或5.5秒.
23、
【解析】
分析:先根据分式的混合运算顺序和运算法则化简原式,再由x2-2x-2=0得x2=2x+2=2(x+1),整体代入计算可得.
详解:原式=
=
=,
∵x2-2x-2=0,
∴x2=2x+2=2(x+1),
则原式=.
点睛:本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.
24、(1) ;(2);(3);当时,厂家获得的利润y随销售价格x的上涨而增加.
【解析】
(1)直接利用待定系数法求出一次函数解析式进而得出答案;
(2)由题意可得:p≤q,进而得出x的取值范围;
(3)①利用顶点式求出函数最值得出答案;
②利用二次函数的增减性得出答案即可.
【详解】
(1)设q=kx+b(k,b为常数且k≠0),当x=2时,q=12,当x=4时,q=10,代入解析式得:,解得:,∴q与x的函数关系式为:q=﹣x+14;
(2)当产量小于或等于市场需求量时,有p≤q,∴x+8≤﹣x+14,解得:x≤4,又2≤x≤10,∴2≤x≤4;
(3)①当产量大于市场需求量时,可得4<x≤10,由题意得:厂家获得的利润是:
y=qx﹣2p=﹣x2+13x﹣16=﹣(x)2;
②∵当x时,y随x的增加而增加.
又∵产量大于市场需求量时,有4<x≤10,∴当4<x时,厂家获得的利润y随销售价格x的上涨而增加.
【点睛】
本题考查了待定系数法求一次函数解析式以及二次函数最值求法等知识,正确得出二次函数解析式是解题的关键.
辽宁省鞍山市市级名校2021-2022学年中考数学猜题卷含解析: 这是一份辽宁省鞍山市市级名校2021-2022学年中考数学猜题卷含解析,共24页。试卷主要包含了考生要认真填写考场号和座位序号,下列计算正确的是等内容,欢迎下载使用。
2022届云南省开远市市级名校中考数学猜题卷含解析: 这是一份2022届云南省开远市市级名校中考数学猜题卷含解析,共20页。试卷主要包含了考生必须保证答题卡的整洁,分式方程的解为,若关于x的一元二次方程等内容,欢迎下载使用。
2021-2022学年山东省烟台龙口市市级名校中考适应性考试数学试题含解析: 这是一份2021-2022学年山东省烟台龙口市市级名校中考适应性考试数学试题含解析,共22页。试卷主要包含了考生要认真填写考场号和座位序号,不等式﹣x+1>3的解集是,定义运算“※”为,下列计算,正确的是,将抛物线y=﹣,下列图案中,是轴对称图形的是等内容,欢迎下载使用。