搜索
    上传资料 赚现金
    英语朗读宝

    2022年山东省日照市宁波路校毕业升学考试模拟卷数学卷含解析

    2022年山东省日照市宁波路校毕业升学考试模拟卷数学卷含解析第1页
    2022年山东省日照市宁波路校毕业升学考试模拟卷数学卷含解析第2页
    2022年山东省日照市宁波路校毕业升学考试模拟卷数学卷含解析第3页
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年山东省日照市宁波路校毕业升学考试模拟卷数学卷含解析

    展开

    这是一份2022年山东省日照市宁波路校毕业升学考试模拟卷数学卷含解析,共24页。试卷主要包含了下列各数中,最小的数是等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    考生须知:
    1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
    2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
    3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.甲、乙两地相距300千米,一辆货车和一辆轿车分别从甲地开往乙地(轿车的平均速度大于货车的平均速度),如图线段OA和折线BCD分别表示两车离甲地的距离y(单位:千米)与时间x(单位:小时)之间的函数关系.则下列说法正确的是( )

    A.两车同时到达乙地
    B.轿车在行驶过程中进行了提速
    C.货车出发3小时后,轿车追上货车
    D.两车在前80千米的速度相等
    2.下列四个式子中,正确的是(  )
    A. =±9 B.﹣ =6 C.()2=5 D.=4
    3.如图,反比例函数(x>0)的图象经过矩形OABC对角线的交点M,分别于AB、BC交于点D、E,若四边形ODBE的面积为9,则k的值为( )

    A.1 B.2 C.3 D.4
    4.已知二次函数y=ax2+bx+c的图象如图所示,有以下结论:①a+b+c<0;②a﹣b+c>1;③abc>0;④4a﹣2b+c<0;⑤c﹣a>1,其中所有正确结论的序号是(  )

    A.①② B.①③④ C.①②③⑤ D.①②③④⑤
    5.如图,等腰△ABC的底边BC与底边上的高AD相等,高AD在数轴上,其中点A,D分别对应数轴上的实数﹣2,2,则AC的长度为(  )

    A.2 B.4 C.2 D.4
    6.在﹣3,﹣1,0,1四个数中,比﹣2小的数是(  )
    A.﹣3 B.﹣1 C.0 D.1
    7.随着“中国诗词大会”节目的热播,《唐诗宋词精选》一书也随之热销.如果一次性购买10本以上,超过10本的那部分书的价格将打折,并依此得到付款金额y(单位:元)与一次性购买该书的数量x(单位:本)之间的函数关系如图所示,则下列结论错误的是(  )

    A.一次性购买数量不超过10本时,销售价格为20元/本
    B.a=520
    C.一次性购买10本以上时,超过10本的那部分书的价格打八折
    D.一次性购买20本比分两次购买且每次购买10本少花80元
    8.已知二次函数的图象如图所示,若,是这个函数图象上的三点,则的大小关系是( )

    A. B. C. D.
    9.下列各数中,最小的数是( )
    A.0 B. C. D.
    10.如图图形中,既是中心对称图形又是轴对称图形的是(  )
    A. B. C. D.
    11.如图,下列图形都是由面积为1的正方形按一定的规律组成,其中,第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的正方形有5个,第(3)个图形中面积为1的正方形有9个,…,按此规律.则第(6)个图形中面积为1的正方形的个数为( )

    A.20 B.27 C.35 D.40
    12.下列长度的三条线段能组成三角形的是
    A.2,3,5 B.7,4,2
    C.3,4,8 D.3,3,4
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.如图,AE是正八边形ABCDEFGH的一条对角线,则∠BAE= °.

    14.在平面直角坐标系的第一象限内,边长为1的正方形ABCD的边均平行于坐标轴,A点的坐标为(a,a),如图,若曲线y=(x>0)与此正方形的边有交点,则a的取值范围是_______.

    15.一元二次方程x2﹣4=0的解是._________
    16.如图,在平面直角坐标系中有矩形ABCD,A(0,0),C(8,6),M为边CD上一动点,当△ABM是等腰三角形时,M点的坐标为_____.

    17.若关于x的不等式组恰有3个整数解,则字母a的取值范围是_____.
    18.如图,⊙M的半径为2,圆心M(3,4),点P是⊙M上的任意一点,PA⊥PB,且PA、PB与x轴分别交于A、B两点,若点A、点B关于原点O对称,则AB的最小值为_____.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)校车安全是近几年社会关注的重大问题,安全隐患主要是超速和超载.某中学数学活动小组设计了如下检测公路上行驶的汽车速度的实验:先在公路旁边选取一点C,再在笔直的车道上确定点D,使CD与垂直,测得CD的长等于21米,在上点D的同侧取点A、B,使∠CAD=30,∠CBD=60.
    (1)求AB的长(精确到0.1米,参考数据:);
    (2)已知本路段对校车限速为40千米/小时,若测得某辆校车从A到B用时2秒,这辆校车是否超速?说明理由.

    20.(6分)博鳌亚洲论坛2018年年会于4月8日在海南博鳌拉开帷幕,组委会在会议中心的墙壁上悬挂会旗,已知矩形DCFE的两边DE,DC长分别为1.6m,1.2m.旗杆DB的长度为2m,DB与墙面AB的夹角∠DBG为35°.当会旗展开时,如图所示,
    (1)求DF的长;
    (2)求点E到墙壁AB所在直线的距离.(结果精确到0.1m.参考数据:sin35°≈0.57,cos35°≈0.82,tan35°≈0.70)

    21.(6分)如图,四边形ABCD中,AC平分∠DAB,AC2=AB•AD,∠ADC=90°,E为AB的中点.
    (1)求证:△ADC∽△ACB;
    (2)CE与AD有怎样的位置关系?试说明理由;
    (3)若AD=4,AB=6,求的值.

    22.(8分)某厂按用户的月需求量(件)完成一种产品的生产,其中.每件的售价为18万元,每件的成本(万元)是基础价与浮动价的和,其中基础价保持不变,浮动价与月需求量(件)成反比.经市场调研发现,月需求量与月份(为整数,)符合关系式(为常数),且得到了表中的数据.
    月份(月)

    1

    2

    成本(万元/件)

    11

    12

    需求量(件/月)

    120

    100

    (1)求与满足的关系式,请说明一件产品的利润能否是12万元;
    (2)求,并推断是否存在某个月既无盈利也不亏损;
    (3)在这一年12个月中,若第个月和第个月的利润相差最大,求.
    23.(8分)已知:如图,四边形ABCD的对角线AC和BD相交于点E,AD=DC,DC2=DE•DB,求证:
    (1)△BCE∽△ADE;
    (2)AB•BC=BD•BE.

    24.(10分)在平面直角坐标系xOy中,若抛物线顶点A的横坐标是,且与y轴交于点,点P为抛物线上一点.
    求抛物线的表达式;
    若将抛物线向下平移4个单位,点P平移后的对应点为如果,求点Q的坐标.

    25.(10分)在Rt△ABC中,∠ACB=90°,BE平分∠ABC,D是边AB上一点,以BD为直径的⊙O经过点E,且交BC于点F.
    (1)求证:AC是⊙O的切线;
    (2)若BF=6,⊙O的半径为5,求CE的长.

    26.(12分)未成年人思想道德建设越来越受到社会的关注,辽阳青少年研究所随机调查了本市一中学100名学生寒假中花零花钱的数量(钱数取整数元),以便引导学生树立正确的消费观.根据调查数据制成了频
    分组
    频数
    频率
    0.5~50.5
       
    0.1
    50.5~   
    20
    0.2
    100.5~150.5
       
       
       200.5
    30
    0.3
    200.5~250.5
    10
    0.1
    率分布表和频率分布直方图(如图).

    (1)补全频率分布表;
    (2)在频率分布直方图中,长方形ABCD的面积是   ;这次调查的样本容量是   ;
    (3)研究所认为,应对消费150元以上的学生提出勤俭节约的建议.试估计应对该校1000名学生中约多少名学生提出这项建议.
    27.(12分)如图所示,已知一次函数(k≠0)的图象与x轴、y轴分别交于A、B两点,且与反比例函数(m≠0)的图象在第一象限交于C点,CD垂直于x轴,垂足为D.若OA=OB=OD=1.

    (1)求点A、B、D的坐标;
    (2)求一次函数和反比例函数的解析式.



    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、B
    【解析】
    ①根据函数的图象即可直接得出结论;②求得直线OA和DC的解析式,求得交点坐标即可;③由图象无法求得B的横坐标;④分别进行运算即可得出结论.
    【详解】
    由题意和图可得,
    轿车先到达乙地,故选项A错误,
    轿车在行驶过程中进行了提速,故选项B正确,
    货车的速度是:300÷5=60千米/时,轿车在BC段对应的速度是:千米/时,故选项D错误,
    设货车对应的函数解析式为y=kx,
    5k=300,得k=60,
    即货车对应的函数解析式为y=60x,
    设CD段轿车对应的函数解析式为y=ax+b,
    ,得,
    即CD段轿车对应的函数解析式为y=110x-195,
    令60x=110x-195,得x=3.9,
    即货车出发3.9小时后,轿车追上货车,故选项C错误,
    故选:B.
    【点睛】
    此题考查一次函数的应用,解题的关键在于利用题中信息列出函数解析式
    2、D
    【解析】
    A、表示81的算术平方根;B、先算-6的平方,然后再求−的值;C、利用完全平方公式计算即可;D、=.
    【详解】
    A、=9,故A错误;
    B、-=−=-6,故B错误;
    C、()2=2+2+3=5+2,故C错误;
    D、==4,故D正确.
    故选D.
    【点睛】
    本题主要考查的是实数的运算,掌握算术平方根、平方根和二次根式的性质以及完全平方公式是解题的关键.
    3、C
    【解析】
    本题可从反比例函数图象上的点E、M、D入手,分别找出△OCE、△OAD、矩形OABC的面积与|k|的关系,列出等式求出k值.
    【详解】
    由题意得:E、M、D位于反比例函数图象上,

    则,
    过点M作MG⊥y轴于点G,作MN⊥x轴于点N,则S□ONMG=|k|.
    又∵M为矩形ABCO对角线的交点,
    ∴S矩形ABCO=4S□ONMG=4|k|,
    ∵函数图象在第一象限,k>0,
    ∴.
    解得:k=1.
    故选C.
    【点睛】
    本题考查反比例函数系数k的几何意义,过双曲线上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于|k|,本知识点是中考的重要考点,同学们应高度关注.
    4、C
    【解析】
    根据二次函数的性质逐项分析可得解.
    【详解】
    解:由函数图象可得各系数的关系:a<0,b<0,c>0,
    则①当x=1时,y=a+b+c<0,正确;
    ②当x=-1时,y=a-b+c>1,正确;
    ③abc>0,正确;
    ④对称轴x=-1,则x=-2和x=0时取值相同,则4a-2b+c=1>0,错误;
    ⑤对称轴x=-=-1,b=2a,又x=-1时,y=a-b+c>1,代入b=2a,则c-a>1,正确.
    故所有正确结论的序号是①②③⑤.
    故选C
    5、C
    【解析】
    根据等腰三角形的性质和勾股定理解答即可.
    【详解】
    解:∵点A,D分别对应数轴上的实数﹣2,2,
    ∴AD=4,
    ∵等腰△ABC的底边BC与底边上的高AD相等,
    ∴BC=4,
    ∴CD=2,
    在Rt△ACD中,AC=,
    故选:C.
    【点睛】
    此题考查等腰三角形的性质,注意等腰三角形的三线合一,熟练运用勾股定理.
    6、A
    【解析】
    因为正数是比0大的数,负数是比0小的数,正数比负数大;负数的绝对值越大,本身就越小,根据有理数比较大小的法则即可选出答案.
    【详解】
    因为正数是比0大的数,负数是比0小的数,正数比负数大;负数的绝对值越大,本身就越小,
    所以在-3,-1,0,1这四个数中比-2小的数是-3,
    故选A.
    【点睛】
    本题主要考查有理数比较大小,解决本题的关键是要熟练掌握比较有理数大小的方法.
    7、D
    【解析】
    A、根据单价=总价÷数量,即可求出一次性购买数量不超过10本时,销售单价,A选项正确;C、根据单价=总价÷数量结合前10本花费200元即可求出超过10本的那部分书的单价,用其÷前十本的单价即可得出C正确;B、根据总价=200+超过10本的那部分书的数量×16即可求出a值,B正确;D,求出一次性购买20本书的总价,将其与400相减即可得出D错误.此题得解.
    【详解】
    解:A、∵200÷10=20(元/本),
    ∴一次性购买数量不超过10本时,销售价格为20元/本,A选项正确;
    C、∵(840﹣200)÷(50﹣10)=16(元/本),16÷20=0.8,
    ∴一次性购买10本以上时,超过10本的那部分书的价格打八折,C选项正确;
    B、∵200+16×(30﹣10)=520(元),
    ∴a=520,B选项正确;
    D、∵200×2﹣200﹣16×(20﹣10)=40(元),
    ∴一次性购买20本比分两次购买且每次购买10本少花40元,D选项错误.
    故选D.
    【点睛】
    考查了一次函数的应用,根据一次函数图象结合数量关系逐一分析四个选项的正误是解题的关键.
    8、A
    【解析】
    先求出二次函数的对称轴,结合二次函数的增减性即可判断.
    【详解】
    解:二次函数的对称轴为直线,
    ∵抛物线开口向下,
    ∴当时,y随x增大而增大,
    ∵,

    故答案为:A.
    【点睛】
    本题考查了根据自变量的大小,比较函数值的大小,解题的关键是熟悉二次函数的增减性.
    9、D
    【解析】
    根据实数大小比较法则判断即可.
    【详解】
    <0<1<,
    故选D.
    【点睛】
    本题考查了实数的大小比较的应用,掌握正数都大于0,负数都小于0,两个负数比较大小,其绝对值大的反而小是解题的关键.
    10、A
    【解析】
    A. 是轴对称图形,是中心对称图形,故本选项正确;
    B. 是中心对称图,不是轴对称图形,故本选项错误;
    C. 不是中心对称图,是轴对称图形,故本选项错误;
    D. 不是轴对称图形,是中心对称图形,故本选项错误。
    故选A.
    11、B
    【解析】
    试题解析:第(1)个图形中面积为1的正方形有2个,
    第(2)个图形中面积为1的图象有2+3=5个,
    第(3)个图形中面积为1的正方形有2+3+4=9个,
    …,
    按此规律,
    第n个图形中面积为1的正方形有2+3+4+…+(n+1)=个,
    则第(6)个图形中面积为1的正方形的个数为2+3+4+5+6+7=27个.
    故选B.
    考点:规律型:图形变化类.
    12、D
    【解析】
    试题解析:A.∵3+2=5,∴2,3,5不能组成三角形,故A错误;
    B.∵4+2<7,∴7,4,2不能组成三角形,故B错误;
    C.∵4+3<8,∴3,4,8不能组成三角形,故C错误;
    D.∵3+3>4,∴3,3,4能组成三角形,故D正确;
    故选D.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、67.1
    【解析】
    试题分析:∵图中是正八边形,
    ∴各内角度数和=(8﹣2)×180°=1080°,
    ∴∠HAB=1080°÷8=131°,
    ∴∠BAE=131°÷2=67.1°.
    故答案为67.1.
    考点:多边形的内角
    14、
    【解析】
    因为A点的坐标为(a,a),则C(a﹣1,a﹣1),根据题意只要分别求出当A点或C点在曲线上时a的值即可得到答案.
    【详解】
    解:∵A点的坐标为(a,a),
    ∴C(a﹣1,a﹣1),
    当C在双曲线y=时,则a﹣1=,
    解得a=+1;
    当A在双曲线y=时,则a=,
    解得a=,
    ∴a的取值范围是≤a≤+1.
    故答案为≤a≤+1.
    【点睛】
    本题主要考查反比例函数与几何图形的综合问题,解此题的关键在于根据题意找到关键点,然后将关键点的坐标代入反比例函数求得确定值即可.
    15、x=±1
    【解析】
    移项得x1=4,
    ∴x=±1.
    故答案是:x=±1.
    16、(4,6),(8﹣2,6),(2,6).
    【解析】
    分别取三个点作为定点,然后根据勾股定理和等腰三角形的两个腰相等来判断是否存在符合题意的M的坐标.
    【详解】
    解:当M为顶点时,AB长为底=8,M在DC中点上,

    所以M的坐标为(4, 6),
    当B为顶点时,AB长为腰=8,M在靠近D处,根据勾股定理可知ME==2
    所以M的坐标为(8﹣2,6);
    当A为顶点时,AB长为腰=8,M在靠近C处,根据勾股定理可知MF==2
    所以M的坐标为(2,6);
    综上所述,M的坐标为(4,6),(8﹣2,6),(2,6);
    故答案为:(4,6),(8﹣2,6),(2,6).
    【点睛】
    本题主要考查矩形的性质、坐标与图形性质,解题关键是根据对等腰三角形性质的掌握和勾股定理的应用.
    17、﹣2≤a<﹣1.
    【解析】
    先确定不等式组的整数解,再求出a的范围即可.
    【详解】
    ∵关于x的不等式组恰有3个整数解,
    ∴整数解为1,0,﹣1,
    ∴﹣2≤a<﹣1,
    故答案为:﹣2≤a<﹣1.
    【点睛】
    本题考查了一元一次不等式组的整数解的应用,能根据已知不等式组的解集和整数解确定a的取值范围是解此题的关键.
    18、6
    【解析】
    点P在以O为圆心OA为半径的圆上,P是两个圆的交点,当⊙O与⊙M外切时,AB最小,根据条件求出AO即可求解;
    【详解】
    解:点P在以O为圆心OA为半径的圆上,
    ∴P是两个圆的交点,
    当⊙O与⊙M外切时,AB最小,
    ∵⊙M的半径为2,圆心M(3,4),
    ∴PM=5,
    ∴OA=3,
    ∴AB=6,
    故答案为6;
    【点睛】
    本题考查圆与圆的位置关系;能够将问题转化为两圆外切时AB最小是解题的关键.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、(1)24.2米(2) 超速,理由见解析
    【解析】
    (1)分别在Rt△ADC与Rt△BDC中,利用正切函数,即可求得AD与BD的长,从而求得AB的长.
    (2)由从A到B用时2秒,即可求得这辆校车的速度,比较与40千米/小时的大小,即可确定这辆校车是否超速.
    【详解】
    解:(1)由題意得,
    在Rt△ADC中,,
    在Rt△BDC中,,
    ∴AB=AD-BD=(米).
    (2)∵汽车从A到B用时2秒,∴速度为24.2÷2=12.1(米/秒),
    ∵12.1米/秒=43.56千米/小时,∴该车速度为43.56千米/小时.
    ∵43.56千米/小时大于40千米/小时,
    ∴此校车在AB路段超速.
    20、(1)1m.(1)1.5 m.
    【解析】
    (1)由题意知ED=1.6m,BD=1m,利用勾股定理得出DF=求出即可;
    (1) 分别做DM⊥AB,EN⊥AB,DH⊥EN,垂足分别为点M、N、H,利用sin∠DBM=及cos∠DEH=,可求出EH,HN即可得出答案.
    【详解】
    解:(1)在Rt△DEF中,由题意知ED=1.6 m,BD=1 m,
    DF==1.
    答:DF长为1m.
    (1)分别做DM⊥AB,EN⊥AB,DH⊥EN,
    垂足分别为点M、N、H,
    在Rt△DBM中,sin∠DBM=,
    ∴DM=1•sin35°≈1.2.
    ∵∠EDC=∠CNB,∠DCE=∠NCB,
    ∴∠EDC=∠CBN=35°,
    在Rt△DEH中,cos∠DEH=,
    ∴EH=1.6•cos35°≈1.3.
    ∴EN=EH+HN=1.3+1.2=1.45≈1.5m.
    答:E点离墙面AB的最远距离为1.5 m.
    【点睛】本题主要考查三角函数的知识,牢记公式并灵活运用是解题的关键。
    21、(1)证明见解析;(2)CE∥AD,理由见解析;(3).
    【解析】
    (1)根据角平分线的定义得到∠DAC=∠CAB,根据相似三角形的判定定理证明;
    (2)根据相似三角形的性质得到∠ACB=∠ADC=90°,根据直角三角形的性质得到CE=AE,根据等腰三角形的性质、平行线的判定定理证明;
    (3)根据相似三角形的性质列出比例式,计算即可.
    【详解】
    解:(1)∵AC平分∠DAB,
    ∴∠DAC=∠CAB,
    又∵AC2=AB•AD,
    ∴AD:AC=AC:AB,
    ∴△ADC∽△ACB;
    (2)CE∥AD,
    理由:∵△ADC∽△ACB,
    ∴∠ACB=∠ADC=90°,
    又∵E为AB的中点,
    ∴∠EAC=∠ECA,
    ∵∠DAC=∠CAE,
    ∴∠DAC=∠ECA,
    ∴CE∥AD;
    (3)∵AD=4,AB=6,CE=AB=AE=3,
    ∵CE∥AD,
    ∴∠FCE=∠DAC,∠CEF=∠ADF,
    ∴△CEF∽△ADF,
    ∴==,
    ∴=.
    22、 (1),不可能;(2)不存在;(3)1或11.
    【解析】
    试题分析:(1)根据每件的成本y(万元)是基础价与浮动价的和,其中基础价保持不变,浮动价与月需求量x(件)成反比,结合表格,用待定系数法求y与x之间的函数关系式,再列方程求解,检验所得结果是还符合题意;(2)将表格中的n,对应的x值,代入到,求出k,根据某个月既无盈利也不亏损,得到一个关于n的一元二次方程,判断根的情况;(3)用含m的代数式表示出第m个月,第(m+1)个月的利润,再对它们的差的情况讨论.
    试题解析:(1)由题意设,由表中数据,得
    解得∴.
    由题意,若,则.
    ∵x>0,∴.
    ∴不可能.
    (2)将n=1,x=120代入,得
    120=2-2k+9k+27.解得k=13.
    将n=2,x=100代入也符合.
    ∴k=13.
    由题意,得18=6+,求得x=50.
    ∴50=,即.
    ∵,∴方程无实数根.
    ∴不存在.
    (3)第m个月的利润为w==;
    ∴第(m+1)个月的利润为
    W′=.
    若W≥W′,W-W′=48(6-m),m取最小1,W-W′=240最大.
    若W<W′,W′-W=48(m-6),m+1≤12,m取最大11,W′-W=240最大.
    ∴m=1或11.
    考点:待定系数法,一元二次方程根的判别式,二次函数的性质,二次函数的应用.
    23、(1)见解析;(2)见解析.
    【解析】
    (1)由∠DAC=∠DCA,对顶角∠AED=∠BEC,可证△BCE∽△ADE.
    (2)根据相似三角形判定得出△ADE∽△BDA,进而得出△BCE∽△BDA,利用相似三角形的性质解答即可.
    【详解】
    证明:(1)∵AD=DC,
    ∴∠DAC=∠DCA,
    ∵DC2=DE•DB,
    ∴=,∵∠CDE=∠BDC,
    ∴△CDE∽△BDC,
    ∴∠DCE=∠DBC,
    ∴∠DAE=∠EBC,
    ∵∠AED=∠BEC,
    ∴△BCE∽△ADE,
    (2)∵DC2=DE•DB,AD=DC
    ∴AD2=DE•DB,
    同法可得△ADE∽△BDA,
    ∴∠DAE=∠ABD=∠EBC,
    ∵△BCE∽△ADE,
    ∴∠ADE=∠BCE,
    ∴△BCE∽△BDA,
    ∴=,
    ∴AB•BC=BD•BE.

    【点睛】
    本题考查了相似三角形的判定与性质.关键是要懂得找相似三角形,利用相似三角形的性质求解.
    24、为;点Q的坐标为或.
    【解析】
    依据抛物线的对称轴方程可求得b的值,然后将点B的坐标代入线可求得c的值,即可求得抛物线的表达式;由平移后抛物线的顶点在x轴上可求得平移的方向和距离,故此,然后由点,轴可得到点Q和P关于x对称,可求得点Q的纵坐标,将点Q的纵坐标代入平移后的解析式可求得对应的x的值,则可得到点Q的坐标.
    【详解】
    抛物线顶点A的横坐标是,
    ,即,解得.

    将代入得:,
    抛物线的解析式为.
    抛物线向下平移了4个单位.
    平移后抛物线的解析式为,.

    点O在PQ的垂直平分线上.
    又轴,
    点Q与点P关于x轴对称.
    点Q的纵坐标为.
    将代入得:,解得:或.
    点Q的坐标为或.
    【点睛】
    本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求二次函数的解析式、二次函数的平移规律、线段垂直平分线的性质,发现点Q与点P关于x轴对称,从而得到点Q的纵坐标是解题的关键.
    25、(1)证明见解析;(2)CE=1.
    【解析】
    (1)根据等角对等边得∠OBE=∠OEB,由角平分线的定义可得∠OBE=∠EBC,从而可得∠OEB=∠EBC,根据内错角相等,两直线平行可得OE∥BC,根据两直线平行,同位角相等可得∠OEA=90°,从而可证AC是⊙O的切线.
    (2)根据垂径定理可求BH=BF=3,根据三个角是直角的四边形是矩形,可得四边形OHCE是矩形,由矩形的对边相等可得CE=OH,在Rt△OBH中,利用勾股定理可求出OH的长,从而求出CE的长.
    【详解】
    (1)证明:如图,连接OE,

    ∵OB=OE,
    ∴∠OBE=∠OEB,
    ∵ BE平分∠ABC.
    ∴∠OBE=∠EBC,
    ∴∠OEB=∠EBC,
    ∴OE∥BC,
    ∵ ∠ACB=90° ,
    ∴∠OEA=∠ACB=90°,
    ∴ AC是⊙O的切线 .
    (2)解:过O作OH⊥BF,
    ∴BH=BF=3,四边形OHCE是矩形,
    ∴CE=OH,
    在Rt△OBH中,BH=3,OB=5,
    ∴OH==1,
    ∴CE=1.
    【点睛】
    本题考查切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线和垂径定理以及勾股定理的运用,具有一定的综合性.
    26、⑴表格中依次填10,100.5,25,0.25,150.5,1;
    ⑵0.25,100;
    ⑶1000×(0.3+0.1+0.05)=450(名).
    【解析】
    (1)由频数直方图知组距是50,分组数列中依次填写100.5,150.5; 0.5-50.5的频数=100×0.1=10,由各组的频率之和等于1可知:100.5-150.5的频率=1-0.1-0.2-0.3-0.1-0.05=0.25,则频数=100×0.25=25,由此填表即可;(2)在频率分布直方图中,长方形ABCD的面积为50×0.25=12.5,这次调查的样本容量是100;(3)先求得消费在150元以上的学生的频率,继而可求得应对该校1000学生中约多少名学生提出该项建议..
    【详解】
    解:填表如下:

    (2)长方形ABCD的面积为0.25,样本容量是100;
    提出这项建议的人数人.
    【点睛】
    本题考查了频数分布表,样本估计总体、样本容量等知识.注意频数分布表中总的频率之和是1.
    27、(1)A(-1,0),B(0,1),D(1,0)
    (2)一次函数的解析式为 反比例函数的解析式为
    【解析】解:(1)∵OA=OB=OD=1,
    ∴点A、B、D的坐标分别为A(-1,0),B(0,1),D(1,0)。
    (2)∵点A、B在一次函数(k≠0)的图象上,
    ∴,解得。
    ∴一次函数的解析式为。
    ∵点C在一次函数y=x+1的图象上,且CD⊥x轴,∴点C的坐标为(1,2)。
    又∵点C在反比例函数(m≠0)的图象上,∴m=1×2=2。
    ∴反比例函数的解析式为。
    (1)根据OA=OB=OD=1和各坐标轴上的点的特点易得到所求点的坐标。
    (2)将A、B两点坐标分别代入,可用待定系数法确定一次函数的解析式,由C点在一次函数的图象上可确定C点坐标,将C点坐标代入可确定反比例函数的解析式。

    相关试卷

    浙江省宁波北仑区2021-2022学年毕业升学考试模拟卷数学卷含解析:

    这是一份浙江省宁波北仑区2021-2022学年毕业升学考试模拟卷数学卷含解析,共22页。试卷主要包含了化简的结果是等内容,欢迎下载使用。

    宁波市海曙区重点达标名校2022年毕业升学考试模拟卷数学卷含解析:

    这是一份宁波市海曙区重点达标名校2022年毕业升学考试模拟卷数学卷含解析,共24页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。

    2022年山东省东营市垦利区利区六校毕业升学考试模拟卷数学卷含解析:

    这是一份2022年山东省东营市垦利区利区六校毕业升学考试模拟卷数学卷含解析,共18页。试卷主要包含了考生必须保证答题卡的整洁,估计5﹣的值应在,下列运算正确的是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map