|试卷下载
搜索
    上传资料 赚现金
    2022年浙江省嘉兴市秀洲区中考数学最后冲刺模拟试卷含解析
    立即下载
    加入资料篮
    2022年浙江省嘉兴市秀洲区中考数学最后冲刺模拟试卷含解析01
    2022年浙江省嘉兴市秀洲区中考数学最后冲刺模拟试卷含解析02
    2022年浙江省嘉兴市秀洲区中考数学最后冲刺模拟试卷含解析03
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年浙江省嘉兴市秀洲区中考数学最后冲刺模拟试卷含解析

    展开
    这是一份2022年浙江省嘉兴市秀洲区中考数学最后冲刺模拟试卷含解析,共20页。试卷主要包含了近似数精确到,下列运算正确的是,如图所示的几何体的俯视图是等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项:
    1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
    2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
    3.考试结束后,将本试卷和答题卡一并交回。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.如图,在平面直角坐标系中,矩形OABC的两边OA,OC分别在x轴和y轴上,并且OA=5,OC=1.若把矩形OABC绕着点O逆时针旋转,使点A恰好落在BC边上的A1处,则点C的对应点C1的坐标为(  )

    A.(﹣) B.(﹣) C.(﹣) D.(﹣)
    2.小红上学要经过三个十字路口,每个路口遇到红、绿灯的机会都相同,小红希望小学时经过每个路口都是绿灯,但实际这样的机会是( )
    A. B. C. D.
    3.﹣3的相反数是( )
    A. B. C. D.
    4.三角形两边的长是3和4,第三边的长是方程x2-12x+35=0的根,则该三角形的周长为( )
    A.14 B.12 C.12或14 D.以上都不对
    5.在围棋盒中有x颗白色棋子和y颗黑色棋子,从盒中随机取出一颗棋子,取得白色棋子的概率是,如再往盒中放进3颗黑色棋子,取得白色棋子的概率变为,则原来盒里有白色棋子(  )
    A.1颗 B.2颗 C.3颗 D.4颗
    6.近似数精确到( )
    A.十分位 B.个位 C.十位 D.百位
    7.不透明袋子中装有一个几何体模型,两位同学摸该模型并描述它的特征.甲同学:它有4个面是三角形;乙同学:它有8条棱.该模型的形状对应的立体图形可能是(  )
    A.三棱柱 B.四棱柱 C.三棱锥 D.四棱锥
    8.已知关于x的一元二次方程有两个相等的实根,则k的值为( )
    A. B. C.2或3 D.或
    9.下列运算正确的是(  )
    A.(a2)5=a7 B.(x﹣1)2=x2﹣1
    C.3a2b﹣3ab2=3 D.a2•a4=a6
    10.如图所示的几何体的俯视图是(    )

    A. B. C. D.
    二、填空题(共7小题,每小题3分,满分21分)
    11.当a<0,b>0时.化简:=_____.
    12.一个n边形的内角和为1080°,则n=________.
    13.如图,四边形ABCD中,E,F,G,H分别是边AB、BC、CD、DA的中点.若四边形EFGH为菱形,则对角线AC、BD应满足条件_____.

    14.可燃冰是一种新型能源,它的密度很小,可燃冰的质量仅为.数字0.00092用科学记数法表示是__________.
    15.某商品每件标价为150元,若按标价打8折后,再降价10元销售,仍获利10%,则该商品每件的进价为_________元.
    16.2017年12月31日晚,郑东新区如意湖文化广场举行了“文化跨年夜、出彩郑州人”的跨年庆祝活动,大学生小明和小刚都各自前往观看了演出,而且他们两人前往时选择了以下三种交通工具中的一种:共享单车、公交、地铁,则他们两人选择同一种交通工具前往观看演出的概率为_____.
    17.如图,矩形ABCD中,AB=4,BC=8,P,Q分别是直线BC,AB上的两个动点,AE=2,△AEQ沿EQ翻折形成△FEQ,连接PF,PD,则PF+PD的最小值是____.

    三、解答题(共7小题,满分69分)
    18.(10分)水龙头关闭不紧会造成滴水,小明用可以显示水量的容器做图①所示的试验,并根据试验数据绘制出图②所示的容器内盛水量W(L)与滴水时间t(h)的函数关系图象,请结合图象解答下列问题:容器内原有水多少?求W与t之间的函数关系式,并计算在这种滴水状态下一天的滴水量是多少升?

    图 ① 图②
    19.(5分)如图,在中,,且,,为的中点,于点,连结,.

    (1)求证:;
    (2)当为何值时,的值最大?并求此时的值.
    20.(8分)阅读材料:对于线段的垂直平分线我们有如下结论:到线段两个端点距离相等的点在线段的垂直平分线上.即如图①,若PA=PB,则点P在线段AB的垂直平分线上

    请根据阅读材料,解决下列问题:
    如图②,直线CD是等边△ABC的对称轴,点D在AB上,点E是线段CD上的一动点(点E不与点C、D重合),连结AE、BE,△ABE经顺时针旋转后与△BCF重合.
    (I)旋转中心是点 ,旋转了 (度);
    (II)当点E从点D向点C移动时,连结AF,设AF与CD交于点P,在图②中将图形补全,并探究∠APC的大小是否保持不变?若不变,请求出∠APC的度数;若改变,请说出变化情况.
    21.(10分)在正方形ABCD中,动点E,F分别从D,C两点同时出发,以相同的速度在直线DC,CB上移动.
    (1)如图1,当点E在边DC上自D向C移动,同时点F在边CB上自C向B移动时,连接AE和DF交于点P,请你写出AE与DF的数量关系和位置关系,并说明理由;
    (2)如图2,当E,F分别在边CD,BC的延长线上移动时,连接AE,DF,(1)中的结论还成立吗?(请你直接回答“是”或“否”,不需证明);连接AC,请你直接写出△ACE为等腰三角形时CE:CD的值;
    (3)如图3,当E,F分别在直线DC,CB上移动时,连接AE和DF交于点P,由于点E,F的移动,使得点P也随之运动,请你画出点P运动路径的草图.若AD=2,试求出线段CP的最大值.

    22.(10分)为了巩固全国文明城市建设成果,突出城市品质的提升,近年来,某市积极落实节能减排政策,推行绿色建筑,据统计,该市2014年的绿色建筑面积约为950万平方米,2016年达到了1862万平方米.若2015年、2016年的绿色建筑面积按相同的增长率逐年递增,请解答下列问题:求这两年该市推行绿色建筑面积的年平均增长率;2017年该市计划推行绿色建筑面积达到2400万平方米.如果2017年仍保持相同的年平均增长率,请你预测2017年该市能否完成计划目标.
    23.(12分)如图,抛物线y=﹣x2+bx+c(a≠0)与x轴交于点A(﹣1,0)和B(3,0),与y轴交于点C,点D的横坐标为m(0<m<3),连结DC并延长至E,使得CE=CD,连结BE,BC.
    (1)求抛物线的解析式;
    (2)用含m的代数式表示点E的坐标,并求出点E纵坐标的范围;
    (3)求△BCE的面积最大值.

    24.(14分)有4张正面分别标有数字﹣1,2,﹣3,4的不透明卡片,它们除数字外其余全部相同,现将它们背面朝上,洗匀后从4张卡片中随机摸出一张不放回,将该卡片上的数字记为m,在随机抽取1张,将卡片的数字即为n.
    (1)请用列表或树状图的方式把(m,n)所有的结果表示出来.
    (2)求选出的(m,n)在二、四象限的概率.



    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、A
    【解析】
    直接利用相似三角形的判定与性质得出△ONC1三边关系,再利用勾股定理得出答案.
    【详解】
    过点C1作C1N⊥x轴于点N,过点A1作A1M⊥x轴于点M,

    由题意可得:∠C1NO=∠A1MO=90°,
    ∠1=∠2=∠1,
    则△A1OM∽△OC1N,
    ∵OA=5,OC=1,
    ∴OA1=5,A1M=1,
    ∴OM=4,
    ∴设NO=1x,则NC1=4x,OC1=1,
    则(1x)2+(4x)2=9,
    解得:x=±(负数舍去),
    则NO=,NC1=,
    故点C的对应点C1的坐标为:(-,).
    故选A.
    【点睛】
    此题主要考查了矩形的性质以及勾股定理等知识,正确得出△A1OM∽△OC1N是解题关键.
    2、B
    【解析】
    分析:列举出所有情况,看各路口都是绿灯的情况占总情况的多少即可.
    详解:画树状图,得

    ∴共有8种情况,经过每个路口都是绿灯的有一种,
    ∴实际这样的机会是.
    故选B.
    点睛:此题考查了树状图法求概率,树状图法适用于三步或三步以上完成的事件,解题时要注意列出所有的情形.用到的知识点为:概率=所求情况数与总情况数之比.
    3、D
    【解析】
    相反数的定义是:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,特别地,1的相反数还是1.
    【详解】
    根据相反数的定义可得:-3的相反数是3.故选D.
    【点睛】
    本题考查相反数,题目简单,熟记定义是关键.
    4、B
    【解析】
    解方程得:x=5或x=1.
    当x=1时,3+4=1,不能组成三角形;
    当x=5时,3+4>5,三边能够组成三角形.
    ∴该三角形的周长为3+4+5=12,
    故选B.
    5、B
    【解析】
    试题解析:由题意得,
    解得:.
    故选B.
    6、C
    【解析】
    根据近似数的精确度:近似数5.0×102精确到十位.
    故选C.
    考点:近似数和有效数字
    7、D
    【解析】
    试题分析:根据有四个三角形的面,且有8条棱,可知是四棱锥.而三棱柱有两个三角形的面,四棱柱没有三角形的面,三棱锥有四个三角形的面,但是只有6条棱.
    故选D
    考点:几何体的形状
    8、A
    【解析】
    根据方程有两个相等的实数根结合根的判别式即可得出关于k的方程,解之即可得出结论.
    【详解】
    ∵方程有两个相等的实根,
    ∴△=k2-4×2×3=k2-24=0,
    解得:k=.
    故选A.
    【点睛】
    本题考查了根的判别式,熟练掌握“当△=0时,方程有两个相等的两个实数根”是解题的关键.
    9、D
    【解析】
    根据幂的乘方法则:底数不变,指数相乘;完全平方公式:(a±b)2=a2±2ab+b2;合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加分别进行计算即可.
    【详解】
    A、(a2)5=a10,故原题计算错误;
    B、(x﹣1)2=x2﹣2x+1,故原题计算错误;
    C、3a2b和3ab2不是同类项,不能合并,故原题计算错误;
    D、a2•a4=a6,故原题计算正确;
    故选:D.
    【点睛】
    此题主要考查了幂的乘方、完全平方公式、合并同类项和同底数幂的乘法,关键是掌握各计算法则.
    10、B
    【解析】
    根据俯视图是从上往下看得到的图形解答即可.
    【详解】
    从上往下看得到的图形是:

    故选B.
    【点睛】
    本题考查三视图的知识,解决此类图的关键是由三视图得到相应的立体图形.从正面看到的图是正视图,从上面看到的图形是俯视图,从左面看到的图形是左视图,能看到的线画实线,被遮挡的线画虚线

    二、填空题(共7小题,每小题3分,满分21分)
    11、
    【解析】
    分析:按照二次根式的相关运算法则和性质进行计算即可.
    详解:
    ∵,
    ∴.
    故答案为:.
    点睛:熟记二次根式的以下性质是解答本题的关键:(1);(2)=.
    12、1
    【解析】
    直接根据内角和公式计算即可求解.
    【详解】
    (n﹣2)•110°=1010°,解得n=1.
    故答案为1.
    【点睛】
    主要考查了多边形的内角和公式.多边形内角和公式:.
    13、AC=BD.
    【解析】
    试题分析:添加的条件应为:AC=BD,把AC=BD作为已知条件,根据三角形的中位线定理可得,HG平行且等于AC的一半,EF平行且等于AC的一半,根据等量代换和平行于同一条直线的两直线平行,得到HG和EF平行且相等,所以EFGH为平行四边形,又EH等于BD的一半且AC=BD,所以得到所证四边形的邻边EH与HG相等,所以四边形EFGH为菱形.
    试题解析:添加的条件应为:AC=BD.
    证明:∵E,F,G,H分别是边AB、BC、CD、DA的中点,
    ∴在△ADC中,HG为△ADC的中位线,所以HG∥AC且HG=AC;同理EF∥AC且EF=AC,同理可得EH=BD,
    则HG∥EF且HG=EF,
    ∴四边形EFGH为平行四边形,又AC=BD,所以EF=EH,
    ∴四边形EFGH为菱形.
    考点:1.菱形的性质;2.三角形中位线定理.
    14、9.2×10﹣1.
    【解析】
    根据科学记数法的正确表示为,由题意可得0.00092用科学记数法表示是9.2×10﹣1.
    【详解】
    根据科学记数法的正确表示形式可得:
    0.00092用科学记数法表示是9.2×10﹣1.
    故答案为: 9.2×10﹣1.
    【点睛】
    本题主要考查科学记数法的正确表现形式,解决本题的关键是要熟练掌握科学记数法的正确表现形式.
    15、1
    【解析】
    试题分析:设该商品每件的进价为x元,则
    150×80%-10-x=x×10%,
    解得 x=1.
    即该商品每件的进价为1元.
    故答案为1.
    点睛:此题主要考查了一元一次方程的应用,解决本题的关键是得到商品售价的等量关系.
    16、
    【解析】
    首先根据题意画树状图,然后根据树状图即可求得所有等可能的结果,最后用概率公式求解即可求得答案.
    【详解】
    树状图如图所示,

    ∴一共有9种等可能的结果;
    根据树状图知,两人选择同一种交通工具前往观看演出的有3种情况,
    ∴选择同一种交通工具前往观看演出的概率:,
    故答案为.
    【点睛】
    此题考查了树状图法求概率.注意树状图法适合两步或两步以上完成的事件,树状图法可以不重不漏的表示出所有等可能的结果,用到的知识点为:概率=所求情况数与总情况数之比.
    17、1
    【解析】
    如图作点D关于BC的对称点D′,连接PD′,ED′,由DP=PD′,推出PD+PF=PD′+PF,又EF=EA=2是定值,即可推出当E、F、P、D′共线时,PF+PD′定值最小,最小值=ED′﹣EF.
    【详解】
    如图作点D关于BC的对称点D′,连接PD′,ED′,
    在Rt△EDD′中,∵DE=6,DD′=1,
    ∴ED′==10,
    ∵DP=PD′,
    ∴PD+PF=PD′+PF,
    ∵EF=EA=2是定值,
    ∴当E、F、P、D′共线时,PF+PD′定值最小,最小值=10﹣2=1,
    ∴PF+PD的最小值为1,
    故答案为1.

    【点睛】
    本题考查翻折变换、矩形的性质、勾股定理等知识,解题的关键是学会利用轴对称,根据两点之间线段最短解决最短问题.

    三、解答题(共7小题,满分69分)
    18、(1)0.3 L;(2)在这种滴水状态下一天的滴水量为9.6 L.
    【解析】
    (1)根据点的实际意义可得;
    (2)设与之间的函数关系式为,待定系数法求解可得,计算出时的值,再减去容器内原有的水量即可.
    【详解】
    (1)由图象可知,容器内原有水0.3 L.
    (2)由图象可知W与t之间的函数图象经过点(0,0.3),
    故设函数关系式为W=kt+0.3.
    又因为函数图象经过点(1.5,0.9),
    代入函数关系式,得1.5k+0.3=0.9,解得k=0.4.
    故W与t之间的函数关系式为W=0.4t+0.3.
    当t=24时,W=0.4×24+0.3=9.9(L),9.9-0.3=9.6(L),
    即在这种滴水状态下一天的滴水量为9.6 L.
    【点睛】
    本题考查了一次函数的应用,关键是利用待定系数法正确求出一次函数的解析式.
    19、(1)见解析;(2)时,的值最大,
    【解析】
    (1)延长BA、CF交于点G,利用可证△AFG≌△DFC得出,,根据,可证出,得出,利用,,点是的中点,得出,,则有,可得出,得出,即可得出结论;
    (2)设BE=x,则,,由勾股定理得出,,得出,求出,由二次函数的性质得出当x=1,即BE=1时,CE2-CF2有最大值,,由三角函数定义即可得出结果.
    【详解】
    解:(1)证明:如图,延长交的延长线于点,

    ∵为的中点,
    ∴.
    在中,,
    ∴.
    在和中,

    ∴,
    ∴,,
    ∵.
    ∴,
    ∴,
    ∵,,点是的中点,
    ∴,.
    ∴.
    ∴.
    ∴.
    在中,,
    又∵,
    ∴.

    (2)设,则,
    ∵,
    ∴,
    在中,,
    在中,,
    ∵,
    ∴,
    ∴,
    ∴当,即时,的值最大,
    ∴.
    在中,
    【点睛】
    本题考查了平行四边形的性质、全等三角形的判定与性质、等腰直角三角形的判定与性质、勾股定理、等腰三角形的判定与性质等知识;证明三角形全等和等腰三角形是解题的关键.
    20、B 60
    【解析】
    分析:(1)根据旋转的性质可得出结论;(2)根据旋转的性质可得BF=CF,则点F在线段BC的垂直平分线上,又由AC=AB,可得点A在线段BC的垂直平分线上,由AF垂直平分BC,即∠CQP=90,进而得出∠APC的度数.
    详解:(1)B,60;
    (2)补全图形如图所示;

    的大小保持不变,
    理由如下:设与交于点
    ∵直线是等边的对称轴
    ∴,
    ∵经顺时针旋转后与重合
    ∴ ,

    ∴点在线段的垂直平分线上

    ∴点在线段的垂直平分线上
    ∴垂直平分,即

    点睛:本题考查了旋转的性质,解题的关键是熟记旋转的性质及垂直平分线的性质,注意只证明一点是不能说明这条直线是垂直平分线的.
    21、(1)AE=DF,AE⊥DF,理由见解析;(2)成立,CE:CD=或2;(3)
    【解析】
    试题分析:(1)根据正方形的性质,由SAS先证得△ADE≌△DCF.由全等三角形的性质得AE=DF,∠DAE=∠CDF,再由等角的余角相等可得AE⊥DF;
    (2)有两种情况:①当AC=CE时,设正方形ABCD的边长为a,由勾股定理求出AC=CE=a即可;②当AE=AC时,设正方形的边长为a,由勾股定理求出AC=AE=a,根据正方形的性质知∠ADC=90°,然后根据等腰三角形的性质得出DE=CD=a即可;
    (3)由(1)(2)知:点P的路径是一段以AD为直径的圆,设AD的中点为Q,连接QC交弧于点P,此时CP的长度最大,再由勾股定理可得QC的长,再求CP即可.
    试题解析:(1)AE=DF,AE⊥DF,
    理由是:∵四边形ABCD是正方形,
    ∴AD=DC,∠ADE=∠DCF=90°,
    ∵动点E,F分别从D,C两点同时出发,以相同的速度在直线DC,CB上移动,
    ∴DE=CF,
    在△ADE和△DCF中

    ∴,
    ∴AE=DF,∠DAE=∠FDC,
    ∵∠ADE=90°,∴∠ADP+∠CDF=90°,
    ∴∠ADP+∠DAE=90°,
    ∴∠APD=180°-90°=90°,
    ∴AE⊥DF;
    (2)(1)中的结论还成立,
    有两种情况:

    ①如图1,当AC=CE时,
    设正方形ABCD的边长为a,由勾股定理得,

    则;

    ②如图2,当AE=AC时,
    设正方形ABCD的边长为a,由勾股定理得:

    ∵四边形ABCD是正方形,
    ∴∠ADC=90°,即AD⊥CE,
    ∴DE=CD=a,
    ∴CE:CD=2a:a=2;

    即CE:CD=或2;
    (3)∵点P在运动中保持∠APD=90°,
    ∴点P的路径是以AD为直径的圆,
    如图3,设AD的中点为Q,连接CQ并延长交圆弧于点P,
    此时CP的长度最大,
    ∵在Rt△QDC中,
    ∴,
    即线段CP的最大值是.
    点睛:此题主要考查了正方形的性质,勾股定理,圆周角定理,全等三角形的性质与判定,等腰三角形的性质,三角形的内角和定理,能综合运用性质进行推挤是解此题的关键,用了分类讨论思想,难度偏大.
    22、(1)这两年该市推行绿色建筑面积的年平均增长率为40%;(2)如果2017年仍保持相同的年平均增长率,2017年该市能完成计划目标.
    【解析】
    试题分析:(1)设这两年该市推行绿色建筑面积的年平均增长率x,根据2014年的绿色建筑面积约为700万平方米和2016年达到了1183万平方米,列出方程求解即可;
    (2)根据(1)求出的增长率问题,先求出预测2017年绿色建筑面积,再与计划推行绿色建筑面积达到1500万平方米进行比较,即可得出答案.
    试题解析:(1)设这两年该市推行绿色建筑面积的年平均增长率为x,
    根据题意得:700(1+x)2=1183,
    解得:x1=0.3=30%,x2=﹣2.3(舍去),
    答:这两年该市推行绿色建筑面积的年平均增长率为30%;
    (2)根据题意得:1183×(1+30%)=1537.9(万平方米),
    ∵1537.9>1500,
    ∴2017年该市能完成计划目标.
    【点睛】本题考查了一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件和增长率问题的数量关系,列出方程进行求解.
    23、(1)y=﹣x2+2x+1.(2)2≤Ey<2.(1)当m=1.5时,S△BCE有最大值,S△BCE的最大值=.
    【解析】
    分析:(1) 1)把A、B两点代入抛物线解析式即可;(2)设,利用求线段中点的公式列出关于m的方程组,再利用0<m<1即可求解;(1) 连结BD,过点D作x轴的垂线交BC于点H,由,设出点D的坐标,进而求出点H的坐标,利用三角形的面积公式求出,再利用公式求二次函数的最值即可.
    详解:(1)∵抛物线 过点A(1,0)和B(1,0)

    (2)∵
    ∴点C为线段DE中点
    设点E(a,b)

    ∵0<m<1,
    ∴当m=1时,纵坐标最小值为2
    当m=1时,最大值为2
    ∴点E纵坐标的范围为
    (1)连结BD,过点D作x轴的垂线交BC于点H
    ∵CE=CD
    ∴H(m,-m+1)

    当m=1.5时,
    .

    点睛:本题考查了二次函数的综合题、待定系数法、一次函数等知识点,解题的关键是灵活运用所学知识解决问题,会用方程的思想解决问题.
    24、(1)详见解析;(2)P=.
    【解析】
    试题分析:(1)树状图列举所有结果.(2)用在第二四象限的点数除以所有结果.
    试题解析:
    (1)画树状图得:
    则(m,n)共有12种等可能的结果:(2,-1),(2,﹣3),(2, 4),(-1,2),(-1,﹣3),(1, 4),(﹣3,2),(﹣3,-1),(﹣3, 4),(﹣4,2),(4,-1),(4,﹣3).
    (2)(m,n)在二、四象限的(2,-1),(2,﹣3),(-1,2),(﹣3,2),(﹣3, 4),(﹣4,2),(4,-1),(4,﹣3),
    ∴所选出的m,n在第二、三四象限的概率为:P==
    点睛:(1)利用频率估算法:大量重复试验中,事件A发生的频率会稳定在某个常数p附近,那么这个常数P就叫做事件A的概率(有些时候用计算出A发生的所有频率的平均值作为其概率).
    (2)定义法:如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,考察事件A包含其中的m中结果,那么事件A发生的概率为P.
    (3)列表法:当一次试验要设计两个因素,可能出现的结果数目较多时,为不重不漏地列出所有可能的结果,通常采用列表法.其中一个因素作为行标,另一个因素作为列标.
    (4)树状图法:当一次试验要设计三个或更多的因素时,用列表法就不方便了,为了不重不漏地列出所有可能的结果,通常采用树状图法求概率.

    相关试卷

    浙江省嘉兴市秀洲区实验中学2022年中考数学全真模拟试题含解析: 这是一份浙江省嘉兴市秀洲区实验中学2022年中考数学全真模拟试题含解析,共24页。试卷主要包含了下列方程中,没有实数根的是,定义,下列说法中,正确的是等内容,欢迎下载使用。

    浙江省嘉兴市嘉善一中等五校2021-2022学年中考数学最后冲刺模拟试卷含解析: 这是一份浙江省嘉兴市嘉善一中等五校2021-2022学年中考数学最后冲刺模拟试卷含解析,共23页。试卷主要包含了考生要认真填写考场号和座位序号,函数的自变量x的取值范围是,若点A,已知抛物线y=x2-2mx-4等内容,欢迎下载使用。

    2022年浙江省嘉兴市秀洲区中考数学考试模拟冲刺卷含解析: 这是一份2022年浙江省嘉兴市秀洲区中考数学考试模拟冲刺卷含解析,共18页。试卷主要包含了下列事件中为必然事件的是,估计﹣1的值为,如果将直线l1,如图,已知,,则的度数为等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map