|试卷下载
搜索
    上传资料 赚现金
    2022年浙江省嘉兴市桐乡中考五模数学试题含解析
    立即下载
    加入资料篮
    2022年浙江省嘉兴市桐乡中考五模数学试题含解析01
    2022年浙江省嘉兴市桐乡中考五模数学试题含解析02
    2022年浙江省嘉兴市桐乡中考五模数学试题含解析03
    还剩22页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年浙江省嘉兴市桐乡中考五模数学试题含解析

    展开
    这是一份2022年浙江省嘉兴市桐乡中考五模数学试题含解析,共25页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    考生请注意:
    1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
    2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
    3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.等腰三角形一条边的边长为3,它的另两条边的边长是关于x的一元二次方程x2﹣12x+k=0的两个根,则k的值是(  )
    A.27 B.36 C.27或36 D.18
    2.已知函数y=的图象如图,当x≥﹣1时,y的取值范围是(  )

    A.y<﹣1 B.y≤﹣1 C.y≤﹣1或y>0 D.y<﹣1或y≥0
    3.在平面直角坐标系中,正方形A1B1C1D1、D1 E1E2B2、A2B2 C2D2、D2E3E4B3…按如图所示的方式放置,其中点B1在y轴上,点C1、E1、E2、C2、E3、E4、C3…在x轴上,已知正方形A1B1C1D1的边长为l,∠B1C1O=60°,B1C1∥B2C2∥B3C3…,则正方形A2017B2017C2017 D2017的边长是(  )

    A.()2016 B.()2017 C.()2016 D.()2017
    4.多项式4a﹣a3分解因式的结果是(  )
    A.a(4﹣a2) B.a(2﹣a)(2+a) C.a(a﹣2)(a+2) D.a(2﹣a)2
    5.已知x1、x2是关于x的方程x2﹣ax﹣2=0的两根,下列结论一定正确的是(  )
    A.x1≠x2 B.x1+x2>0 C.x1•x2>0 D.x1<0,x2<0
    6.不透明的袋子中装有形状、大小、质地完全相同的6个球,其中4个黑球、2个白球,从袋子中一次摸出3个球,下列事件是不可能事件的是(  )
    A.摸出的是3个白球 B.摸出的是3个黑球
    C.摸出的是2个白球、1个黑球 D.摸出的是2个黑球、1个白球
    7.一个正多边形的内角和为900°,那么从一点引对角线的条数是(  )
    A.3 B.4 C.5 D.6
    8.一个不透明的袋中有四张完全相同的卡片,把它们分别标上数字1、2、3、1.随机抽取一张卡片,然后放回,再随机抽取一张卡片,则两次抽取的卡片上数字之积为偶数的概率是(  )
    A. B. C. D.
    9.下列各点中,在二次函数的图象上的是( )
    A. B. C. D.
    10.在如图所示的正方形网格中,网格线的交点称为格点,已知A、B是两格点,如果 C也是图中的格点,且使得△ABC为等腰直角三角形,则这样的点C有( )

    A.6个 B.7个 C.8个 D.9个
    11.下面的几何体中,主视图为圆的是( )
    A. B. C. D.
    12.下列命题是真命题的是( )
    A.如实数a,b满足a2=b2,则a=b
    B.若实数a,b满足a<0,b<0,则ab<0
    C.“购买1张彩票就中奖”是不可能事件
    D.三角形的三个内角中最多有一个钝角
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.如图,等边三角形的顶点A(1,1)、B(3,1),规定把等边△ABC“先沿x轴翻折,再向左平移1个单位”为一次变换,如果这样连续经过2018次变换后,等边△ABC的顶点C的坐标为_____.

    14.如图,平行线AB、CD被直线EF所截,若∠2=130°,则∠1=_____.

    15.如图,在菱形ABCD中,于E,,,则菱形ABCD的面积是______.

    16.如图,在2×4的正方形网格中,每个小正方形的边长均为1,每个小正方形的顶点叫做格点,△ABC的顶点都在格点上,将△ABC绕着点C按顺时针方向旋转一定角度后,得到△A'B'C',点A'、B'在格点上,则点A走过的路径长为_____(结果保留π)

    17.如图,Rt△ABC中,∠ACB=90°,D为AB的中点,F为CD上一点,且CF=CD,过点B作BE∥DC交AF的延长线于点E,BE=12,则AB的长为_____.

    18.若直角三角形两边分别为6和8,则它内切圆的半径为_____.
    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)我们定义:如果一个三角形一条边上的高等于这条边,那么这个三角形叫做“等高底”三角形,这条边叫做这个三角形的“等底”.
    (1)概念理解:
    如图1,在△ABC中,AC=6,BC=3,∠ACB=30°,试判断△ABC是否是”等高底”三角形,请说明理由.
    (1)问题探究:
    如图1,△ABC是“等高底”三角形,BC是”等底”,作△ABC关于BC所在直线的对称图形得到△A'BC,连结AA′交直线BC于点D.若点B是△AA′C的重心,求的值.
    (3)应用拓展:
    如图3,已知l1∥l1,l1与l1之间的距离为1.“等高底”△ABC的“等底”BC在直线l1上,点A在直线l1上,有一边的长是BC的倍.将△ABC绕点C按顺时针方向旋转45°得到△A'B'C,A′C所在直线交l1于点D.求CD的值.

    20.(6分)如图,在△AOB中,∠ABO=90°,OB=1,AB=8,反比例函数y=在第一象限内的图象分别交OA,AB于点C和点D,且△BOD的面积S△BOD=1.求反比例函数解析式;求点C的坐标.

    21.(6分)已知抛物线y=x2+bx+c(b,c是常数)与x轴相交于A,B两点(A在B的左侧),与y轴交于点C.
    (1)当A(﹣1,0),C(0,﹣3)时,求抛物线的解析式和顶点坐标;
    (2)P(m,t)为抛物线上的一个动点.
    ①当点P关于原点的对称点P′落在直线BC上时,求m的值;
    ②当点P关于原点的对称点P′落在第一象限内,P′A2取得最小值时,求m的值及这个最小值.
    22.(8分)已知:如图,△MNQ中,MQ≠NQ.
    (1)请你以MN为一边,在MN的同侧构造一个与△MNQ全等的三角形,画出图形,并简要说明构造的方法;

    (2)参考(1)中构造全等三角形的方法解决下面问题:
    如图,在四边形ABCD中,,∠B=∠D.求证:CD=AB.

    23.(8分)如图,AC是的直径,点B是内一点,且,连结BO并延长线交于点D,过点C作的切线CE,且BC平分.
    求证:;
    若的直径长8,,求BE的长.

    24.(10分)九(1)班针对“你最喜爱的课外活动项目”对全班学生进行调查(每名学生分别选一个活动项目),并根据调查结果列出统计表,绘制成扇形统计图.

    根据以上信息解决下列问题: , ;扇形统计图中机器人项目所对应扇形的圆心角度数为 °;从选航模项目的4名学生中随机选取2名学生参加学校航模兴趣小组训练,请用列举法(画树状图或列表)求所选取的2名学生中恰好有1名男生、1名女生的概率.
    25.(10分)某商店老板准备购买A、B两种型号的足球共100只,已知A型号足球进价每只40元,B型号足球进价每只60元.
    (1)若该店老板共花费了5200元,那么A、B型号足球各进了多少只;
    (2)若B型号足球数量不少于A型号足球数量的,那么进多少只A型号足球,可以让该老板所用的进货款最少?
    26.(12分)如图,已知一次函数y1=kx+b(k≠0)的图象与反比例函数的图象交于A、B两点,与坐标轴交于M、N两点.且点A的横坐标和点B的纵坐标都是﹣1.求一次函数的解析式;求△AOB的面积;观察图象,直接写出y1>y1时x的取值范围.

    27.(12分)发现
    如图1,在有一个“凹角∠A1A2A3”n边形A1A2A3A4……An中(n为大于3的整数),∠A1A2A3=∠A1+∠A3+∠A4+∠A5+∠A6+……+∠An﹣(n﹣4)×180°.
    验证如图2,在有一个“凹角∠ABC”的四边形ABCD中,证明:∠ABC=∠A+∠C+∠D.证明3,在有一个“凹角∠ABC”的六边形ABCDEF中,证明;∠ABC=∠A+∠C+∠D+∠E+∠F﹣360°.
    延伸如图4,在有两个连续“凹角A1A2A3和∠A2A3A4”的四边形A1A2A3A4……An中(n为大于4的整数),∠A1A2A3+∠A2A3A4=∠A1+∠A4+∠A5+∠A6……+∠An﹣(n﹣  )×180°.




    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、B
    【解析】
    试题分析:由于等腰三角形的一边长3为底或为腰不能确定,故应分两种情况进行讨论:(3)当3为腰时,其他两条边中必有一个为3,把x=3代入原方程可求出k的值,进而求出方程的另一个根,再根据三角形的三边关系判断是否符合题意即可;(3)当3为底时,则其他两条边相等,即方程有两个相等的实数根,由△=0可求出k的值,再求出方程的两个根进行判断即可.
    试题解析:分两种情况:
    (3)当其他两条边中有一个为3时,将x=3代入原方程,
    得:33-33×3+k=0
    解得:k=37
    将k=37代入原方程,
    得:x3-33x+37=0
    解得x=3或9
    3,3,9不能组成三角形,不符合题意舍去;
    (3)当3为底时,则其他两边相等,即△=0,
    此时:344-4k=0
    解得:k=3
    将k=3代入原方程,
    得:x3-33x+3=0
    解得:x=6
    3,6,6能够组成三角形,符合题意.
    故k的值为3.
    故选B.
    考点:3.等腰三角形的性质;3.一元二次方程的解.
    2、C
    【解析】
    试题分析:根据反比例函数的性质,再结合函数的图象即可解答本题.解:根据反比例函数的性质和图象显示可知:此函数为减函数,x≥-1时,在第三象限内y的取值范围是y≤-1;在第一象限内y的取值范围是y>1.故选C.
    考点:本题考查了反比例函数的性质
    点评:此类试题属于难度一般的试题,考生在解答此类试题时一定要注意分析反比例函数的基本性质和知识,反比例函数y=的图象是双曲线,当k>1时,图象在一、三象限,在每个象限内y随x的增大而减小;当k<1时,图象在二、四象限,在每个象限内,y随x的增大而增大
    3、C
    【解析】
    利用正方形的性质结合锐角三角函数关系得出正方形的边长,进而得出变化规律即可得出答案.
    解:如图所示:∵正方形A1B1C1D1的边长为1,∠B1C1O=60°,B1C1∥B2C2∥B3C3…
    ∴D1E1=B2E2,D2E3=B3E4,∠D1C1E1=∠C2B2E2=∠C3B3E4=30°,
    ∴D1E1=C1D1sin30°=,则B2C2===()1,
    同理可得:B3C3==()2,
    故正方形AnBnCnDn的边长是:()n﹣1.
    则正方形A2017B2017C2017D2017的边长是:()2.
    故选C.
    “点睛”此题主要考查了正方形的性质以及锐角三角函数关系,得出正方形的边长变化规律是解题关键.
    4、B
    【解析】
    首先提取公因式a,再利用平方差公式分解因式得出答案.
    【详解】
    4a﹣a3=a(4﹣a2)=a(2﹣a)(2+a).
    故选:B.
    【点睛】
    此题主要考查了提取公因式法以及公式法分解因式,正确运用公式是解题关键.
    5、A
    【解析】
    分析:A、根据方程的系数结合根的判别式,可得出△>0,由此即可得出x1≠x2,结论A正确;
    B、根据根与系数的关系可得出x1+x2=a,结合a的值不确定,可得出B结论不一定正确;
    C、根据根与系数的关系可得出x1•x2=﹣2,结论C错误;
    D、由x1•x2=﹣2,可得出x1<0,x2>0,结论D错误.
    综上即可得出结论.
    详解:A∵△=(﹣a)2﹣4×1×(﹣2)=a2+8>0,
    ∴x1≠x2,结论A正确;
    B、∵x1、x2是关于x的方程x2﹣ax﹣2=0的两根,
    ∴x1+x2=a,
    ∵a的值不确定,
    ∴B结论不一定正确;
    C、∵x1、x2是关于x的方程x2﹣ax﹣2=0的两根,
    ∴x1•x2=﹣2,结论C错误;
    D、∵x1•x2=﹣2,
    ∴x1<0,x2>0,结论D错误.
    故选A.
    点睛:本题考查了根的判别式以及根与系数的关系,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键.
    6、A
    【解析】
    由题意可知,不透明的袋子中总共有2个白球,从袋子中一次摸出3个球都是白球是不可能事件,故选B.
    7、B
    【解析】
    n边形的内角和可以表示成(n-2)•180°,设这个多边形的边数是n,就得到关于边数的方程,从而求出边数,再求从一点引对角线的条数.
    【详解】
    设这个正多边形的边数是n,则
    (n-2)•180°=900°,
    解得:n=1.
    则这个正多边形是正七边形.
    所以,从一点引对角线的条数是:1-3=4.
    故选B
    【点睛】
    本题考核知识点:多边形的内角和.解题关键点:熟记多边形内角和公式.
    8、C
    【解析】
    【分析】画树状图展示所有16种等可能的结果数,再找出两次抽取的卡片上数字之积为偶数的结果数,然后根据概率公式求解.
    【详解】画树状图为:

    共有16种等可能的结果数,其中两次抽取的卡片上数字之积为偶数的结果数为12,
    所以两次抽取的卡片上数字之积为偶数的概率=,
    故选C.
    【点睛】本题考查了列表法与树状图法求概率,用到的知识点为:概率=所求情况数与总情况数之比.
    9、D
    【解析】
    将各选项的点逐一代入即可判断.
    【详解】
    解:当x=1时,y=-1,故点不在二次函数的图象;
    当x=2时,y=-4,故点和点不在二次函数的图象;
    当x=-2时,y=-4,故点在二次函数的图象;
    故答案为:D.
    【点睛】
    本题考查了判断一个点是否在二次函数图象上,解题的关键是将点代入函数解析式.
    10、A
    【解析】
    根据题意,结合图形,分两种情况讨论:①AB为等腰△ABC底边;②AB为等腰△ABC其中的一条腰.
    【详解】
    如图:分情况讨论:

    ①AB为等腰直角△ABC底边时,符合条件的C点有2个;
    ②AB为等腰直角△ABC其中的一条腰时,符合条件的C点有4个.
    故选:C.
    【点睛】
    本题考查了等腰三角形的判定;解答本题关键是根据题意,画出符合实际条件的图形,再利用数学知识来求解.数形结合的思想是数学解题中很重要的解题思想.
    11、C
    【解析】
    试题解析:A、的主视图是矩形,故A不符合题意;
    B、的主视图是正方形,故B不符合题意;
    C、的主视图是圆,故C符合题意;
    D、的主视图是三角形,故D不符合题意;
    故选C.
    考点:简单几何体的三视图.
    12、D
    【解析】
    A. 两个数的平方相等,这两个数不一定相等,有正负之分即可判断
    B. 同号相乘为正,异号相乘为负,即可判断
    C. “购买1张彩票就中奖”是随机事件即可判断
    D. 根据三角形内角和为180度,三个角中不可能有两个以上钝角即可判断
    【详解】
    如实数a,b满足a2=b2,则a=±b,A是假命题;
    数a,b满足a<0,b<0,则ab>0,B是假命题;
    若实“购买1张彩票就中奖”是随机事件,C是假命题;
    三角形的三个内角中最多有一个钝角,D是真命题;
    故选:D
    【点睛】
    本题考查了命题与定理,根据实际判断是解题的关键

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、(﹣2016, +1)
    【解析】
    据轴对称判断出点C变换后在x轴上方,然后求出点C纵坐标,再根据平移的距离求出点A变换后的横坐标,最后写出即可.
    【详解】
    解:∵△ABC是等边三角形AB=3﹣1=2,
    ∴点C到x轴的距离为1+2×=+1,
    横坐标为2,
    ∴C(2, +1),
    第2018次变换后的三角形在x轴上方,
    点C的纵坐标为+1,
    横坐标为2﹣2018×1=﹣2016,
    所以,点C的对应点C′的坐标是(﹣2016,+1)
    故答案为:(﹣2016,+1)
    【点睛】
    本题考查坐标与图形变化,平移和轴对称变换,等边三角形的性质,读懂题目信息,确定出连续2018次这样的变换得到三角形在x轴上方是解题的关键.
    14、50°
    【解析】
    利用平行线的性质推出∠EFC=∠2=130°,再根据邻补角的性质即可解决问题.
    【详解】
    ∵AB∥CD,
    ∴∠EFC=∠2=130°,
    ∴∠1=180°-∠EFC=50°,
    故答案为50°
    【点睛】
    本题考查平行线的性质、邻补角的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考基础题.
    15、
    【解析】
    根据题意可求AD的长度,即可得CD的长度,根据菱形ABCD的面积=CD×AE,可求菱形ABCD的面积.
    【详解】
    ∵sinD=

    ∴AD=11
    ∵四边形ABCD是菱形
    ∴AD=CD=11
    ∴菱形ABCD的面积=11×8=96cm1.
    故答案为:96cm1.
    【点睛】
    本题考查了菱形的性质,解直角三角形,熟练运用菱形性质解决问题是本题的关键.
    16、
    【解析】
    分析:连接AA′,根据勾股定理求出AC=AC′,及AA′的长,然后根据勾股定理的逆定理得出△ACA′为等腰直角三角形,然后根据弧长公式求解即可.
    详解:连接AA′,如图所示.
    ∵AC=A′C=,AA′=,
    ∴AC2+A′C2=AA′2,
    ∴△ACA′为等腰直角三角形,
    ∴∠ACA′=90°,
    ∴点A走过的路径长=×2πAC=π.
    故答案为:π.

    点睛:本题主要考查了几何变换的类型以及勾股定理及逆定理的运用,弧长公式,解题时注意:在旋转变换下,对应线段相等.解决问题的关键是找出变换的规律,根据弧长公式求解.
    17、1.
    【解析】
    根据三角形的性质求解即可。
    【详解】
    解:在Rt△ABC中, D为AB的中点, 根据直角三角形斜边的中线等于斜边的一半可得:AD=BD=CD,
    因为D为AB的中点, BE//DC, 所以DF是△ABE的中位线,BE=2DF=12
    所以DF==6,
    设CD=x,由CF=CD,则DF==6,
    可得CD=9,故AD=BD=CD=9,
    故AB=1,
    故答案:1.
    .
    【点睛】
    本题主要考查三角形基本概念,综合运用三角形的知识可得答案。
    18、2或-1
    【解析】
    根据已知题意,求第三边的长必须分类讨论,即8是斜边或直角边的两种情况,然后利用勾股定理求出另一边的长,再根据内切圆半径公式求解即可.
    【详解】
    若8是直角边,则该三角形的斜边的长为:,
    ∴内切圆的半径为:;
    若8是斜边,则该三角形的另一条直角边的长为:,
    ∴内切圆的半径为:.
    故答案为2或-1.
    【点睛】
    本题考查了勾股定理,三角形的内切圆,以及分类讨论的数学思想,分类讨论是解答本题的关键.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、(1)△ABC是“等高底”三角形;(1);(3)CD的值为,1,1.
    【解析】
    (1)过A作AD⊥BC于D,则△ADC是直角三角形,∠ADC=90°,根据30°所对的直角边等于斜边的一半可得:根据“等高底”三角形的概念即可判断.
    (1)点B是的重心,得到设 则
    根据勾股定理可得即可求出它们的比值.
    (3)分两种情况进行讨论:①当时和②当时.
    【详解】
    (1)△ABC是“等高底”三角形;
    理由:如图1,过A作AD⊥BC于D,则△ADC是直角三角形,∠ADC=90°,

    ∵∠ACB=30°,AC=6,

    ∴AD=BC=3,
    即△ABC是“等高底”三角形;
    (1)如图1,∵△ABC是“等高底”三角形,BC是“等底”,


    ∵△ABC关于BC所在直线的对称图形是 ,
    ∴∠ADC=90°,
    ∵点B是的重心,

    设 则
    由勾股定理得

    (3)①当时,
    Ⅰ.如图3,作AE⊥BC于E,DF⊥AC于F,

    ∵“等高底”△ABC的“等底”为BC,l1∥l1,l1与l1之间的距离为1,.

    ∴BE=1,即EC=4,

    ∵△ABC绕点C按顺时针方向旋转45°得到△A'B'C,
    ∴∠DCF=45°,

    ∵l1∥l1,

    ∴ 即


    Ⅱ.如图4,此时△ABC等腰直角三角形,

    ∵△ABC绕点C按顺时针方向旋转45°得到,
    ∴是等腰直角三角形,

    ②当时,
    Ⅰ.如图5,此时△ABC是等腰直角三角形,

    ∵△ABC绕点C按顺时针方向旋转45°得到△A'B'C,


    Ⅱ.如图6,作于E,则



    ∴△ABC绕点C按顺时针方向旋转45°,得到时,点A'在直线l1上,
    ∴∥l1,即直线与l1无交点,
    综上所述,CD的值为
    【点睛】
    属于新定义问题,考查对与等底高三角形概念的理解,勾股定理,等腰直角三角形的性质等,掌握等底高三角形的性质是解题的关键.
    20、(1)反比例函数解析式为y=;(2)C点坐标为(2,1)
    【解析】
    (1)由S△BOD=1可得BD的长,从而可得D的坐标,然后代入反比例函数解析式可求得k,从而得解析式为y=;
    (2)由已知可确定A点坐标,再由待定系数法求出直线AB的解析式为y=2x,然后解方程组即可得到C点坐标.
    【详解】
    (1)∵∠ABO=90°,OB=1,S△BOD=1,
    ∴OB×BD=1,解得BD=2,
    ∴D(1,2)
    将D(1,2)代入y=,
    得2=,
    ∴k=8,
    ∴反比例函数解析式为y=;
    (2)∵∠ABO=90°,OB=1,AB=8,
    ∴A点坐标为(1,8),
    设直线OA的解析式为y=kx,
    把A(1,8)代入得1k=8,解得k=2,
    ∴直线AB的解析式为y=2x,
    解方程组得或,
    ∴C点坐标为(2,1).
    21、(1)抛物线的解析式为y=x3﹣3x﹣1,顶点坐标为(1,﹣4);(3)①m=;②P′A3取得最小值时,m的值是,这个最小值是.
    【解析】
    (1)根据A(﹣1,3),C(3,﹣1)在抛物线y=x3+bx+c(b,c是常数)的图象上,可以求得b、c的值;
    (3)①根据题意可以得到点P′的坐标,再根据函数解析式可以求得点B的坐标,进而求得直线BC的解析式,再根据点P′落在直线BC上,从而可以求得m的值;
    ②根据题意可以表示出P′A3,从而可以求得当P′A3取得最小值时,m的值及这个最小值.
    【详解】
    解:(1)∵抛物线y=x3+bx+c(b,c是常数)与x轴相交于A,B两点,与y轴交于点C,A(﹣1,3),C(3,﹣1),∴,解得:,∴该抛物线的解析式为y=x3﹣3x﹣1.
    ∵y=x3﹣3x﹣1=(x﹣1)3﹣4,∴抛物线的顶点坐标为(1,﹣4);
    (3)①由P(m,t)在抛物线上可得:t=m3﹣3m﹣1.
    ∵点P和P′关于原点对称,∴P′(﹣m,﹣t),当y=3时,3=x3﹣3x﹣1,解得:x1=﹣1,x3=1,由已知可得:点B(1,3).
    ∵点B(1,3),点C(3,﹣1),设直线BC对应的函数解析式为:y=kx+d,,解得:,∴直线BC的直线解析式为y=x﹣1.
    ∵点P′落在直线BC上,∴﹣t=﹣m﹣1,即t=m+1,∴m3﹣3m﹣1=m+1,解得:m=;
    ②由题意可知,点P′(﹣m,﹣t)在第一象限,∴﹣m>3,﹣t>3,∴m<3,t<3.
    ∵二次函数的最小值是﹣4,∴﹣4≤t<3.
    ∵点P(m,t)在抛物线上,∴t=m3﹣3m﹣1,∴t+1=m3﹣3m,过点P′作P′H⊥x轴,H为垂足,有H(﹣m,3).
    又∵A(﹣1,3),则P′H3=t3,AH3=(﹣m+1)3.在Rt△P′AH中,P′A3=AH3+P′H3,∴P′A3=(﹣m+1)3+t3=m3﹣3m+1+t3=t3+t+4=(t+)3+,∴当t=﹣时,P′A3有最小值,此时P′A3=,∴=m3﹣3m﹣1,解得:m=.
    ∵m<3,∴m=,即P′A3取得最小值时,m的值是,这个最小值是.

    【点睛】
    本题是二次函数综合题,解答本题的关键是明确题意,找出所求问题需要的条件,利用二次函数的性质解答.
    22、(1)作图见解析;(2)证明书见解析.
    【解析】
    (1)以点N为圆心,以MQ长度为半径画弧,以点M为圆心,以NQ长度为半径画弧,两弧交于一点F,则△MNF为所画三角形.
    (2)延长DA至E,使得AE=CB,连结CE.证明△EAC≌△BCA,得:∠B =∠E,AB=CE,根据等量代换可以求得答案.
    【详解】
    解:(1)如图1,以N 为圆心,以MQ 为半径画圆弧;以M 为圆心,以NQ 为半径画圆弧;两圆弧的交点即为所求.

    (2)如图,延长DA至E,使得AE=CB,连结CE.
    ∵∠ACB +∠CAD =180°,∠DACDAC +∠EAC =180°,∴∠BACBCA =∠EAC.
    在△EAC和△BAC中,AE=CE,AC=CA,∠EAC=∠BCN,
    ∴△AECEAC≌△BCA (SAS).∴∠B=∠E,AB=CE.
    ∵∠B=∠D,∴∠D=∠E.∴CD=CE,∴CD=AB.

    考点:1.尺规作图;2.全等三角形的判定和性质.
    23、(1)证明见解析;(2).
    【解析】
    先利用等腰三角形的性质得到,利用切线的性质得,则CE∥BD,然后证明得到BE=CE;
    作于F,如图,在Rt△OBC中利用正弦定义得到BC=5,所以,然后在Rt△BEF中通过解直角三角形可求出BE的长.
    【详解】
    证明:,,

    是的切线,



    平分,




    解:作于F,如图,
     的直径长8,





    在中,
    设,则,
    ,即,解得,

    故答案为(1)证明见解析;(2) .
    【点睛】
    本题考查切线的性质:圆的切线垂直于经过切点的半径若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系简记作:见切点,连半径,见垂直也考查了解直角三角形.
    24、(1),; (2);(3).
    【解析】
    试题分析:(1)利用航模小组先求出数据总数,再求出n .(2)小组所占圆心角=;(3)列表格求概率.
    试题解析:(1);
    (2);
    (3)将选航模项目的名男生编上号码,将名女生编上号码. 用表格列出所有可能出现的结果:

    由表格可知,共有种可能出现的结果,并且它们都是第可能的,其中“名男生、名女生”有种可能.(名男生、名女生).(如用树状图,酌情相应给分)
    考点:统计与概率的综合运用.
    25、(1)A型足球进了40个,B型足球进了60个;(2)当x=60时,y最小=4800元.
    【解析】
    (1)设A型足球x个,则B型足球(100-x)个,根据该店老板共花费了5200元列方程求解即可;
    (2)设进货款为y元,根据题意列出函数关系式,根据B型号足球数量不少于A型号足球数量的求出x的取值范围,然后根据一次函数的性质求解即可.
    【详解】
    解:(1)设A型足球x个,则B型足球(100-x)个,
    ∴ 40x +60(100-x)=5200 ,
    解得:x=40 ,
    ∴100-x=100-40=60个,
    答:A型足球进了40个,B型足球进了60个.
    (2)设A型足球x个,则B型足球(100-x)个,
    100-x≥ ,
    解得:x≤60 ,
    设进货款为y元,则y=40x+60(100-x)=-20x+6000 ,
    ∵k=-20,∴y随x的增大而减小,
    ∴当x=60时,y最小=4800元.
    【点睛】
    本题考查了一元一次方程的应用,一次函数的应用,仔细审题,找出解决问题所需的数量关系是解答本题的关键.
    26、(1)y1=﹣x+1,(1)6;(3)x<﹣1或0<x<4
    【解析】
    试题分析:(1)先根据反比例函数解析式求得两个交点坐标,再根据待定系数法求得一次函数解析式;
    (1)将两条坐标轴作为△AOB的分割线,求得△AOB的面积;
    (3)根据两个函数图象交点的坐标,写出一次函数图象在反比例函数图象上方时所有点的横坐标的集合即可.
    试题解析:(1)设点A坐标为(﹣1,m),点B坐标为(n,﹣1)
    ∵一次函数y1=kx+b(k≠0)的图象与反比例函数y1=﹣的图象交于A、B两点
    ∴将A(﹣1,m)B(n,﹣1)代入反比例函数y1=﹣可得,m=4,n=4
    ∴将A(﹣1,4)、B(4,﹣1)代入一次函数y1=kx+b,可得
    ,解得
    ∴一次函数的解析式为y1=﹣x+1;,
    (1)在一次函数y1=﹣x+1中,
    当x=0时,y=1,即N(0,1);当y=0时,x=1,即M(1,0)
    ∴=×1×1+×1×1+×1×1=1+1+1=6;
    (3)根据图象可得,当y1>y1时,x的取值范围为:x<﹣1或0<x<4

    考点:1、一次函数,1、反比例函数,3、三角形的面积
    27、(1)见解析;(2)见解析;(3)1.
    【解析】
    (1)如图2,延长AB交CD于E,可知∠ABC=∠BEC+∠C,∠BEC=∠A+∠D,即可解答
    (2)如图3,延长AB交CD于G,可知∠ABC=∠BGC+∠C,即可解答
    (3)如图4,延长A2A3交A5A4于C,延长A3A2交A1An于B,可知∠A1A2A3+∠A2A3A4=∠A1+∠2+∠A4+∠4,再找出规律即可解答
    【详解】
    (1)如图2,延长AB交CD于E,
    则∠ABC=∠BEC+∠C,∠BEC=∠A+∠D,
    ∴∠ABC=∠A+∠C+∠D;
    (2)如图3,延长AB交CD于G,则∠ABC=∠BGC+∠C,
    ∵∠BGC=180°﹣∠BGC,∠BGD=3×180°﹣(∠A+∠D+∠E+∠F),
    ∴∠ABC=∠A+∠C+∠D+∠E+∠F﹣310°;
    (3)如图4,延长A2A3交A5A4于C,延长A3A2交A1An于B,
    则∠A1A2A3+∠A2A3A4=∠A1+∠2+∠A4+∠4,
    ∵∠1+∠3=(n﹣2﹣2)×180°﹣(∠A5+∠A1……+∠An),
    而∠2+∠4=310°﹣(∠1+∠3)=310°﹣[(n﹣2﹣2)×180°﹣(∠A5+∠A1……+∠An)],
    ∴∠A1A2A3+∠A2A3A4=∠A1+∠A4+∠A5+∠A1……+∠An﹣(n﹣1)×180°.
    故答案为1.



    【点睛】
    此题考查多边形的内角和外角,,解题的关键是熟练掌握三角形的外角的性质,属于中考常考题型

    相关试卷

    2023年浙江省嘉兴市桐乡市中考一模数学试题(含答案解析): 这是一份2023年浙江省嘉兴市桐乡市中考一模数学试题(含答案解析),共26页。

    2023年浙江省嘉兴市桐乡市中考数学一模试卷(含解析): 这是一份2023年浙江省嘉兴市桐乡市中考数学一模试卷(含解析),共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2022年浙江省嘉兴市桐乡重点名校中考数学模拟试题含解析: 这是一份2022年浙江省嘉兴市桐乡重点名校中考数学模拟试题含解析,共21页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map