2022年云南省玉溪市红塔区云中考五模数学试题含解析
展开2021-2022中考数学模拟试卷
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.如图,已知△ABC,△DCE,△FEG,△HGI是4个全等的等腰三角形,底边BC,CE,EG,GI在同一直线上,且AB=2,BC=1.连接AI,交FG于点Q,则QI=( )
A.1 B. C. D.
2.如图,在等腰直角三角形ABC中,∠C=90°,D为BC的中点,将△ABC折叠,使点A与点D重合,EF为折痕,则sin∠BED的值是( )
A. B. C. D.
3.中国古代在利用“计里画方”(比例缩放和直角坐标网格体系)的方法制作地图时,会利用测杆、水准仪和照板来测量距离.在如图所示的测量距离AB的示意图中,记照板“内芯”的高度为EF,观测者的眼睛(图中用点C表示)与BF在同一水平线上,则下列结论中,正确的是( )
A. B. C. D.
4.若点都是反比例函数的图象上的点,并且,则下列各式中正确的是(( )
A. B. C. D.
5.若3x>﹣3y,则下列不等式中一定成立的是 ( )
A. B. C. D.
6.北京故宫的占地面积达到720 000平方米,这个数据用科学记数法表示为( )
A.0.72×106平方米 B.7.2×106平方米
C.72×104平方米 D.7.2×105平方米
7.某班将举行“庆祝建党95周年知识竞赛”活动,班长安排小明购买奖品,如图是小明买回奖品时与班长的对话情境:请根据如图对话信息,计算乙种笔记本买了( )
A.25本 B.20本 C.15本 D.10本
8.如图,将一块含有30°角的直角三角板的两个顶点放在长方形直尺的一组对边上,如果∠1=30°,那么∠2的度数为( )
A.30° B.40° C.50° D.60°
9.如果一个正多边形内角和等于1080°,那么这个正多边形的每一个外角等于( )
A. B. C. D.
10.如图,在矩形ABCD中,AB=5,AD=3,动点P满足S△PAB=S矩形ABCD,则点P到A、B两点距离之和PA+PB的最小值为( )
A. B. C.5 D.
二、填空题(共7小题,每小题3分,满分21分)
11.如图,ABCD是菱形,AC是对角线,点E是AB的中点,过点E作对角线AC的垂线,垂足是点M,交AD边于点F,连结DM.若∠BAD=120°,AE=2,则DM=__.
12.若关于x的一元二次方程kx2+2(k+1)x+k-1=0有两个实数根,则k的取值范围是
13.分解因式:2x2﹣8=_____________
14.在实数范围内分解因式:x2y﹣2y=_____.
15.分解因式8x2y﹣2y=_____.
16.一次函数y=(k﹣3)x﹣k+2的图象经过第一、三、四象限.则k的取值范围是_____.
17.在平面直角坐标系中,已知线段AB的两个端点的坐标分别是A(4,-1)、B(1,1),将线段AB平移后得到线段A′B′,若点A′的坐标为(-2,2),则点B′的坐标为________.
三、解答题(共7小题,满分69分)
18.(10分)小方与同学一起去郊游,看到一棵大树斜靠在一小土坡上,他想知道树有多长,于是他借来测角仪和卷尺.如图,他在点C处测得树AB顶端A的仰角为30°,沿着CB方向向大树行进10米到达点D,测得树AB顶端A的仰角为45°,又测得树AB倾斜角∠1=75°.
(1)求AD的长.
(2)求树长AB.
19.(5分)我市某企业接到一批产品的生产任务,按要求必须在14天内完成.已知每件产品的出厂价为60元.工人甲第x天生产的产品数量为y件,y与x满足如下关系:
工人甲第几天生产的产品数量为70件?设第x天生产的产品成本为P元/件,P与的函数图象如图.工人甲第x天创造的利润为W元,求W与x的函数关系式,并求出第几天时利润最大,最大利润是多少?
20.(8分)中华文化,源远流长,在文学方面,《西游记》、《三国演义》、《水浒传》、《红楼梦》是我国古代长篇小说中的典型代表,被称为“四大古典名著”.某中学为了了解学生对四大古典名著的阅读情况,就“四大古典名著你读完了几部”的问题在全校学生中进行了抽样调查,根据调查结果绘制成如图所示的两个不完整的统计图,请结合图中信息解决下列问题:
(1)本次调查了 名学生,扇形统计图中“1部”所在扇形的圆心角为 度,并补全条形统计图;
(2)此中学共有1600名学生,通过计算预估其中4部都读完了的学生人数;
(3)没有读过四大古典名著的两名学生准备从四大固定名著中各自随机选择一部来阅读,求他们选中同一名著的概率.
21.(10分)在“传箴言”活动中,某班团支部对该班全体团员在一个月内所发箴言条数的情况进行了统计,并制成了如图所示的两幅不完整的统计图:
求该班团员在这一个月内所发箴言的平均条数是多少?并将该条形统计图补充完整;如果发了3条箴言的同学中有两位男同学,发了4条箴言的同学中有三位女同学.现要从发了3条箴言和4条箴言的同学中分别选出一位参加该校团委组织的“箴言”活动总结会,请你用列表法或树状图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率.
22.(10分)由于雾霾天气趋于严重,我市某电器商城根据民众健康需求,代理销售某种家用空气净化器,其进价是200元/台.经过市场销售后发现:在一个月内,当售价是400元/台时,可售出200台,且售价每降低10元,就可多售出50台.若供货商规定这种空气净化器售价不能低于300元/台,代理销售商每月要完成不低于450台的销售任务.完成下列表格,并直接写出月销售量y(台)与售价x(元/台)之间的函数关系式及售价x的取值范围;
售价(元/台)
月销售量(台)
400
200
250
x
(2)当售价x(元/台)定为多少时,商场每月销售这种空气净化器所获得的利润w(元)最大?最大利润是多少?
23.(12分)已知抛物线y=a(x+3)(x﹣1)(a≠0),与x轴从左至右依次相交于A、B两点,与y轴相交于点C,经过点A的直线y=﹣x+b与抛物线的另一个交点为D.
(1)若点D的横坐标为2,求抛物线的函数解析式;
(2)若在第三象限内的抛物线上有点P,使得以A、B、P为顶点的三角形与△ABC相似,求点P的坐标;
(3)在(1)的条件下,设点E是线段AD上的一点(不含端点),连接BE.一动点Q从点B出发,沿线段BE以每秒1个单位的速度运动到点E,再沿线段ED以每秒个单位的速度运动到点D后停止,问当点E的坐标是多少时,点Q在整个运动过程中所用时间最少?
24.(14分)2018年平昌冬奥会在2月9日到25日在韩国平昌郡举行,为了调查中学生对冬奥会比赛项目的了解程度,某中学在学生中做了一次抽样调查,调查结果共分为四个等级:A、非常了解B、比较了解C、基本了解D、不了解.根据调查统计结果,绘制了如图所示的不完整的三种统计图表.
对冬奥会了解程度的统计表
对冬奥会的了解程度
百分比
A非常了解
10%
B比较了解
15%
C基本了解
35%
D不了解
n%
(1)n= ;
(2)扇形统计图中,D部分扇形所对应的圆心角是 ;
(3)请补全条形统计图;
(4)根据调查结果,学校准备开展冬奥会的知识竞赛,某班要从“非常了解”程度的小明和小刚中选一人参加,现设计了如下游戏来确定谁参赛,具体规则是:把四个完全相同的乒乓球标上数字1,2,3,4然后放到一个不透明的袋中,一个人先从袋中摸出一个球,另一人再从剩下的三个球中随机摸出一个球,若摸出的两个球上的数字和为偶数,则小明去,否则小刚去,请用画树状图或列表的方法说明这个游戏是否公平.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、D
【解析】
解:∵△ABC、△DCE、△FEG是三个全等的等腰三角形,∴HI=AB=2,GI=BC=1,BI=2BC=2,∴===,∴=.∵∠ABI=∠ABC,∴△ABI∽△CBA,∴=.∵AB=AC,∴AI=BI=2.∵∠ACB=∠FGE,∴AC∥FG,∴==,∴QI=AI=.故选D.
点睛:本题主要考查了平行线分线段定理,以及三角形相似的判定,正确理解AB∥CD∥EF,AC∥DE∥FG是解题的关键.
2、A
【解析】
∵△DEF是△AEF翻折而成,
∴△DEF≌△AEF,∠A=∠EDF,
∵△ABC是等腰直角三角形,
∴∠EDF=45°,由三角形外角性质得∠CDF+45°=∠BED+45°,
∴∠BED=∠CDF,
设CD=1,CF=x,则CA=CB=2,
∴DF=FA=2-x,
∴在Rt△CDF中,由勾股定理得,CF2+CD2=DF2,即x2+1=(2-x)2,
解得x=,
∴sin∠BED=sin∠CDF=.
故选:A.
3、B
【解析】
分析:由平行得出相似,由相似得出比例,即可作出判断.
详解: ∵EF∥AB, ∴△CEF∽△CAB, ∴,故选B.
点睛:本题考查了相似三角形的应用,熟练掌握相似三角形的判定与性质是解答本题的关键.
4、B
【解析】
解:根据题意可得:
∴反比例函数处于二、四象限,则在每个象限内为增函数,
且当x<0时y>0,当x>0时,y<0,
∴<<.
5、A
【解析】
两边都除以3,得x>﹣y,两边都加y,得:x+y>0,
故选A.
6、D
【解析】
试题分析:把一个数记成a×10n(1≤a<10,n整数位数少1)的形式,叫做科学记数法.
∴此题可记为1.2×105平方米.
考点:科学记数法
7、C
【解析】
设甲种笔记本买了x本,甲种笔记本的单价是y元,则乙种笔记本买了(40﹣x)本,乙种笔记本的单价是(y+3)元,根据题意列出关于x、y的二元一次方程组,求出x、y的值即可.
【详解】
解:设甲种笔记本买了x本,甲种笔记本的单价是y元,则乙种笔记本买了(40﹣x)本,乙种笔记本的单价是(y+3)元,
根据题意,得:,
解得:,
答:甲种笔记本买了25本,乙种笔记本买了15本.
故选C.
【点睛】
本题考查的是二元二次方程组的应用,能根据题意得出关于x、y的二元二次方程组是解答此题的关键.
8、D
【解析】
如图,因为,∠1=30°,∠1+∠3=60°,所以∠3=30°,因为AD∥BC,所以∠3=∠4,所以∠4=30°,所以∠2=180°-90°-30°=60°,故选D.
9、A
【解析】
首先设此多边形为n边形,根据题意得:180(n-2)=1080,即可求得n=8,再由多边形的外角和等于360°,即可求得答案.
【详解】
设此多边形为n边形,
根据题意得:180(n-2)=1080,
解得:n=8,
∴这个正多边形的每一个外角等于:360°÷8=45°.
故选A.
【点睛】
此题考查了多边形的内角和与外角和的知识.注意掌握多边形内角和定理:(n-2)•180°,外角和等于360°.
10、D
【解析】
解:设△ABP中AB边上的高是h.∵S△PAB=S矩形ABCD,∴ AB•h=AB•AD,∴h=AD=2,∴动点P在与AB平行且与AB的距离是2的直线l上,如图,作A关于直线l的对称点E,连接AE,连接BE,则BE就是所求的最短距离.
在Rt△ABE中,∵AB=5,AE=2+2=4,∴BE= ==,即PA+PB的最小值为.故选D.
二、填空题(共7小题,每小题3分,满分21分)
11、.
【解析】
作辅助线,构建直角△DMN,先根据菱形的性质得:∠DAC=60°,AE=AF=2,也知菱形的边长为4,利用勾股定理求MN和DN的长,从而计算DM的长.
【详解】
解:过M作MN⊥AD于N,
∵四边形ABCD是菱形,
∴
∵EF⊥AC,
∴AE=AF=2,∠AFM=30°,
∴AM=1,
Rt△AMN中,∠AMN=30°,
∴
∵AD=AB=2AE=4,
∴
由勾股定理得:
故答案为
【点睛】
本题主要考查了菱形的性质,等腰三角形的性质,勾股定理及直角三角形30度角的性质,熟练掌握直角三角形中30°所对的直角边是斜边的一半.
12、k≥,且k≠1
【解析】
试题解析:∵a=k,b=2(k+1),c=k-1,
∴△=4(k+1)2-4×k×(k-1)=3k+1≥1,
解得:k≥-,
∵原方程是一元二次方程,
∴k≠1.
考点:根的判别式.
13、2(x+2)(x﹣2)
【解析】
先提公因式,再运用平方差公式.
【详解】
2x2﹣8,
=2(x2﹣4),
=2(x+2)(x﹣2).
【点睛】
考核知识点:因式分解.掌握基本方法是关键.
14、y(x+)(x﹣)
【解析】
先提取公因式y后,再把剩下的式子写成x2-()2,符合平方差公式的特点,可以继续分解.
【详解】
x2y-2y=y(x2-2)=y(x+)(x-).
故答案为y(x+)(x-).
【点睛】
本题考查实数范围内的因式分解,因式分解的步骤为:一提公因式;二看公式.在实数范围内进行因式分解的式子的结果一般要分到出现无理数为止.
15、2y(2x+1)(2x﹣1)
【解析】
首先提取公因式2y,再利用平方差公式分解因式得出答案.
【详解】
8x2y-2y=2y(4x2-1)
=2y(2x+1)(2x-1).
故答案为2y(2x+1)(2x-1).
【点睛】
此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.
16、k>3
【解析】
分析:根据函数图象所经过的象限列出不等式组通过解该不等式组可以求得k的取值范围.
详解:∵一次函教y=(k−3)x−k+2的图象经过第一、三、四象限,
∴
解得,k>3.
故答案是:k>3.
点睛:此题主要考查了一次函数图象,一次函数的图象有四种情况:
①当时,函数的图象经过第一、二、三象限;
②当时,函数的图象经过第一、三、四象限;
③当时,函数的图象经过第一、二、四象限;
④当时,函数的图象经过第二、三、四象限.
17、 (-5,4)
【解析】
试题解析:由于图形平移过程中,对应点的平移规律相同,
由点A到点A'可知,点的横坐标减6,纵坐标加3,
故点B'的坐标为 即
故答案为:
三、解答题(共7小题,满分69分)
18、(1);(2).
【解析】
试题分析:(1)过点A作AE⊥CB于点E,设AE=x,分别表示出CE、DE,再由CD=10,可得方程,解出x的值,在Rt△ADE中可求出AD;
(2)过点B作BF⊥AC于点F,设BF=y,分别表示出CF、AF,解出y的值后,在Rt△ABF中可求出AB的长度.
试题解析:(1)如图,过A作AH⊥CB于H,设AH=x,CH=x,DH=x.
∵CH―DH=CD,∴x―x=10,∴x=.
∵∠ADH=45°,∴AD=x=.
(2)如图,过B作BM ⊥AD于M.
∵∠1=75°,∠ADB=45°,∴∠DAB=30°.
设MB=m,∴AB=2m,AM=m,DM=m.
∵AD=AM+DM,∴=m+m.∴m=.∴AB=2m=.
19、 (1)工人甲第12天生产的产品数量为70件;(2)第11天时,利润最大,最大利润是845元.
【解析】
分析:(1)根据y=70求得x即可;(2)先根据函数图象求得P关于x的函数解析式,再结合x的范围分类讨论,根据“总利润=单件利润×销售量”列出函数解析式,由二次函数的性质求得最值即可.
本题解析:
解:(1)若7.5x=70,得x=>4,不符合题意;
则5x+10=70,
解得x=12.
答:工人甲第12天生产的产品数量为70件.
(2)由函数图象知,当0≤x≤4时,P=40,
当4
∴P=x+36.
①当0≤x≤4时,W=(60-40)·7.5x=150x,
∵W随x的增大而增大,
∴当x=4时,W最大=600;
②当4
∵845>600,
∴当x=11时,W取得最大值845元.
答:第11天时,利润最大,最大利润是845元.
点睛:本题考查了一次函数的应用、二次函数的应用,解题的关键是理解题意,记住利润=出厂价-成本,学会利用函数的性质解决最值问题.
20、(1)40、126(2)240人(3)
【解析】
(1)用2部的人数10除以2部人数所占的百分比25%即可求出本次调查的学生数,根据扇形圆心角的度数=部分占总体的百分比×360°,即可得到“1部”所在扇形的圆心角;
(2)用1600乘以4部所占的百分比即可;
(3)根据树状图所得的结果,判断他们选中同一名著的概率.
【详解】
(1)调查的总人数为:10÷25%=40,
∴1部对应的人数为40﹣2﹣10﹣8﹣6=14,
则扇形统计图中“1部”所在扇形的圆心角为:×360°=126°;
故答案为40、126;
(2)预估其中4部都读完了的学生有1600×=240人;
(3)将《西游记》、《三国演义》、《水浒传》、《红楼梦》分别记作A,B,C,D,
画树状图可得:
共有16种等可能的结果,其中选中同一名著的有4种,
故P(两人选中同一名著)==.
【点睛】
本题考查了扇形统计图和条形统计图的综合,用样本估计总体,列表法或树状图法求概率.解答此类题目,要善于发现二者之间的关联点,即两个统计图都知道了哪个量的数据,从而用条形统计图中的具体数量除以扇形统计图中占的百分比,求出样本容量,进而求解其它未知的量.
21、(1)3,补图详见解析;(2)
【解析】
(1)总人数=3÷它所占全体团员的百分比;发4条的人数=总人数-其余人数
(2)列举出所有情况,看恰好是一位男同学和一位女同学占总情况的多少即可
【详解】
由扇形图可以看到发箴言三条的有3名学生且占,
故该班团员人数为:
(人),
则发4条箴言的人数为:(人),
所以本月该班团员所发的箴言共(条),则平均所发箴言的条数是:(条).
(2)画树形图如下:
由树形图可得,所选两位同学恰好是一位男同学和一位女同学的概率为.
【点睛】
此题考查扇形统计图,条形统计图,列表法与树状图法和扇形统计图,看懂图中数据是解题关键
22、 (1)390,1-5x,y=-5x+1(300≤x≤2);(2)售价定位320元时,利润最大,为3元.
【解析】
(1)根据题中条件可得390,1-5x,若销售价每降低10元,月销售量就可多售出50千克,即可列出函数关系式;根据供货商规定这种空气净化器售价不能低于300元/台,代理销售商每月要完成不低于450台的销售即可求出x的取值.
(2)用x表示y,然后再用x来表示出w,根据函数关系式,即可求出最大w.
【详解】
(1)依题意得:
y=200+50×.
化简得:y=-5x+1.
(2)依题意有:
∵,
解得300≤x≤2.
(3)由(1)得:w=(-5x+1)(x-200)
=-5x2+3200x-440000=-5(x-320)2+3.
∵x=320在300≤x≤2内,∴当x=320时,w最大=3.
即售价定为320元/台时,可获得最大利润为3元.
【点睛】
本题考查了利润率问题的数量关系的运用,一次函数的解析式的运用,二次函数的解析式的运用,一元二次方程的解法的运用,解答时求出二次函数的解析式时关键.
23、(1)y=﹣(x+3)(x﹣1)=﹣x2﹣2x+3;(2)(﹣4,﹣)和(﹣6,﹣3)(3)(1,﹣4).
【解析】
试题分析:(1)根据二次函数的交点式确定点A、B的坐标,求出直线的解析式,求出点D的坐标,求出抛物线的解析式;(2)作PH⊥x轴于H,设点P的坐标为(m,n),分△BPA∽△ABC和△PBA∽△ABC,根据相似三角形的性质计算即可;(3)作DM∥x轴交抛物线于M,作DN⊥x轴于N,作EF⊥DM于F,根据正切的定义求出Q的运动时间t=BE+EF时,t最小即可.
试题解析:(1)∵y=a(x+3)(x﹣1),
∴点A的坐标为(﹣3,0)、点B两的坐标为(1,0),
∵直线y=﹣x+b经过点A,
∴b=﹣3,
∴y=﹣x﹣3,
当x=2时,y=﹣5,
则点D的坐标为(2,﹣5),
∵点D在抛物线上,
∴a(2+3)(2﹣1)=﹣5,
解得,a=﹣,
则抛物线的解析式为y=﹣(x+3)(x﹣1)=﹣x2﹣2x+3;
(2)作PH⊥x轴于H,
设点P的坐标为(m,n),
当△BPA∽△ABC时,∠BAC=∠PBA,
∴tan∠BAC=tan∠PBA,即=,
∴=,即n=﹣a(m﹣1),
∴,
解得,m1=﹣4,m2=1(不合题意,舍去),
当m=﹣4时,n=5a,
∵△BPA∽△ABC,
∴=,即AB2=AC•PB,
∴42=•,
解得,a1=(不合题意,舍去),a2=﹣,
则n=5a=﹣,
∴点P的坐标为(﹣4,﹣);
当△PBA∽△ABC时,∠CBA=∠PBA,
∴tan∠CBA=tan∠PBA,即=,
∴=,即n=﹣3a(m﹣1),
∴,
解得,m1=﹣6,m2=1(不合题意,舍去),
当m=﹣6时,n=21a,
∵△PBA∽△ABC,
∴=,即AB2=BC•PB,
∴42=•,
解得,a1=(不合题意,舍去),a2=﹣,
则点P的坐标为(﹣6,﹣),
综上所述,符合条件的点P的坐标为(﹣4,﹣)和(﹣6,﹣);
(3)作DM∥x轴交抛物线于M,作DN⊥x轴于N,作EF⊥DM于F,
则tan∠DAN===,
∴∠DAN=60°,
∴∠EDF=60°,
∴DE==EF,
∴Q的运动时间t=+=BE+EF,
∴当BE和EF共线时,t最小,
则BE⊥DM,E(1,﹣4).
考点:二次函数综合题.
24、 (1)40;(2)144°;(3)作图见解析;(4)游戏规则不公平.
【解析】
(1)根据统计图可以求出这次调查的n的值;
(2)根据统计图可以求得扇形统计图中D部分扇形所对应的圆心角的度数;
(3)根据题意可以求得调查为D的人数,从而可以将条形统计图补充完整;
(4)根据题意可以写出树状图,从而可以解答本题.
【详解】
解:(1)n%=1﹣10%﹣15%﹣35%=40%,
故答案为40;
(2)扇形统计图中D部分扇形所对应的圆心角是:360°×40%=144°,
故答案为144°;
(3)调查的结果为D等级的人数为:400×40%=160,
故补全的条形统计图如右图所示,
(4)由题意可得,树状图如右图所示,
P(奇数)
P(偶数)
故游戏规则不公平.
【点睛】
本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
云南省玉溪市红塔区云2023-2024学年数学九上期末达标检测模拟试题含答案: 这是一份云南省玉溪市红塔区云2023-2024学年数学九上期末达标检测模拟试题含答案,共9页。试卷主要包含了方程的根是,抛物线y=ax2+bx+c等内容,欢迎下载使用。
2023年云南省玉溪市红塔区中考数学模拟试卷(含解析): 这是一份2023年云南省玉溪市红塔区中考数学模拟试卷(含解析),共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
云南省玉溪市红塔区云2022年中考数学押题试卷含解析: 这是一份云南省玉溪市红塔区云2022年中考数学押题试卷含解析,共20页。试卷主要包含了tan45°的值等于等内容,欢迎下载使用。