2022年天津市滨海新区枫叶国际校毕业升学考试模拟卷数学卷含解析
展开
这是一份2022年天津市滨海新区枫叶国际校毕业升学考试模拟卷数学卷含解析,共18页。试卷主要包含了考生要认真填写考场号和座位序号,下列运算正确的是,如图,空心圆柱体的左视图是,|﹣3|的值是等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.如图是由五个相同的小立方块搭成的几何体,则它的俯视图是( )
A. B. C. D.
2.下列运算中正确的是( )
A.x2÷x8=x−6 B.a·a2=a2 C.(a2)3=a5 D.(3a)3=9a3
3.估计+1的值在( )
A.2和3之间 B.3和4之间 C.4和5之间 D.5和6之间
4.下列图案中,是轴对称图形但不是中心对称图形的是( )
A. B. C. D.
5.(﹣1)0+|﹣1|=( )
A.2 B.1 C.0 D.﹣1
6.一个正方形花坛的面积为7m2,其边长为am,则a的取值范围为( )
A.0<a<1 B.l<a<2 C.2<a<3 D.3<a<4
7.某班 30名学生的身高情况如下表:
身高
人数
1
3
4
7
8
7
则这 30 名学生身高的众数和中位数分别是
A., B.,
C., D.,
8.下列运算正确的是( )
A.5ab﹣ab=4 B.a6÷a2=a4
C. D.(a2b)3=a5b3
9.如图,空心圆柱体的左视图是( )
A. B. C. D.
10.|﹣3|的值是( )
A.3 B. C.﹣3 D.﹣
11.如图,A点是半圆上一个三等分点,B点是弧AN的中点,P点是直径MN上一动点,⊙O的半径为1,则AP+BP的最小值为
A.1 B. C. D.
12.如图是二次函数y=ax2+bx+c的图象,其对称轴为x=1,下列结论:①abc>0;②2a+b=0;③4a+2b+c<0;④若(-,y1),(,y2)是抛物线上两点,则y1<y2,其中结论正确的是( )
A.①② B.②③ C.②④ D.①③④
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.如图,矩形ABCD中,AB=3,对角线AC,BD相交于点O,AE垂直平分OB于点E,则AD的长为____________.
14.如图,AB为半圆的直径,且AB=2,半圆绕点B顺时针旋转40°,点A旋转到A′的位置,则图中阴影部分的面积为_____(结果保留π).
15.如图,某数学兴趣小组为了测量河对岸l1的两棵古树A、B之间的距离,他们在河这边沿着与AB平行的直线l2上取C、D两点,测得∠ACB=15°,∠ACD=45°,若l1、l2之间的距离为50m,则古树A、B之间的距离为_____m.
16.在平面直角坐标系中,智多星做走棋的游戏,其走法是:棋子从原点出发,第1步向上走1个单位,第2步向上走2个单位,第3步向右走1个单位,第4步向上走1个单位……依此类推,第n步的走法是:当n被3除,余数为2时,则向上走2个单位;当走完第2018步时,棋子所处位置的坐标是_____
17.从,0,π,3.14,6这五个数中随机抽取一个数,抽到有理数的概率是____.
18.如图,在半径为2cm,圆心角为90°的扇形OAB中,分别以OA、OB为直径作半圆,则图中阴影部分的面积为_____.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)解方程(2x+1)2=3(2x+1)
20.(6分)如图,AB是⊙O的直径,D为⊙O上一点,过弧BD上一点T作⊙O的切线TC,且TC⊥AD于点C.
(1)若∠DAB=50°,求∠ATC的度数;
(2)若⊙O半径为2,TC=,求AD的长.
21.(6分)汤姆斯杯世界男子羽毛球团体赛小组赛比赛规则:两队之间进行五局比赛,其中三局单打,两局双打,五局比赛必须全部打完,赢得三局及以上的队获胜.假如甲,乙两队每局获胜的机会相同.若前四局双方战成2:2,那么甲队最终获胜的概率是__________;现甲队在前两局比赛中已取得2:0的领先,那么甲队最终获胜的概率是多少?
22.(8分)某商场计划从厂家购进甲、乙、丙三种型号的电冰箱80台,其中甲种电冰箱的台数是乙种电冰箱台数的2倍.具体情况如下表:
甲种
乙种
丙种
进价(元/台)
1200
1600
2000
售价(元/台)
1420
1860
2280
经预算,商场最多支出132000元用于购买这批电冰箱.
(1)商场至少购进乙种电冰箱多少台?
(2)商场要求甲种电冰箱的台数不超过丙种电冰箱的台数.为获得最大利润,应分别购进甲、乙、丙电冰箱多少台?获得的最大利润是多少?
23.(8分)某超市销售一种商品,成本每千克40元,规定每千克售价不低于成本,且不高于80元.经市场调查,每天的销售量y(千克)与每千克售价x(元)满足一次函数关系,部分数据如下表:
售价x/(元/千克)
50
60
70
销售量y/千克
100
80
60
(1)求y与x之间的函数表达式;设商品每天的总利润为W(元),求W与x之间的函数表达式(利润=收入-成本);试说明(2)中总利润W随售价x的变化而变化的情况,并指出售价为多少时获得最大利润,最大利润是多少?
24.(10分)我校对全校学生进传统文化礼仪知识测试,为了了解测试结果,随机抽取部分学生的成绩进行分析,现将成绩分为三个等级:不合格、一般、优秀,并绘制成如下两幅统计图(不完整).
请你根据图中所给的信息解答下列问题:(1)本次随机抽取的人数是 人,并将以上两幅统计图补充完整;
(2)若“一般”和“优秀”均被视为达标成绩,则我校被抽取的学生中有 人达标;
(3)若我校学生有1200人,请你估计此次测试中,全校达标的学生有多少人?
25.(10分)先化简,再求值:( +)÷,其中x=
26.(12分)如图,某同学在测量建筑物AB的高度时,在地面的C处测得点A的仰角为30°,向前走60米到达D处,在D处测得点A的仰角为45°,求建筑物AB的高度.
27.(12分)(1)计算:(﹣2)﹣2+cos60°﹣(﹣2)0;
(2)化简:(a﹣)÷ .
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、A
【解析】
试题分析:从上面看易得上面一层有3个正方形,下面中间有一个正方形.
故选A.
【考点】简单组合体的三视图.
2、A
【解析】
根据同底数幂的除法法则:底数不变,指数相减;同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加;幂的乘方法则:底数不变,指数相乘;积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘进行计算即可.
【详解】
解:A、x2÷x8=x-6,故该选项正确;
B、a•a2=a3,故该选项错误;
C、(a2)3=a6,故该选项错误;
D、(3a)3=27a3,故该选项错误;
故选A.
【点睛】
此题主要考查了同底数幂的乘除法、幂的乘方和积的乘方,关键是掌握相关运算法则.
3、B
【解析】
分析:直接利用2<<3,进而得出答案.
详解:∵2<<3,
∴3<+1<4,
故选B.
点睛:此题主要考查了估算无理数的大小,正确得出的取值范围是解题关键.
4、D
【解析】
分析:根据轴对称图形与中心对称图形的概念分别分析得出答案.
详解:A.是轴对称图形,也是中心对称图形,故此选项错误;
B.不是轴对称图形,也不是中心对称图形,故此选项错误;
C.不是轴对称图形,是中心对称图形,故此选项错误;
D.是轴对称图形,不是中心对称图形,故此选项正确.
故选D.
点睛:本题考查了轴对称图形和中心对称图形的概念.轴对称图形的关键是寻找对称轴,图形沿对称轴折叠后可重合;
中心对称图形是要寻找对称中心,图形旋转180°后与原图形重合.
5、A
【解析】
根据绝对值和数的0次幂的概念作答即可.
【详解】
原式=1+1=2
故答案为:A.
【点睛】
本题考查的知识点是绝对值和数的0次幂,解题关键是熟记数的0次幂为1.
6、C
【解析】
先根据正方形的面积公式求边长,再根据无理数的估算方法求取值范围.
【详解】
解:∵一个正方形花坛的面积为,其边长为,
则a的取值范围为:.
故选:C.
【点睛】
此题重点考查学生对无理数的理解,会估算无理数的大小是解题的关键.
7、A
【解析】
找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据.
【详解】
解:这组数据中,出现的次数最多,故众数为,
共有30人,
第15和16人身高的平均数为中位数,
即中位数为:,
故选:A.
【点睛】
本题考查了众数和中位数的知识,一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大或从大到小的顺序排列,如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.
8、B
【解析】
由整数指数幂和分式的运算的法则计算可得答案.
【详解】
A项, 根据单项式的减法法则可得:5ab-ab=4ab,故A项错误;
B项, 根据“同底数幂相除,底数不变,指数相减”可得: a6÷a2=a4,故B项正确;
C项,根据分式的加法法则可得:,故C项错误;
D项, 根据 “积的乘方等于乘方的积” 可得:,故D项错误;
故本题正确答案为B.
【点睛】
幂的运算法则:
(1) 同底数幂的乘法: (m、n都是正整数)
(2)幂的乘方:(m、n都是正整数)
(3)积的乘方: (n是正整数)
(4)同底数幂的除法:(a≠0,m、n都是正整数,且m>n)
(5)零次幂:(a≠0)
(6) 负整数次幂: (a≠0, p是正整数).
9、C
【解析】
根据从左边看得到的图形是左视图,可得答案.
【详解】
从左边看是三个矩形,中间矩形的左右两边是虚线,
故选C.
【点睛】
本题考查了简单几何体的三视图,从左边看得到的图形是左视图.
10、A
【解析】
分析:根据绝对值的定义回答即可.
详解:负数的绝对值等于它的相反数,
故选A.
点睛:考查绝对值,非负数的绝对值等于它本身,负数的绝对值等于它的相反数.
11、C
【解析】
作点A关于MN的对称点A′,连接A′B,交MN于点P,则PA+PB最小,
连接OA′,AA′.
∵点A与A′关于MN对称,点A是半圆上的一个三等分点,
∴∠A′ON=∠AON=60°,PA=PA′,
∵点B是弧AN∧的中点,
∴∠BON=30 °,
∴∠A′OB=∠A′ON+∠BON=90°,
又∵OA=OA′=1,
∴A′B=
∴PA+PB=PA′+PB=A′B=
故选:C.
12、C
【解析】
试题分析:根据题意可得:a0,b0,c0,则abc0,则①错误;根据对称轴为x=1可得:=1,则-b=2a,即2a+b=0,则②正确;根据函数的轴对称可得:当x=2时,y0,即4a+2b+c0,则③错误;对于开口向下的函数,离对称轴越近则函数值越大,则,则④正确.
点睛:本题主要考查的就是二次函数的性质,属于中等题.如果开口向上,则a0,如果开口向下,则a0;如果对称轴在y轴左边,则b的符号与a相同,如果对称轴在y轴右边,则b的符号与a相反;如果题目中出现2a+b和2a-b的时候,我们要看对称轴与1或者-1的大小关系再进行判定;如果出现a+b+c,则看x=1时y的值;如果出现a-b+c,则看x=-1时y的值;如果出现4a+2b+c,则看x=2时y的值,以此类推;对于开口向上的函数,离对称轴越远则函数值越大,对于开口向下的函数,离对称轴越近则函数值越大.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、
【解析】
试题解析:∵四边形ABCD是矩形,
∴OB=OD,OA=OC,AC=BD,
∴OA=OB,
∵AE垂直平分OB,
∴AB=AO,
∴OA=AB=OB=3,
∴BD=2OB=6,
∴AD=.
【点睛】此题考查了矩形的性质、等边三角形的判定与性质、线段垂直平分线的性质、勾股定理;熟练掌握矩形的性质,证明三角形是等边三角形是解决问题的关键.
14、
【解析】
【分析】根据题意可得出阴影部分的面积等于扇形ABA′的面积加上半圆面积再减去半圆面积.
【详解】∵S阴影=S扇形ABA′+S半圆-S半圆
=S扇形ABA′
=
=,
故答案为.
【点睛】本题考查了扇形面积的计算以及旋转的性质,熟记扇形面积公式且能准确识图是解题的关键.
15、(50﹣).
【解析】
过点A作AM⊥DC于点M,过点B作BN⊥DC于点N.则AM=BN.通过解直角△ACM和△BCN分别求得CM、CN的长度,则易得MN=AB.
【详解】
解:如图,过点A作AM⊥DC于点M,过点B作BN⊥DC于点N,
则AB=MN,AM=BN.
在直角△ACM,∵∠ACM=45°,AM=50m,
∴CM=AM=50m.
∵在直角△BCN中,∠BCN=∠ACB+∠ACD=60°,BN=50m,
∴CN===(m),
∴MN=CM−CN=50−(m).
则AB=MN=(50−)m.
故答案是:(50−).
【点睛】
本题考查了解直角三角形的应用.解决此问题的关键在于正确理解题意的基础上建立数学模型,把实际问题转化为数学问题.
16、(672,2019)
【解析】分析:按照题目给定的规则,找到周期,由题意可得每三步是一个循环,所以只需要计算2018被3除,就可以得到棋子的位置.
详解:
解:由题意得,每3步为一个循环组依次循环,且一个循环组内向右1个单位,向上3个单位,
∵2018÷3=672…2,
∴走完第2018步,为第673个循环组的第2步,
所处位置的横坐标为672,
纵坐标为672×3+3=2019,
∴棋子所处位置的坐标是(672,2019).
故答案为:(672,2019).
点睛:周期问题解决问题的核心是要找到最小正周期,然后把给定的数(一般是一个很大的数)除以最小正周期,余数是几,就是第几步,特别余数是1,就是第一步,余数是0,就是最后一步.
17、
【解析】
分析:
由题意可知,从,0,π,3.14,6这五个数中随机抽取一个数,共有5种等可能结果,其中是有理数的有3种,由此即可得到所求概率了.
详解:
∵从,0,π,3.14,6这五个数中随机抽取一个数,共有5种等可能结果,其中有理数有0,3.14,6共3个,
∴抽到有理数的概率是:.
故答案为.
点睛:知道“从,0,π,3.14,6这五个数中随机抽取一个数,共有5种等可能结果”并能识别其中“0,3.14,6”是有理数是解答本题的关键.
18、﹣1.
【解析】
试题分析:假设出扇形半径,再表示出半圆面积,以及扇形面积,进而即可表示出两部分P,Q面积相等.连接AB,OD,根据两半圆的直径相等可知∠AOD=∠BOD=45°,故可得出绿色部分的面积=S△AOD,利用阴影部分Q的面积为:S扇形AOB﹣S半圆﹣S绿色,故可得出结论.
解:∵扇形OAB的圆心角为90°,扇形半径为2,
∴扇形面积为:=π(cm2),
半圆面积为:×π×12=(cm2),
∴SQ+SM =SM+SP=(cm2),
∴SQ=SP,
连接AB,OD,
∵两半圆的直径相等,
∴∠AOD=∠BOD=45°,
∴S绿色=S△AOD=×2×1=1(cm2),
∴阴影部分Q的面积为:S扇形AOB﹣S半圆﹣S绿色=π﹣﹣1=﹣1(cm2).
故答案为﹣1.
考点:扇形面积的计算.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、x1=-,x2=1
【解析】
试题分析:分解因式得出(2x+1)(2x+1﹣3)=0,推出方程2x+1=0,2x+1﹣3=0,求出方程的解即可.
试题解析:解:整理得:(2x+1)2-3(2x+1)=0,分解因式得:(2x+1)(2x+1﹣3)=0,即2x+1=0,2x+1﹣3=0,解得:x1=﹣,x2=1.
点睛:本题考查了解一元一次方程和解一元二次方程的应用,解答此题的关键是把一元二次方程转化成解一元一次方程,题目比较典型,难度不大.
20、(2)65°;(2)2.
【解析】
试题分析:(2)连接OT,根据角平分线的性质,以及直角三角形的两个锐角互余,证得CT⊥OT,CT为⊙O的切线;
(2)证明四边形OTCE为矩形,求得OE的长,在直角△OAE中,利用勾股定理即可求解.
试题解析:(2)连接OT,∵OA=OT,∴∠OAT=∠OTA,又∵AT平分∠BAD,∴∠DAT=∠OAT,∴∠DAT=∠OTA,∴OT∥AC,又∵CT⊥AC,∴CT⊥OT,∴CT为⊙O的切线;
(2)过O作OE⊥AD于E,则E为AD中点,又∵CT⊥AC,∴OE∥CT,∴四边形OTCE为矩形,∵CT=,∴OE=,又∵OA=2,∴在Rt△OAE中,AE=,∴AD=2AE=2.
考点:2.切线的判定与性质;2.勾股定理;3.圆周角定理.
21、(1);(2)
【解析】
分析:(1)直接利用概率公式求解;
(2)画树状图展示所有8种等可能的结果数,再找出甲至少胜一局的结果数,然后根据概率公式求.
详解:(1)甲队最终获胜的概率是;
(2)画树状图为:
共有8种等可能的结果数,其中甲至少胜一局的结果数为7,
所以甲队最终获胜的概率=.
点睛:本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.
22、(1)商场至少购进乙种电冰箱14台;(2)商场购进甲种电冰箱28台,购进乙种电冰箱14(台),购进丙种电冰箱38台.
【解析】
(1)设商场购进乙种电冰箱x台,则购进甲种电冰箱2x台,丙种电冰箱(80-3x)台,根据“商场最多支出132000元用于购买这批电冰箱”列出不等式,解之即可得;
(2)根据“总利润=甲种冰箱利润+乙种冰箱利润+丙种冰箱利润”列出W关于x的函数解析式,结合x的取值范围,利用一次函数的性质求解可得.
【详解】
(1)设商场购进乙种电冰箱x台,则购进甲种电冰箱2x台,丙种电冰箱(80﹣3x)台.
根据题意得:1200×2x+1600x+2000(80﹣3x)≤132000,
解得:x≥14,
∴商场至少购进乙种电冰箱14台;
(2)由题意得:2x≤80﹣3x且x≥14,
∴14≤x≤16,
∵W=220×2x+260x+280(80﹣3x)=﹣140x+22400,
∴W随x的增大而减小,
∴当x=14时,W取最大值,且W最大=﹣140×14+22400=20440,
此时,商场购进甲种电冰箱28台,购进乙种电冰箱14(台),购进丙种电冰箱38台.
【点睛】
本题主要考查一次函数的应用与一元一次不等式的应用,解题的关键是理解题意找到题目蕴含的不等关系和相等关系,并据此列出不等式与函数解析式.
23、 (1)y=-2x+200 (2)W=-2x2+280x-8 000(3)售价为70元时,获得最大利润,这时最大利润为1 800元.
【解析】
(1)用待定系数法求一次函数的表达式;
(2)利用利润的定义,求与之间的函数表达式;
(3)利用二次函数的性质求极值.
【详解】
解:(1)设,由题意,得,解得,∴所求函数表达式为.
(2).
(3),其中,∵,
∴当时,随的增大而增大,当时,随的增大而减小,当售价为70元时,获得最大利润,这时最大利润为1800元.
考点: 二次函数的实际应用.
24、(1)120,补图见解析;(2)96;(3)960人.
【解析】
(1)由“不合格”的人数除以占的百分比求出总人数,确定出“优秀”的人数,以及一般的百分比,补全统计图即可;
(2)求出“一般”与“优秀”占的百分比,乘以总人数即可得到结果;
(3)求出达标占的百分比,乘以1200即可得到结果.
【详解】
(1)根据题意得:24÷20%=120(人),
则“优秀”人数为120﹣(24+36)=60(人),“一般”占的百分比为×100%=30%,
补全统计图,如图所示:
(2)根据题意得:36+60=96(人),
则达标的人数为96人;
(3)根据题意得:×1200=960(人),
则全校达标的学生有960人.
故答案为(1)120;(2)96人.
【点睛】
本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
25、-
【解析】
先根据分式混合运算的法则把原式进行化简,再把x的值代入进行计算即可.
【详解】
原式=[ +]÷=[-+]÷=·=,
当x=时,原式==-.
【点睛】
本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.
26、(30+30)米.
【解析】
解:设建筑物AB的高度为x米
在Rt△ABD 中,∠ADB=45°
∴AB=DB=x
∴BC=DB+CD= x+60
在Rt△ABC 中,∠ACB=30°,
∴tan∠ACB=
∴
∴
∴x=30+30
∴建筑物AB的高度为(30+30)米
27、(1);(2);
【解析】
(1)根据负整数指数幂、特殊角的三角函数值、零指数幂可以解答本题;
(2)根据分式的减法和除法可以解答本题.
【详解】
解:(1)原式
(2)原式
【点睛】
本题考查分式的混合运算、实数的运算、负整数指数幂、特殊角的三角函数值、零指数幂,解答本题的关键是明确它们各自的计算方法.
相关试卷
这是一份天津市和平区名校2022年毕业升学考试模拟卷数学卷含解析,共20页。试卷主要包含了考生必须保证答题卡的整洁,4的平方根是等内容,欢迎下载使用。
这是一份2021-2022学年四川省成都东辰国际校毕业升学考试模拟卷数学卷含解析,共20页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。
这是一份2021-2022学年海南东坡校毕业升学考试模拟卷数学卷含解析,共24页。试卷主要包含了考生要认真填写考场号和座位序号,如图,能判定EB∥AC的条件是,计算-5x2-3x2的结果是,若,则的值为,化简的结果是,估计的值在等内容,欢迎下载使用。