2022年天津市南开中学中考数学仿真试卷含解析
展开
这是一份2022年天津市南开中学中考数学仿真试卷含解析,共19页。
2021-2022中考数学模拟试卷
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.已知二次函数y=ax2+bx+c的图象如图所示,有以下结论:①a+b+c<0;②a﹣b+c>1;③abc>0;④4a﹣2b+c<0;⑤c﹣a>1,其中所有正确结论的序号是( )
A.①② B.①③④ C.①②③⑤ D.①②③④⑤
2.若2m﹣n=6,则代数式m-n+1的值为( )
A.1 B.2 C.3 D.4
3.如图,在以O为原点的直角坐标系中,矩形OABC的两边OC、OA分别在x轴、y轴的正半轴上,反比例函数 (x>0)与AB相交于点D,与BC相交于点E,若BD=3AD,且△ODE的面积是9,则k的值是( )
A. B. C. D.12
4.四组数中:①1和1;②﹣1和1;③0和0;④﹣和﹣1,互为倒数的是( )
A.①② B.①③ C.①④ D.①③④
5.下列计算中,正确的是( )
A. B. C. D.
6. 如图,把一个直角三角尺的直角顶点放在直尺的一边上,若∠1=50°,则∠2=( )
A.20° B.30° C.40° D.50°
7.下列所给的汽车标志图案中,既是轴对称图形,又是中心对称图形的是( )
A. B.
C. D.
8.如果关于的不等式组的整数解仅有、,那么适合这个不等式组的整数、组成的有序数对共有()
A.个 B.个 C.个 D.个
9.某商场试销一种新款衬衫,一周内售出型号记录情况如表所示:
型号(厘米)
38
39
40
41
42
43
数量(件)
25
30
36
50
28
8
商场经理要了解哪种型号最畅销,则上述数据的统计量中,对商场经理来说最有意义的是( )
A.平均数 B.中位数 C.众数 D.方差
10.世界上最小的鸟是生活在古巴的吸蜜蜂鸟,它的质量约为0.056盎司.将0.056用科学记数法表示为( )
A.5.6×10﹣1 B.5.6×10﹣2 C.5.6×10﹣3 D.0.56×10﹣1
11.下列判断错误的是( )
A.两组对边分别相等的四边形是平行四边形 B.四个内角都相等的四边形是矩形
C.两条对角线垂直且平分的四边形是正方形 D.四条边都相等的四边形是菱形
12.计算--|-3|的结果是( )
A.-1 B.-5 C.1 D.5
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.计算(﹣a)3•a2的结果等于_____.
14.已知x1、x2是一元二次方程x2﹣2x﹣1=0的两实数根,则的值是______.
15.因式分解:(a+1)(a﹣1)﹣2a+2=_____.
16.如图,已知圆柱底面周长为6cm,圆柱高为2cm,在圆柱的侧面上,过点A和点C嵌有一圈金属丝,则这圈金属丝的周长最小为_____cm.
17.如图,线段AB=10,点P在线段AB上,在AB的同侧分别以AP、BP为边长作正方形APCD和BPEF,点M、N分别是EF、CD的中点,则MN的最小值是_______.
18.若是关于的完全平方式,则__________.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)在“植树节”期间,小王、小李两人想通过摸球的方式来决定谁去参加学校植树活动,规则如下:在两个盒子内分别装入标有数字1,2,3,4的四个和标有数字1,2,3的三个完全相同的小球,分别从两个盒子中各摸出一个球,如果所摸出的球上的数字之和小于5,那么小王去,否则就是小李去.
(1)用树状图或列表法求出小王去的概率;
(2)小李说:“这种规则不公平”,你认同他的说法吗?请说明理由.
20.(6分)如图,在Rt△ABC中,AB=AC,D、E是斜边BC上的两点,∠EAD=45°,将△ADC绕点A顺时针旋转90°,得到△AFB,连接EF.求证:EF=ED;若AB=2,CD=1,求FE的长.
21.(6分)先化简代数式,再从-2,2,0三个数中选一个恰当的数作为a的值代入求值.
22.(8分)如图,在平行四边形ABCD中,E、F为AD上两点,AE=EF=FD,连接BE、CF并延长,交于点G, GB=GC.
(1)求证:四边形ABCD是矩形;
(1)若△GEF的面积为1.
①求四边形BCFE的面积;
②四边形ABCD的面积为 .
23.(8分)中央电视台的“朗读者”节目激发了同学们的读书热情,为了引导学生“多读书,读好书”,某校对八年级部分学生的课外阅读量进行了随机调查,整理调查结果发现,学生课外阅读的本书最少的有5本,最多的有8本,并根据调查结果绘制了不完整的图表,如图所示:
本数(本)
频数(人数)
频率
5
0.2
6
18
0.36
7
14
8
8
0.16
合计
1
(1)统计表中的________,________,________;请将频数分布表直方图补充完整;求所有被调查学生课外阅读的平均本数;若该校八年级共有1200名学生,请你分析该校八年级学生课外阅读7本及以上的人数.
24.(10分)今年深圳“读书月”期间,某书店将每本成本为30元的一批图书,以40元的单价出售时,每天的销售量是300本.已知在每本涨价幅度不超过10元的情况下,若每本涨价1元,则每天就会少售出10本,设每本书上涨了x元.请解答以下问题:
(1)填空:每天可售出书 本(用含x的代数式表示);
(2)若书店想通过售出这批图书每天获得3750元的利润,应涨价多少元?
25.(10分)关于x的一元二次方程x2﹣(2m﹣3)x+m2+1=1.
(1)若m是方程的一个实数根,求m的值;
(2)若m为负数,判断方程根的情况.
26.(12分)某校为选拔一名选手参加“美丽邵阳,我为家乡做代言”主题演讲比赛,经研究,按图所示的项目和权数对选拔赛参赛选手进行考评(因排版原因统计图不完整).下表是李明、张华在选拔赛中的得分情况:
项目
选手
服装
普通话
主题
演讲技巧
李明
85
70
80
85
张华
90
75
75
80
结合以上信息,回答下列问题:求服装项目的权数及普通话项目对应扇形的圆心角大小;求李明在选拔赛中四个项目所得分数的众数和中位数;根据你所学的知识,帮助学校在李明、张华两人中选择一人参加“美丽邵阳,我为家乡做代言”主题演讲比赛,并说明理由.
27.(12分)已知如图,在△ABC中,∠B=45°,点D是BC边的中点,DE⊥BC于点D,交AB于点E,连接CE.
(1)求∠AEC的度数;
(2)请你判断AE、BE、AC三条线段之间的等量关系,并证明你的结论.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、C
【解析】
根据二次函数的性质逐项分析可得解.
【详解】
解:由函数图象可得各系数的关系:a<0,b<0,c>0,
则①当x=1时,y=a+b+c<0,正确;
②当x=-1时,y=a-b+c>1,正确;
③abc>0,正确;
④对称轴x=-1,则x=-2和x=0时取值相同,则4a-2b+c=1>0,错误;
⑤对称轴x=-=-1,b=2a,又x=-1时,y=a-b+c>1,代入b=2a,则c-a>1,正确.
故所有正确结论的序号是①②③⑤.
故选C
2、D
【解析】
先对m-n+1变形得到(2m﹣n)+1,再将2m﹣n=6整体代入进行计算,即可得到答案.
【详解】
mn+1
=(2m﹣n)+1
当2m﹣n=6时,原式=×6+1=3+1=4,故选:D.
【点睛】
本题考查代数式,解题的关键是掌握整体代入法.
3、C
【解析】
设B点的坐标为(a,b),由BD=3AD,得D(,b),根据反比例函数定义求出关键点坐标,根据S△ODE=S矩形OCBA-S△AOD-S△OCE-S△BDE= 9求出k.
【详解】
∵四边形OCBA是矩形,
∴AB=OC,OA=BC,
设B点的坐标为(a,b),
∵BD=3AD,
∴D(,b),
∵点D,E在反比例函数的图象上,
∴=k,
∴E(a, ),
∵S△ODE=S矩形OCBA-S△AOD-S△OCE-S△BDE=ab-• -•-••(b-)=9,
∴k=,
故选:C
【点睛】
考核知识点:反比例函数系数k的几何意义. 结合图形,分析图形面积关系是关键.
4、C
【解析】
根据倒数的定义,分别进行判断即可得出答案.
【详解】
∵①1和1;1×1=1,故此选项正确;
②-1和1;-1×1=-1,故此选项错误;
③0和0;0×0=0,故此选项错误;
④−和−1,-×(-1)=1,故此选项正确;
∴互为倒数的是:①④,
故选C.
【点睛】
此题主要考查了倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.
5、D
【解析】
根据积的乘方、合并同类项、同底数幂的除法以及幂的乘方进行计算即可.
【详解】
A、(2a)3=8a3,故本选项错误;
B、a3+a2不能合并,故本选项错误;
C、a8÷a4=a4,故本选项错误;
D、(a2)3=a6,故本选项正确;
故选D.
【点睛】
本题考查了积的乘方、合并同类项、同底数幂的除法以及幂的乘方,掌握运算法则是解题的关键.
6、C
【解析】
由两直线平行,同位角相等,可求得∠3的度数,然后求得∠2的度数.
【详解】
∵∠1=50°,
∴∠3=∠1=50°,
∴∠2=90°−50°=40°.
故选C.
【点睛】
本题主要考查平行线的性质,熟悉掌握性质是关键.
7、B
【解析】
分析:根据轴对称图形与中心对称图形的概念求解即可.
详解:A.是轴对称图形,不是中心对称图形;
B.是轴对称图形,也是中心对称图形;
C.是轴对称图形,不是中心对称图形;
D.是轴对称图形,不是中心对称图形.
故选B.
点睛:本题考查了中心对称图形和轴对称图形的知识,关键是掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180°后与原图重合.
8、D
【解析】
求出不等式组的解集,根据已知求出1<≤2、3≤<4,求出2<a≤4、9≤b<12,即可得出答案.
【详解】
解不等式2x−a≥0,得:x≥,
解不等式3x−b≤0,得:x≤,
∵不等式组的整数解仅有x=2、x=3,
则1<≤2、3≤<4,
解得:2<a≤4、9≤b<12,
则a=3时,b=9、10、11;
当a=4时,b=9、10、11;
所以适合这个不等式组的整数a、b组成的有序数对(a,b)共有6个,
故选:D.
【点睛】
本题考查了解一元一次不等式组,不等式组的整数解,有序实数对的应用,解此题的根据是求出a、b的值.
9、B
【解析】
分析:商场经理要了解哪些型号最畅销,所关心的即为众数.
详解:根据题意知:对商场经理来说,最有意义的是各种型号的衬衫的销售数量,即众数.
故选:C.
点睛:此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.反映数据集中程度的统计量有平均数、中位数、众数方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.
10、B
【解析】
0.056用科学记数法表示为:0.056=,故选B.
11、C
【解析】
根据平行四边形的判定,矩形的判定,菱形的判定,正方形的判定,对选项进行判断即可
【详解】
解:A、两组对边分别相等的四边形是平行四边形,故本选项正确;
B、四个内角都相等的四边形是矩形,故本选项正确;
C、两条对角线垂直且平分的四边形是菱形,不一定是正方形,故本选项错误;
D、四条边都相等的四边形是菱形,故本选项正确.
故选C
【点睛】
此题综合考查了平行四边形的判定,矩形的判定,菱形的判定,正方形的判定,熟练掌握判定法则才是解题关键
12、B
【解析】
原式利用算术平方根定义,以及绝对值的代数意义计算即可求出值.
【详解】
原式
故选:B.
【点睛】
此题考查了实数的运算,熟练掌握运算法则是解本题的关键.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、﹣a5
【解析】
根据幂的乘方和积的乘方运算法则计算即可.
【详解】
解:(-a)3•a2=-a3•a2=-a3+2=-a5.
故答案为:-a5.
【点睛】
本题考查了幂的乘方和积的乘方运算.
14、6
【解析】
已知x1,x2是一元二次方程x2﹣2x﹣1=0的两实数根,根据方程解的定义及根与系数的关系可得x12﹣2 x1﹣1=0, x22﹣2 x2﹣1=0,x1+x2=2,x1·x2=-1,即x12=2 x1+1, x22=2 x2+1,代入所给的代数式,再利用完全平方公式变形,整体代入求值即可.
【详解】
∵x1,x2是一元二次方程x2﹣2x﹣1=0的两实数根,
∴x12﹣2 x1﹣1=0, x22﹣2 x2﹣1=0,x1+x2=2,x1·x2=-1,
即x12=2 x1+1, x22=2 x2+1,
∴=
故答案为6.
【点睛】
本题考查了一元二次方程解的定义及根与系数的关系,会熟练运用整体思想是解决本题的关键.
15、(a﹣1)1.
【解析】
提取公因式(a−1),进而分解因式得出答案.
【详解】
解:(a+1)(a﹣1)﹣1a+1
=(a+1)(a﹣1)﹣1(a﹣1)
=(a﹣1)(a+1﹣1)
=(a﹣1)1.
故答案为:(a﹣1)1.
【点睛】
此题主要考查了提取公因式法分解因式,找出公因式是解题关键.
16、2
【解析】
要求丝线的长,需将圆柱的侧面展开,进而根据“两点之间线段最短”得出结果,在求线段长时,根据勾股定理计算即可.
【详解】
解:如图,把圆柱的侧面展开,得到矩形,则这圈金属丝的周长最小为2AC的长度.
∵圆柱底面的周长为6cm,圆柱高为2cm,
∴AB=2cm,BC=BC′=3cm,
∴AC2=22+32=13,
∴AC=cm,
∴这圈金属丝的周长最小为2AC=2cm.
故答案为2.
【点睛】
本题考查了平面展开−最短路径问题,圆柱的侧面展开图是一个矩形,此矩形的长等于圆柱底面周长,高等于圆柱的高,本题就是把圆柱的侧面展开成矩形,“化曲面为平面”,用勾股定理解决.
17、2
【解析】
设MN=y,PC=x,根据正方形的性质和勾股定理列出y1关于x的二次函数关系式,求二次函数的最值即可.
【详解】
作MG⊥DC于G,如图所示:
设MN=y,PC=x,
根据题意得:GN=2,MG=|10-1x|,
在Rt△MNG中,由勾股定理得:MN1=MG1+GN1,
即y1=21+(10-1x)1.
∵0<x<10,
∴当10-1x=0,即x=2时,y1最小值=12,
∴y最小值=2.即MN的最小值为2;
故答案为:2.
【点睛】
本题考查了正方形的性质、勾股定理、二次函数的最值.熟练掌握勾股定理和二次函数的最值是解决问题的关键.
18、1或-1
【解析】
【分析】直接利用完全平方公式的定义得出2(m-3)=±8,进而求出答案.
详解:∵x2+2(m-3)x+16是关于x的完全平方式,
∴2(m-3)=±8,
解得:m=-1或1,
故答案为-1或1.
点睛:此题主要考查了完全平方公式,正确掌握完全平方公式的基本形式是解题关键.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1);(2)规则是公平的;
【解析】
试题分析:(1)先利用画树状图展示所有12种等可能的结果数,然后根据概率公式求解即可;
(2)分别计算出小王和小李去植树的概率即可知道规则是否公平.
试题解析:(1)画树状图为:
共有12种等可能的结果数,其中摸出的球上的数字之和小于6的情况有9种,
所以P(小王)=;
(2)不公平,理由如下:
∵P(小王)=,P(小李)=,≠,
∴规则不公平.
点睛:本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.用到的知识点为:概率=所求情况数与总情况数之比.
20、(1)见解析;(2)EF=.
【解析】
(1)由旋转的性质可求∠FAE=∠DAE=45°,即可证△AEF≌△AED,可得EF=ED;
(2)由旋转的性质可证∠FBE=90°,利用勾股定理和方程的思想可求EF的长.
【详解】
(1)∵∠BAC=90°,∠EAD=45°,
∴∠BAE+∠DAC=45°,
∵将△ADC绕点A顺时针旋转90°,得到△AFB,
∴∠BAF=∠DAC,AF=AD,CD=BF,∠ABF=∠ACD=45°,
∴∠BAF+∠BAE=45°=∠FAE,
∴∠FAE=∠DAE,AD=AF,AE=AE,
∴△AEF≌△AED(SAS),
∴DE=EF
(2)∵AB=AC=2,∠BAC=90°,
∴BC=4,
∵CD=1,
∴BF=1,BD=3,即BE+DE=3,
∵∠ABF=∠ABC=45°,
∴∠EBF=90°,
∴BF2+BE2=EF2,
∴1+(3﹣EF)2=EF2,
∴EF=
【点睛】
本题考查了旋转的性质,等腰直角三角形的性质,全等三角形的判定和性质,勾股定理等知识,利用方程的思想解决问题是本题的关键.
21、,2
【解析】
试题分析:首先将括号里面的进行通分,然后将除法改成乘法进行分式的化简,选择a的值时,不能使原分式没有意义,即a不能取2和-2.
试题解析:原式=·=
当a=0时,原式==2.
考点:分式的化简求值.
22、(1)证明见解析;(1)①16;②14;
【解析】
(1)根据平行四边形的性质得到AD∥BC,AB=DC,AB∥CD于是得到BE=CF,根据全等三角形的性质得到∠A=∠D,根据平行线的性质得到∠A+∠D=180°,由矩形的判定定理即可得到结论;
(1)①根据相似三角形的性质得到,求得△GBC的面积为18,于是得到四边形BCFE的面积为16;
②根据四边形BCFE的面积为16,列方程得到BC•AB=14,即可得到结论.
【详解】
(1)证明:∵GB=GC,
∴∠GBC=∠GCB,
在平行四边形ABCD中,
∵AD∥BC,AB=DC,AB∥CD,
∴GB-GE=GC-GF,
∴BE=CF,
在△ABE与△DCF中,
,
∴△ABE≌△DCF,
∴∠A=∠D,
∵AB∥CD,
∴∠A+∠D=180°,
∴∠A=∠D=90°,
∴四边形ABCD是矩形;
(1)①∵EF∥BC,
∴△GFE∽△GBC,
∵EF=AD,
∴EF=BC,
∴,
∵△GEF的面积为1,
∴△GBC的面积为18,
∴四边形BCFE的面积为16,;
②∵四边形BCFE的面积为16,
∴(EF+BC)•AB=×BC•AB=16,
∴BC•AB=14,
∴四边形ABCD的面积为14,
故答案为:14.
【点睛】
本题考查了相似三角形的判定和性质,矩形的判定和性质,图形面积的计算,全等三角形的判定和性质,证得△GFE∽△GBC是解题的关键.
23、(1)10,0.28,50(2)图形见解析(3)6.4(4)528
【解析】
分析:(1)首先求出总人数,再根据频率,总数,频数的关系即可解决问题;
(2)根据a的值画出条形图即可;
(3)根据平均数的定义计算即可;
(4)用样本估计总体的思想解决问题即可;
详解:(1)由题意c==50,
a=50×0.2=10,b==0.28,c=50;
故答案为10,0.28,50;
(2)将频数分布表直方图补充完整,如图所示:
(3)所有被调查学生课外阅读的平均本数为:
(5×10+6×18+7×14+8×8)÷50=320÷50=6.4(本).
(4)该校七年级学生课外阅读7本及以上的人数为:
(0.28+0.16)×1200=528(人).
点睛:本题考查频数分布直方图、扇形统计图、样本估计总体等知识,解题的关键是熟练掌握基本概念,灵活运用所学知识解决问题,属于中考常考题型.
24、(1)(300﹣10x).(2)每本书应涨价5元.
【解析】
试题分析:(1)每本涨价1元,则每天就会少售出10本,设每本书上涨了x元,则每天就会少售出10x本,所以每天可售出书(300﹣10x)本;(2)根据每本图书的利润×每天销售图书的数量=总利润列出方程,解方程即可求解.
试题解析:
(1)∵每本书上涨了x元,
∴每天可售出书(300﹣10x)本.
故答案为300﹣10x.
(2)设每本书上涨了x元(x≤10),
根据题意得:(40﹣30+x)(300﹣10x)=3750,
整理,得:x2﹣20x+75=0,
解得:x1=5,x2=15(不合题意,舍去).
答:若书店想每天获得3750元的利润,每本书应涨价5元.
25、 (1) ; (2)方程有两个不相等的实根.
【解析】
分析:(1)由方程根的定义,代入可得到关于m的方程,则可求得m的值;
(2)计算方程根的判别式,判断判别式的符号即可.
详解:
(1)∵m是方程的一个实数根,
∴m2-(2m-3)m+m2+1=1,
∴m=−;
(2)△=b2-4ac=-12m+5,
∵m<1,
∴-12m>1.
∴△=-12m+5>1.
∴此方程有两个不相等的实数根.
点睛:考查根的判别式,熟练掌握一元二次方程根的个数与根的判别式的关系是解题的关键.
26、(1)服装项目的权数是10%,普通话项目对应扇形的圆心角是72°;(2)众数是85,中位数是82.5;(3)选择李明参加“美丽邵阳,我为家乡做代言”主题演讲比赛,理由见解析.
【解析】
(1)根据扇形图用1减去其它项目的权重可求得服装项目的权重,用360度乘以普通话项目的权重即可求得普通话项目对应扇形的圆心角大小;
(2)根据统计表中的数据可以求得李明在选拔赛中四个项目所得分数的众数和中位数;
(3)根据统计图和统计表中的数据可以分别计算出李明和张华的成绩,然后比较大小,即可解答本题.
【详解】
(1)服装项目的权数是:1﹣20%﹣30%﹣40%=10%,
普通话项目对应扇形的圆心角是:360°×20%=72°;
(2)明在选拔赛中四个项目所得分数的众数是85,中位数是:(80+85)÷2=82.5;
(3)李明得分为:85×10%+70×20%+80×30%+85×40%=80.5,
张华得分为:90×10%+75×20%+75×30%+80×40%=78.5,
∵80.5>78.5,
∴李明的演讲成绩好,
故选择李明参加“美丽邵阳,我为家乡做代言”主题演讲比赛.
【点睛】
本题考查了扇形统计图、中位数、众数、加权平均数,明确题意,结合统计表和统计图找出所求问题需要的条件,运用数形结合的思想进行解答是解题的关键.
27、(1)90°;(1)AE1+EB1=AC1,证明见解析.
【解析】
(1)根据题意得到DE是线段BC的垂直平分线,根据线段垂直平分线的性质得到EB=EC,根据等腰三角形的性质、三角形内角和定理计算即可;
(1)根据勾股定理解答.
【详解】
解:(1)∵点D是BC边的中点,DE⊥BC,
∴DE是线段BC的垂直平分线,
∴EB=EC,
∴∠ECB=∠B=45°,
∴∠AEC=∠ECB+∠B=90°;
(1)AE1+EB1=AC1.
∵∠AEC=90°,
∴AE1+EC1=AC1,
∵EB=EC,
∴AE1+EB1=AC1.
【点睛】
本题考查的是线段垂直平分线的性质定理,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.
相关试卷
这是一份2022-2023学年天津市南开区中考数学专项提升仿真模拟试题(一模二模)含解析,共46页。试卷主要包含了、选一选等内容,欢迎下载使用。
这是一份2022-2023学年天津市南开区中考数学专项突破仿真模拟试题(3月4月)含解析,共57页。试卷主要包含了选一选,填 空 题,解 答 题等内容,欢迎下载使用。
这是一份2022-2023学年天津市南开区中考数学专项突破仿真模拟试题(一模二模)含解析,共46页。试卷主要包含了选一选,填 空 题,解 答 题等内容,欢迎下载使用。