搜索
    上传资料 赚现金
    英语朗读宝

    2022年四川宜宾县横江片区中考数学适应性模拟试题含解析

    2022年四川宜宾县横江片区中考数学适应性模拟试题含解析第1页
    2022年四川宜宾县横江片区中考数学适应性模拟试题含解析第2页
    2022年四川宜宾县横江片区中考数学适应性模拟试题含解析第3页
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年四川宜宾县横江片区中考数学适应性模拟试题含解析

    展开

    这是一份2022年四川宜宾县横江片区中考数学适应性模拟试题含解析,共21页。试卷主要包含了一组数据,下列运算正确的是,﹣的绝对值是等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    注意事项:
    1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
    2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
    3.考试结束后,将本试卷和答题卡一并交回。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.有两把不同的锁和三把钥匙,其中两把钥匙恰好分别能打开这两把锁,第三把钥匙不能打开这两把锁,任意取出一把钥匙去开任意的一把锁,一次打开锁的概率是( )
    A. B. C. D.
    2.若等式x2+ax+19=(x﹣5)2﹣b成立,则 a+b的值为(  )
    A.16 B.﹣16 C.4 D.﹣4
    3.如图,四边形ABCD内接于⊙O,若∠B=130°,则∠AOC的大小是(  )

    A.130° B.120° C.110° D.100°
    4.由4个相同的小立方体搭成的几何体如图所示,则它的主视图是(  )

    A. B. C. D.
    5.一组数据:6,3,4,5,7的平均数和中位数分别是 ( )
    A.5,5 B.5,6 C.6,5 D.6,6
    6.据相关报道,开展精准扶贫工作五年以来,我国约有55000000人摆脱贫困,将55000000用科学记数法表示是( )
    A.55×106 B.0.55×108 C.5.5×106 D.5.5×107
    7.下列运算正确的是(  )
    A.x4+x4=2x8 B.(x2)3=x5 C.(x﹣y)2=x2﹣y2 D.x3•x=x4
    8.﹣的绝对值是(  )
    A.﹣ B.﹣ C. D.
    9.如图,AB是⊙O的一条弦,点C是⊙O上一动点,且∠ACB=30°,点E,F分别是AC,BC的中点,直线EF与⊙O交于G,H两点,若⊙O的半径为6,则GE+FH的最大值为(  )

    A.6 B.9 C.10 D.12
    10.下列运算正确的是(  )
    A.a3+a3=a6 B.a6÷a2=a4 C.a3•a5=a15 D.(a3)4=a7
    11.下列方程中,没有实数根的是(  )
    A.x2﹣2x=0 B.x2﹣2x﹣1=0 C.x2﹣2x+1 =0 D.x2﹣2x+2=0
    12.在﹣3,﹣1,0,1四个数中,比﹣2小的数是(  )
    A.﹣3 B.﹣1 C.0 D.1
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.当x=_________时,分式的值为零.
    14.已知两圆相切,它们的圆心距为3,一个圆的半径是4,那么另一个圆的半径是_______.
    15.如图,矩形ABCD的对角线AC与BD交于点O,过点O作BD的垂线分别交AD,BC于E,F两点.若AC=,∠AEO=120°,则FC的长度为_____.

    16.分解因式:= .
    17.已知,在Rt△ABC中,∠C=90°,AC=9,BC=12,点 D、E 分别在边AC、BC上,且CD:CE=3︰1.将△CDE绕点D顺时针旋转,当点C落在线段DE上的点 F处时,BF恰好是∠ABC的平分线,此时线段CD的长是________.
    18.有6张卡片,每张卡片上分别写有不同的从1到6的一个自然数,从中任意抽出一张卡片,卡片上的数是3的倍数的概率是
    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)如图,已知:,,,求证:.

    20.(6分)如图,已知平行四边形OBDC的对角线相交于点E,其中O(0,0),B(3,4),C(m,0),反比例函数y=(k≠0)的图象经过点B.求反比例函数的解析式;若点E恰好落在反比例函数y=上,求平行四边形OBDC的面积.

    21.(6分)(2017四川省内江市)小明随机调查了若干市民租用共享单车的骑车时间t(单位:分),将获得的数据分成四组,绘制了如下统计图(A:0<t≤10,B:10<t≤20,C:20<t≤30,D:t>30),根据图中信息,解答下列问题:
    (1)这项被调查的总人数是多少人?
    (2)试求表示A组的扇形统计图的圆心角的度数,补全条形统计图;
    (3)如果小明想从D组的甲、乙、丙、丁四人中随机选择两人了解平时租用共享单车情况,请用列表或画树状图的方法求出恰好选中甲的概率.

    22.(8分)在平面直角坐标系xOy中,抛物线,与x轴交于点C,点C在点D的左侧,与y轴交于点A.
    求抛物线顶点M的坐标;
    若点A的坐标为,轴,交抛物线于点B,求点B的坐标;
    在的条件下,将抛物线在B,C两点之间的部分沿y轴翻折,翻折后的图象记为G,若直线与图象G有一个交点,结合函数的图象,求m的取值范围.
    23.(8分)已知,,,斜边,将绕点顺时针旋转,如图1,连接.
    (1)填空:  ;
    (2)如图1,连接,作,垂足为,求的长度;
    (3)如图2,点,同时从点出发,在边上运动,沿路径匀速运动,沿路径匀速运动,当两点相遇时运动停止,已知点的运动速度为1.5单位秒,点的运动速度为1单位秒,设运动时间为秒,的面积为,求当为何值时取得最大值?最大值为多少?

    24.(10分)如图,已知正比例函数y=2x和反比例函数的图象交于点A(m,﹣2).
    求反比例函数的解析式;观察图象,直接写出正比例函数值大于反比例函数值时自变量x的取值范围;若双曲线上点C(2,n)沿OA方向平移个单位长度得到点B,判断四边形OABC的形状并证明你的结论.
    25.(10分)根据图中给出的信息,解答下列问题:
    放入一个小球水面升高 ,,放入一个大球水面升高 ;如果要使水面上升到50,应放入大球、小球各多少个?
    26.(12分)如图1,在Rt△ABC中,∠C=90°,AC=BC=2,点D、E分别在边AC、AB上,AD=DE=AB,连接DE.将△ADE绕点A逆时针方向旋转,记旋转角为θ.
    (1)问题发现
    ①当θ=0°时,= ;
    ②当θ=180°时,= .
    (2)拓展探究
    试判断:当0°≤θ<360°时,的大小有无变化?请仅就图2的情形给出证明;
    (3)问题解决
    ①在旋转过程中,BE的最大值为 ;
    ②当△ADE旋转至B、D、E三点共线时,线段CD的长为 .

    27.(12分)化简,再求值:



    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、B
    【解析】
    解:将两把不同的锁分别用A与B表示,三把钥匙分别用A,B与C表示,且A钥匙能打开A锁,B钥匙能打开B锁,画树状图得:

    ∵共有6种等可能的结果,一次打开锁的有2种情况,∴一次打开锁的概率为:.故选B.
    点睛:本题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.
    2、D
    【解析】
    分析:已知等式利用完全平方公式整理后,利用多项式相等的条件求出a与b的值,即可求出a+b的值.
    详解:已知等式整理得:x2+ax+19=(x-5)2-b=x2-10x+25-b,
    可得a=-10,b=6,
    则a+b=-10+6=-4,
    故选D.
    点睛:此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.
    3、D
    【解析】
    分析:先根据圆内接四边形的性质得到 然后根据圆周角定理求
    详解:∵


    故选D.
    点睛:考查圆内接四边形的性质, 圆周角定理,掌握圆内接四边形的对角互补是解题的关键.
    4、A
    【解析】试题分析:几何体的主视图有2列,每列小正方形数目分别为2,1.
    故选A.
    考点:三视图
    视频
    5、A
    【解析】
    试题分析:根据平均数的定义列式计算,再根据找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数解答.
    平均数为:×(6+3+4+1+7)=1,
    按照从小到大的顺序排列为:3,4,1,6,7,所以,中位数为:1.
    故选A.
    考点:中位数;算术平均数.
    6、D
    【解析】
    试题解析:55000000=5.5×107,
    故选D.
    考点:科学记数法—表示较大的数
    7、D
    【解析】A. x4+x4=2x4 ,故错误;B. (x2)3=x6 ,故错误;C. (x﹣y)2=x2﹣2xy+y2 ,故错误; D. x3•x=x4
    ,正确,故选D.
    8、C
    【解析】
    根据负数的绝对值是它的相反数,可得答案.
    【详解】
    │-│=,A错误;
    │-│=,B错误;││=,D错误;
    ││=,故选C.
    【点睛】
    本题考查了绝对值,解题的关键是掌握绝对值的概念进行解题.
    9、B
    【解析】
    首先连接OA、OB,根据圆周角定理,求出∠AOB=2∠ACB=60°,进而判断出△AOB为等边三角形;然后根据⊙O的半径为6,可得AB=OA=OB=6,再根据三角形的中位线定理,求出EF的长度;最后判断出当弦GH是圆的直径时,它的值最大,进而求出GE+FH的最大值是多少即可.
    【详解】
    解:如图,连接OA、OB,

    ∵∠ACB=30°,
    ∴∠AOB=2∠ACB=60°,
    ∵OA=OB,
    ∴△AOB为等边三角形,
    ∵⊙O的半径为6,
    ∴AB=OA=OB=6,
    ∵点E,F分别是AC、BC的中点,
    ∴EF=AB=3,
    要求GE+FH的最大值,即求GE+FH+EF(弦GH)的最大值,
    ∵当弦GH是圆的直径时,它的最大值为:6×2=12,
    ∴GE+FH的最大值为:12﹣3=1.
    故选:B.
    【点睛】
    本题结合动点考查了圆周角定理,三角形中位线定理,有一定难度.确定GH的位置是解题的关键.
    10、B
    【解析】
    根据同底数幂的乘法、除法、幂的乘方依次计算即可得到答案.
    【详解】
    A、a3+a3=2a3,故A错误;
    B、a6÷a2=a4,故B正确;
    C、a3•a5=a8,故C错误;
    D、(a3)4=a12,故D错误.
    故选:B.
    【点睛】
    此题考查整式的计算,正确掌握同底数幂的乘法、除法、幂的乘方的计算方法是解题的关键.
    11、D
    【解析】
    分别计算各方程的根的判别式的值,然后根据判别式的意义判定方程根的情况即可.
    【详解】
    A、△=(﹣2)2﹣4×1×0=4>0,方程有两个不相等的实数根,所以A选项错误;
    B、△=(﹣2)2﹣4×1×(﹣1)=8>0,方程有两个不相等的实数根,所以B选项错误;
    C、△=(﹣2)2﹣4×1×1=0,方程有两个相等的实数根,所以C选项错误;
    D、△=(﹣2)2﹣4×1×2=﹣4<0,方程没有实数根,所以D选项正确.
    故选D.
    12、A
    【解析】
    因为正数是比0大的数,负数是比0小的数,正数比负数大;负数的绝对值越大,本身就越小,根据有理数比较大小的法则即可选出答案.
    【详解】
    因为正数是比0大的数,负数是比0小的数,正数比负数大;负数的绝对值越大,本身就越小,
    所以在-3,-1,0,1这四个数中比-2小的数是-3,
    故选A.
    【点睛】
    本题主要考查有理数比较大小,解决本题的关键是要熟练掌握比较有理数大小的方法.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、2
    【解析】
    根据若分式的值为零,需同时具备两个条件:(1)分子为1;(2)分母不为1计算
    即可.
    【详解】
    解:依题意得:2﹣x=1且2x+2≠1.
    解得x=2,
    故答案为2.
    【点睛】
    本题考查的是分式为1的条件和一元二次方程的解法,掌握若分式的值为零,需同时具备两个条件:(1)分子为1;(2)分母不为1是解题的关键.
    14、1或1
    【解析】
    由两圆相切,它们的圆心距为3,其中一个圆的半径为4,即可知这两圆内切,然后分别从若大圆的半径为4与若小圆的半径为4去分析,根据两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系即可求得另一个圆的半径.
    【详解】
    ∵两圆相切,它们的圆心距为3,其中一个圆的半径为4,
    ∴这两圆内切,
    ∴若大圆的半径为4,则另一个圆的半径为:4-3=1,
    若小圆的半径为4,则另一个圆的半径为:4+3=1.
    故答案为:1或1
    【点睛】
    此题考查了圆与圆的位置关系.此题难度不大,解题的关键是注意掌握两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系,注意分类讨论思想的应用.
    15、1
    【解析】
    先根据矩形的性质,推理得到OF=CF,再根据Rt△BOF求得OF的长,即可得到CF的长.
    【详解】
    解:∵EF⊥BD,∠AEO=120°,
    ∴∠EDO=30°,∠DEO=60°,
    ∵四边形ABCD是矩形,
    ∴∠OBF=∠OCF=30°,∠BFO=60°,
    ∴∠FOC=60°-30°=30°,
    ∴OF=CF,
    又∵Rt△BOF中,BO=BD=AC=,
    ∴OF=tan30°×BO=1,
    ∴CF=1,
    故答案为:1.
    【点睛】
    本题考查矩形的性质以及解直角三角形的运用,解题关键是掌握:矩形的对角线相等且互相平分.
    16、a(a+2)(a-2)
    【解析】

    17、2
    【解析】
    分析:设CD=3x,则CE=1x,BE=12﹣1x,依据∠EBF=∠EFB,可得EF=BE=12﹣1x,由旋转可得DF=CD=3x,再根据Rt△DCE中,CD2+CE2=DE2,即可得到(3x)2+(1x)2=(3x+12﹣1x)2,进而得出CD=2.
    详解:如图所示,设CD=3x,则CE=1x,BE=12﹣1x.∵=,∠DCE=∠ACB=90°,∴△ACB∽△DCE,∴∠DEC=∠ABC,∴AB∥DE,∴∠ABF=∠BFE.又∵BF平分∠ABC,∴∠ABF=∠CBF,∴∠EBF=∠EFB,∴EF=BE=12﹣1x,由旋转可得DF=CD=3x.在Rt△DCE中,∵CD2+CE2=DE2,∴(3x)2+(1x)2=(3x+12﹣1x)2,解得x1=2,x2=﹣3(舍去),∴CD=2×3=2.故答案为2.

    点睛:本题考查了相似三角形的判定与性质,勾股定理以及旋转的性质,解题时注意:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.
    18、.
    【解析】
    分别求出从1到6的数中3的倍数的个数,再根据概率公式解答即可.
    【详解】
    有6张卡片,每张卡片上分别写有不同的从1到6的一个自然数,从中任意抽出一张卡片,共有6种结果,其中卡片上的数是3的倍数的有3和6两种情况,所以从中任意抽出一张卡片,卡片上的数是3的倍数的概率是.
    故答案为
    【点睛】
    考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、证明见解析;
    【解析】
    根据HL定理证明Rt△ABC≌Rt△DEF,根据全等三角形的性质证明即可.
    【详解】
    ,BE为公共线段,
    ∴CE+BE=BF+BE,

    又,
    在与中,


    ∴AC=DF.
    【点睛】
    本题考查的是全等三角形的判定和性质,掌握全等三角形的判定定理和性质定理是解题的关键.
    20、(1)y=;(2)1;
    【解析】
    (1)把点B的坐标代入反比例解析式求得k值,即可求得反比例函数的解析式;(2)根据点B(3,4)、C(m,0)的坐标求得边BC的中点E坐标为(,2),将点E的坐标代入反比例函数的解析式求得m的值,根据平行四边形的面积公式即可求解.
    【详解】
    (1)把B坐标代入反比例解析式得:k=12,
    则反比例函数解析式为y=;
    (2)∵B(3,4),C(m,0),
    ∴边BC的中点E坐标为(,2),
    将点E的坐标代入反比例函数得2=,
    解得:m=9,
    则平行四边形OBCD的面积=9×4=1.
    【点睛】
    本题为反比例函数的综合应用,考查的知识点有待定系数法、平行四边形的性质、中点的求法.在(1)中注意待定系数法的应用,在(2)中用m表示出E点的坐标是解题的关键.
    21、(1)50;(2)108°;(3).
    【解析】
    分析:(1)根据B组的人数和所占的百分比,即可求出这次被调查的总人数,从而补全统计图;用360乘以A组所占的百分比,求出A组的扇形圆心角的度数,再用总人数减去A、B、D组的人数,求出C组的人数;(2)画出树状图,由概率公式即可得出答案.
    本题解析:解:(1)调查的总人数是:19÷38%=50(人).C组的人数有50-15-19-4=12(人),补全条形图如图所示.
    (2)画树状图如下.共有12种等可能的结果,恰好选中甲的结果有6种,∴P(恰好选中甲)=.

    点睛:本题考查了列表法与树状图、条形统计图的综合运用.熟练掌握画树状图法,读懂统计图,从统计图中得到必要的信息是解决问题的关键.
    22、(1)M的坐标为;(2)B(4,3);(3)或.
    【解析】
    利用配方法将已知函数解析式转化为顶点式方程,可以直接得到答案
    根据抛物线的对称性质解答;
    利用待定系数法求得抛物线的表达式为根据题意作出图象G,结合图象求得m的取值范围.
    【详解】
    解:(1) ,
    该抛物线的顶点M的坐标为;

    由知,该抛物线的顶点M的坐标为;
    该抛物线的对称轴直线是,
    点A的坐标为,轴,交抛物线于点B,
    点A与点B关于直线对称,

    抛物线与y轴交于点,


    抛物线的表达式为.
    抛物线G的解析式为:
    由.
    由,得:
    抛物线与x轴的交点C的坐标为,
    点C关于y轴的对称点的坐标为.
    把代入,得:.
    把代入,得:.
    所求m的取值范围是或.
    故答案为(1)M的坐标为;(2)B(4,3);(3)或.
    【点睛】
    本题考查了二次函数图象与几何变换,待定系数法求二次函数的解析式、二次函数的图象和性质,画出函数G的图象是解题的关键.
    23、(1)1;(2);(3)x时,y有最大值,最大值.
    【解析】
    (1)只要证明△OBC是等边三角形即可;
    (2)求出△AOC的面积,利用三角形的面积公式计算即可;
    (3)分三种情形讨论求解即可解决问题:①当0<x时,M在OC上运动,N在OB上运动,此时过点N作NE⊥OC且交OC于点E.②当x≤4时,M在BC上运动,N在OB上运动.③当4<x≤4.8时,M、N都在BC上运动,作OG⊥BC于G.
    【详解】
    (1)由旋转性质可知:OB=OC,∠BOC=1°,
    ∴△OBC是等边三角形,
    ∴∠OBC=1°.
    故答案为1.
    (2)如图1中.

    ∵OB=4,∠ABO=30°,
    ∴OAOB=2,ABOA=2,
    ∴S△AOC•OA•AB2×2.
    ∵△BOC是等边三角形,
    ∴∠OBC=1°,∠ABC=∠ABO+∠OBC=90°,
    ∴AC,
    ∴OP.
    (3)①当0<x时,M在OC上运动,N在OB上运动,此时过点N作NE⊥OC且交OC于点E.

    则NE=ON•sin1°x,
    ∴S△OMN•OM•NE1.5xx,
    ∴yx2,
    ∴x时,y有最大值,最大值.
    ②当x≤4时,M在BC上运动,N在OB上运动.

    作MH⊥OB于H.
    则BM=8﹣1.5x,MH=BM•sin1°(8﹣1.5x),
    ∴yON×MHx2+2x.
    当x时,y取最大值,y,
    ③当4<x≤4.8时,M、N都在BC上运动,

    作OG⊥BC于G.MN=12﹣2.5x,OG=AB=2,
    ∴y•MN•OG=12x,
    当x=4时,y有最大值,最大值=2.
    综上所述:y有最大值,最大值为.
    【点睛】
    本题考查几何变换综合题、30度的直角三角形的性质、等边三角形的判定和性质、三角形的面积等知识,解题的关键是学会用分类讨论的思想思考问题.
    24、(1)
    (2)﹣1<x<0或x>1.
    (3)四边形OABC是平行四边形;理由见解析.
    【解析】
    (1)设反比例函数的解析式为(k>0),然后根据条件求出A点坐标,再求出k的值,进而求出反比例函数的解析式.
    (2)直接由图象得出正比例函数值大于反比例函数值时自变量x的取值范围;
    (3)首先求出OA的长度,结合题意CB∥OA且CB=,判断出四边形OABC是平行四边形,再证明OA=OC
    【详解】
    解:(1)设反比例函数的解析式为(k>0)
    ∵A(m,﹣2)在y=2x上,∴﹣2=2m,∴解得m=﹣1.∴A(﹣1,﹣2).
    又∵点A在上,∴,解得k=2.,
    ∴反比例函数的解析式为.
    (2)观察图象可知正比例函数值大于反比例函数值时自变量x的取值范围为﹣1<x<0或x>1.
    (3)四边形OABC是菱形.证明如下:
    ∵A(﹣1,﹣2),∴.
    由题意知:CB∥OA且CB=,∴CB=OA.
    ∴四边形OABC是平行四边形.
    ∵C(2,n)在上,∴.∴C(2,1).
    ∴.∴OC=OA.
    ∴平行四边形OABC是菱形.
    25、详见解析
    【解析】
    (1)设一个小球使水面升高x厘米,一个大球使水面升高y厘米,根据图象提供的数据建立方程求解即可.
    (1)设应放入大球m个,小球n个,根据题意列二元一次方程组求解即可.
    【详解】
    解:(1)设一个小球使水面升高x厘米,由图意,得2x=21﹣16,解得x=1.
    设一个大球使水面升高y厘米,由图意,得1y=21﹣16,解得:y=2.
    所以,放入一个小球水面升高1cm,放入一个大球水面升高2cm.
    (1)设应放入大球m个,小球n个,由题意,得
    ,解得:.
    答:如果要使水面上升到50cm,应放入大球4个,小球6个.
    26、(1)①;(2)无变化,证明见解析;(3)①2+2 +1或﹣1.
    【解析】
    (1)①先判断出DE∥CB,进而得出比例式,代值即可得出结论;②先得出DE∥BC,即可得出,,再用比例的性质即可得出结论;(2)先∠CAD=∠BAE,进而判断出△ADC∽△AEB即可得出结论;(3)分点D在BE的延长线上和点D在BE上,先利用勾股定理求出BD,再借助(2)结论即可得出CD.
    【详解】
    解:(1)①当θ=0°时,
    在Rt△ABC中,AC=BC=2,
    ∴∠A=∠B=45°,AB=2,
    ∵AD=DE=AB=,
    ∴∠AED=∠A=45°,
    ∴∠ADE=90°,
    ∴DE∥CB,
    ∴,
    ∴,
    ∴,
    故答案为,
    ②当θ=180°时,如图1,

    ∵DE∥BC,
    ∴,
    ∴,
    即:,
    ∴,
    故答案为;
    (2)当0°≤θ<360°时,的大小没有变化,
    理由:∵∠CAB=∠DAE,
    ∴∠CAD=∠BAE,
    ∵,
    ∴△ADC∽△AEB,
    ∴;
    (3)①当点E在BA的延长线时,BE最大,
    在Rt△ADE中,AE=AD=2,
    ∴BE最大=AB+AE=2+2;
    ②如图2,

    当点E在BD上时,
    ∵∠ADE=90°,
    ∴∠ADB=90°,
    在Rt△ADB中,AB=2,AD=,根据勾股定理得,BD==,
    ∴BE=BD+DE=+,
    由(2)知,,
    ∴CD=+1,
    如图3,

    当点D在BE的延长线上时,
    在Rt△ADB中,AD=,AB=2,根据勾股定理得,BD==,
    ∴BE=BD﹣DE=﹣,
    由(2)知,,
    ∴CD=﹣1.
    故答案为 +1或﹣1.
    【点睛】
    此题是相似形综合题,主要考查了等腰直角三角形的性质和判定,勾股定理,相似三角形的判定和性质,比例的基本性质及分类讨论的数学思想,解(1)的关键是得出DE∥BC,解(2)的关键是判断出△ADC∽△AEB,解(3)关键是作出图形求出BD,是一道中等难度的题目.
    27、
    【解析】
    试题分析:把分式化简,然后把x的值代入化简后的式子求值就可以了.
    试题解析:原式=
    =
    当时,原式=.
    考点:1.二次根式的化简求值;2.分式的化简求值.

    相关试卷

    四川宜宾县横江片区2022年中考联考数学试题含解析:

    这是一份四川宜宾县横江片区2022年中考联考数学试题含解析,共16页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。

    2022年广西河池市环江县中考数学适应性模拟试题含解析:

    这是一份2022年广西河池市环江县中考数学适应性模拟试题含解析,共20页。试卷主要包含了如果a﹣b=5,那么代数式等内容,欢迎下载使用。

    2022届四川宜宾县横江片区重点名校中考数学模拟精编试卷含解析:

    这是一份2022届四川宜宾县横江片区重点名校中考数学模拟精编试卷含解析,共23页。试卷主要包含了4的平方根是,下列运算正确的是,如图所示的正方体的展开图是等内容,欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map