2022年天津市达标名校中考数学考前最后一卷含解析
展开
这是一份2022年天津市达标名校中考数学考前最后一卷含解析,共19页。试卷主要包含了下列运算正确的是等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.今年我市计划扩大城区绿地面积,现有一块长方形绿地,它的短边长为60m,若将短边增长到长边相等(长边不变),使扩大后的棣地的形状是正方形,则扩大后的绿地面积比原来增加1600,设扩大后的正方形绿地边长为xm,下面所列方程正确的是( )
A.x(x-60)=1600
B.x(x+60)=1600
C.60(x+60)=1600
D.60(x-60)=1600
2.如图,直线a∥b,点A在直线b上,∠BAC=100°,∠BAC的两边与直线a分别交于B、C两点,若∠2=32°,则∠1的大小为( )
A.32° B.42° C.46° D.48°
3.如图是二次函数的部分图象,由图象可知不等式的解集是( )
A. B. C.且 D.x<-1或x>5
4.﹣2×(﹣5)的值是( )
A.﹣7 B.7 C.﹣10 D.10
5.下列计算正确的是( )
A. B. C. D.
6.下列运算正确的是( )
A.(a2)3 =a5 B. C.(3ab)2=6a2b2 D.a6÷a3 =a2
7.如图,直线a∥b,∠ABC的顶点B在直线a上,两边分别交b于A,C两点,若∠ABC=90°,∠1=40°,则∠2的度数为( )
A.30° B.40° C.50° D.60°
8.若x﹣2y+1=0,则2x÷4y×8等于( )
A.1 B.4 C.8 D.﹣16
9.我市某小区开展了“节约用水为环保作贡献”的活动,为了解居民用水情况,在小区随机抽查了10户家庭的月用水量,结果如下表:
月用水量(吨)
8
9
10
户数
2
6
2
则关于这10户家庭的月用水量,下列说法错误的是( )
A.方差是4 B.极差是2 C.平均数是9 D.众数是9
10.在学校演讲比赛中,10名选手的成绩折线统计图如图所示,则下列说法正确的是( )
A.最高分90 B.众数是5 C.中位数是90 D.平均分为87.5
11.下列调查中,最适合采用普查方式的是( )
A.对太原市民知晓“中国梦”内涵情况的调查
B.对全班同学1分钟仰卧起坐成绩的调查
C.对2018年央视春节联欢晚会收视率的调查
D.对2017年全国快递包裹产生的包装垃圾数量的调查
12.如图,在Rt△ABC中,∠C=90°,BC=2,∠B=60°,⊙A的半径为3,那么下列说法正确的是( )
A.点B、点C都在⊙A内 B.点C在⊙A内,点B在⊙A外
C.点B在⊙A内,点C在⊙A外 D.点B、点C都在⊙A外
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.如图,在Rt△ABC中,∠ACB=90°,将边BC沿斜边上的中线CD折叠到CB′,若∠B=48°,则∠ACB′=_____.
14.二次函数的图象与x轴有____个交点 .
15.如图,菱形ABCD中,AB=4,∠C=60°,菱形ABCD在直线l上向右作无滑动的翻滚,每绕着一个顶点旋转60°叫一次操作,则经过6次这样的操作菱形中心(对角线的交点)O所经过的路径总长为_____.
16.飞机着陆后滑行的距离S(单位:米)与滑行的时间t(单位:秒)之间的函数关系式是s=60t﹣1.2t2,那么飞机着陆后滑行_____秒停下.
17.如图,当半径为30cm的转动轮转过120°角时,传送带上的物体A平移的距离为______cm .
18.在函数y=中,自变量x的取值范围是_____.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)如图,要修一个育苗棚,棚的横截面是,棚高,长,棚顶与地面的夹角为.求覆盖在顶上的塑料薄膜需多少平方米(结果保留小数点后一位).(参考数据:,,)
20.(6分)如图所示,在△ABC中,AB=CB,以BC为直径的⊙O交AC于点E,过点E作⊙O的切线交AB于点F.
(1)求证:EF⊥AB;
(2)若AC=16,⊙O的半径是5,求EF的长.
21.(6分)甲、乙两人在玩转盘游戏时,把两个可以自由转动的转盘A,B都分成3等份的扇形区域,并在每一小区域内标上数字(如图所示),游戏规则:同时转动两个转盘,当转盘停止后,若指针所指两个区域的数字之和为3的倍数,则甲获胜;若指针所指两个区域的数字之和为4的倍数,则乙获胜.如果指针落在分割线上,则需要重新转动转盘.请问这个游戏对甲、乙双方公平吗?说明理由.
22.(8分)鲜丰水果店计划用元/盒的进价购进一款水果礼盒以备销售.
据调查,当该种水果礼盒的售价为元/盒时,月销量为盒,每盒售价每增长元,月销量就相应减少盒,若使水果礼盒的月销量不低于盒,每盒售价应不高于多少元?
在实际销售时,由于天气和运输的原因,每盒水果礼盒的进价提高了,而每盒水果礼盒的售价比(1)中最高售价减少了,月销量比(1)中最低月销量盒增加了,结果该月水果店销售该水果礼盒的利润达到了元,求的值.
23.(8分)在□ABCD,过点D作DE⊥AB于点E,点F在边CD上,DF=BE,连接AF,BF.
求证:四边形BFDE是矩形;若CF=3,BF=4,DF=5,求证:AF平分∠DAB.
24.(10分)如图,在△ABC中,∠ACB=90°,O是边AC上一点,以O为圆心,以OA为半径的圆分别交AB、AC于点E、D,在BC的延长线上取点F,使得BF=EF.
(1)判断直线EF与⊙O的位置关系,并说明理由;
(2)若∠A=30°,求证:DG=DA;
(3)若∠A=30°,且图中阴影部分的面积等于2,求⊙O的半径的长.
25.(10分)如图,已知△ABC为等边三角形,点D、E分别在BC、AC边上,且AE=CD,AD与BE相交于点F.
求证:△ABE≌△CAD;求∠BFD的度数.
26.(12分)如图,在平面直角坐标系xOy中,直线y=x+b与双曲线y=相交于A,B两点,
已知A(2,5).求:b和k的值;△OAB的面积.
27.(12分)某商店经营儿童益智玩具,已知成批购进时的单价是20元.调查发现:销售单价是30元时,月销售量是230件,而销售单价每上涨1元,月销售量就减少10件,但每件玩具售价不能高于40元.设每件玩具的销售单价上涨了x元时(x为正整数),月销售利润为y元.求y与x的函数关系式并直接写出自变量x的取值范围.每件玩具的售价定为多少元时,月销售利润恰为2520元?每件玩具的售价定为多少元时可使月销售利润最大?最大的月利润是多少?
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、A
【解析】
试题分析:根据题意可得扩建的部分相当于一个长方形,这个长方形的长和宽分别为x米和(x-60)米,根据长方形的面积计算法则列出方程.
考点:一元二次方程的应用.
2、D
【解析】
根据平行线的性质与对顶角的性质求解即可.
【详解】
∵a∥b,
∴∠BCA=∠2,
∵∠BAC=100°,∠2=32°
∴∠CBA=180°-∠BAC-∠BCA=180°-100°-32°=48°.
∴∠1=∠CBA=48°.
故答案选D.
【点睛】
本题考查了平行线的性质,解题的关键是熟练的掌握平行线的性质与对顶角的性质.
3、D
【解析】
利用二次函数的对称性,可得出图象与x轴的另一个交点坐标,结合图象可得出的解集:
由图象得:对称轴是x=2,其中一个点的坐标为(1,0),
∴图象与x轴的另一个交点坐标为(-1,0).
由图象可知:的解集即是y<0的解集,
∴x<-1或x>1.故选D.
4、D
【解析】
根据有理数乘法法则计算.
【详解】
﹣2×(﹣5)=+(2×5)=10.
故选D.
【点睛】
考查了有理数的乘法法则,(1) 两数相乘,同号得正,异号得负,并把绝对值相乘;(2) 任何数同0相乘,都得0;(3) 几个不等于0的数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积为负;当负因数有偶数个时,积为正;(4) 几个数相乘,有一个因数为0时,积为0 .
5、A
【解析】
原式各项计算得到结果,即可做出判断.
【详解】
A、原式=,正确;
B、原式不能合并,错误;
C、原式=,错误;
D、原式=2,错误.
故选A.
【点睛】
此题考查了实数的运算,熟练掌握运算法则是解本题的关键.
6、B
【解析】
分析:本题考察幂的乘方,同底数幂的乘法,积的乘方和同底数幂的除法.
解析: ,故A选项错误; a3·a = a4故B选项正确;(3ab)2 = 9a2b2故C选项错误; a6÷a3 = a3故D选项错误.
故选B.
7、C
【解析】
依据平行线的性质,可得∠BAC的度数,再根据三角形内和定理,即可得到∠2的度数.
【详解】
解:∵a∥b,
∴∠1=∠BAC=40°,
又∵∠ABC=90°,
∴∠2=90°−40°=50°,
故选C.
【点睛】
本题考查的是平行线的性质,用到的知识点为:两直线平行,内错角相等.
8、B
【解析】
先把原式化为2x÷22y×23的形式,再根据同底数幂的乘法及除法法则进行计算即可.
【详解】
原式=2x÷22y×23,
=2x﹣2y+3,
=22,
=1.
故选:B.
【点睛】
本题考查的是同底数幂的乘法及除法运算,根据题意把原式化为2x÷22y×23的形式是解答此题的关键.
9、A
【解析】
分析:根据极差=最大值-最小值;平均数指在一组数据中所有数据之和再除以数据的个数;一组数据中出现次数最多的数据叫做众数,以及方差公式S2= [(x1-)2+(x2-)2+…+(xn-)2],分别进行计算可得答案.
详解:极差:10-8=2,
平均数:(8×2+9×6+10×2)÷10=9,
众数为9,
方差:S2= [(8-9)2×2+(9-9)2×6+(10-9)2×2]=0.4,
故选A.
点睛:此题主要考查了极差、众数、平均数、方差,关键是掌握各知识点的计算方法.
10、C
【解析】
试题分析:根据折线统计图可得:最高分为95,众数为90;中位数90;平均分=(80×2+85+90×5+95×2)÷(2+1+5+2)=88.5.
11、B
【解析】分析:由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.
详解:A、调查范围广适合抽样调查,故A不符合题意;
B、适合普查,故B符合题意;
C、调查范围广适合抽样调查,故C不符合题意;
D、调查范围广适合抽样调查,故D不符合题意;
故选:B.
点睛:本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
12、D
【解析】
先求出AB的长,再求出AC的长,由B、C到A的距离及圆半径的长的关系判断B、C与圆的关系.
【详解】
由题意可求出∠A=30°,AB=2BC=4, 由勾股定理得AC==2,
AB=4>3, AC=2>3,点B、点C都在⊙A外.
故答案选D.
【点睛】
本题考查的知识点是点与圆的位置关系,解题的关键是熟练的掌握点与圆的位置关系.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、6°
【解析】
∠B=48°,∠ACB=90°,所以∠A=42°,DC是中线,所以∠BCD=∠B=48°,
∠DCA=∠A=48°,因为∠BCD=∠DCB’=48°,所以∠ACB′=48°-46°=6°.
14、2
【解析】
【分析】根据一元二次方程x2+mx+m-2=0的根的判别式的符号进行判定二次函数y=x2+mx+m-2的图象与x轴交点的个数.
【详解】二次函数y=x2+mx+m-2的图象与x轴交点的纵坐标是零,
即当y=0时,x2+mx+m-2=0,
∵△=m2-4(m-2)=(m-2)2+4>0,
∴一元二次方程x2+mx+m-2=0有两个不相等是实数根,
即二次函数y=x2+mx+m-2的图象与x轴有2个交点,
故答案为:2.
【点睛】本题考查了抛物线与x轴的交点.二次函数y=ax2+bx+c(a,b,c是常数,a≠0)的交点与一元二次方程ax2+bx+c=0根之间的关系.
△=b2-4ac决定抛物线与x轴的交点个数.
△=b2-4ac>0时,抛物线与x轴有2个交点;
△=b2-4ac=0时,抛物线与x轴有1个交点;
△=b2-4ac<0时,抛物线与x轴没有交点.
15、
【解析】
第一次旋转是以点A为圆心,那么菱形中心旋转的半径就是OA,解直角三角形可求出OA的长,圆心角是60°.第二次还是以点A为圆心,那么菱形中心旋转的半径就是OA,圆心角是60°.第三次就是以点B为旋转中心,OB为半径,旋转的圆心角为60度.旋转到此菱形就又回到了原图.故这样旋转6次,就是2个这样的弧长的总长,进而得出经过6次这样的操作菱形中心O所经过的路径总长.
【详解】
解:∵菱形ABCD中,AB=4,∠C=60°,
∴△ABD是等边三角形, BO=DO=2,
AO==,
第一次旋转的弧长=,
∵第一、二次旋转的弧长和=+=,
第三次旋转的弧长为:,
故经过6次这样的操作菱形中心O所经过的路径总长为:2×(+)=.
故答案为:.
【点睛】
本题考查菱形的性质,翻转的性质以及解直角三角形的知识.
16、1
【解析】
飞机停下时,也就是滑行距离最远时,即在本题中需求出s最大时对应的t值.
【详解】
由题意,s=﹣1.2t2+60t=﹣1.2(t2﹣50t+61﹣61)=﹣1.2(t﹣1)2+750
即当t=1秒时,飞机才能停下来.
故答案为1.
【点睛】
本题考查了二次函数的应用.解题时,利用配方法求得t=2时,s取最大值.
17、20π
【解析】
解:=20πcm.故答案为20πcm.
18、x≥4
【解析】
试题分析:二次根式有意义的条件:二次根号下的数为非负数,二次根式才有意义.
由题意得,.
考点:二次根式有意义的条件
点评:本题属于基础应用题,只需学生熟练掌握二次根式有意义的条件,即可完成.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、33.3
【解析】
根据解直角三角形的知识先求出AC的值,再根据矩形的面积计算方法求解即可.
【详解】
解:∵AC= ===
∴矩形面积=10≈33.3(平方米)
答:覆盖在顶上的塑料薄膜需33.3平方米
【点睛】
本题考查了解直角三角形的应用,掌握正弦的定义是解题的关键.
20、(1)证明见解析;(2) 4.8.
【解析】
(1)连结OE,根据等腰三角形的性质可得∠OEC=∠OCA、∠A=∠OCA,即可得∠A=∠OEC,由同位角相等,两直线平行即可判定OE∥AB,又因EF是⊙O的切线,根据切线的性质可得EF⊥OE,由此即可证得EF⊥AB;(2)连结BE,根据直径所对的圆周角为直角可得,∠BEC=90°,再由等腰三角形三线合一的性质求得AE=EC =8,在Rt△BEC中,根据勾股定理求的BE=6,再由△ABE的面积=△BEC的面积,根据直角三角形面积的两种表示法可得8×6=10×EF,由此即可求得EF=4.8.
【详解】
(1)证明:连结OE.
∵OE=OC,
∴∠OEC=∠OCA,
∵AB=CB,
∴∠A=∠OCA,
∴∠A=∠OEC,
∴OE∥AB,
∵EF是⊙O的切线,
∴EF⊥OE,
∴EF⊥AB.
(2)连结BE.
∵BC是⊙O的直径,
∴∠BEC=90°,
又AB=CB,AC=16,
∴AE=EC=AC=8,
∵AB=CB=2BO=10,
∴BE=,
又△ABE的面积=△BEC的面积,即8×6=10×EF,
∴EF=4.8.
【点睛】
本题考查了切线的性质定理、圆周角定理、等腰三角形的性质与判定、勾股定理及直角三角形的两种面积求法等知识点,熟练运算这些知识是解决问题的关键.
21、见解析
【解析】
解:不公平,理由如下:
列表得:
1
2
3
2
1,2
2,2
3,2
3
1,3
2,3
3,3
4
1,4
2,4
3,4
由表可知共有9种等可能的结果,其中数字之和为3的倍数的有3种结果,数字之和为4的倍数的有2种,
则甲获胜的概率为、乙获胜的概率为,
∵,
∴这个游戏对甲、乙双方不公平.
【点睛】
考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.用到的知识点为:概率=所求情况数与总情况数之比.
22、(1)若使水果礼盒的月销量不低于盒,每盒售价应不高于元;(2)的值为.
【解析】
(1)设每盒售价应为x元,根据月销量=980-30×超出14元的部分结合月销量不低于800盒,即可得出关于x的一元一次不等式,解之取其最大值即可得出结论;
(2)根据总利润=每盒利润×销售数量,即可得出关于m的一元二次方程,解之取其正值即可得出结论.
【详解】
解:设每盒售价元.
依题意得:
解得:
答:若使水果礼盒的月销量不低于盒,每盒售价应不高于元
依题意:
令:
化简:
解得:(舍)
,
答:的值为.
【点睛】
考查一元二次方程的应用,一元一次不等式的应用,读懂题目,找出题目中的等量关系或不等关系是解题的关键.
23、(1)见解析(2)见解析
【解析】
试题分析:(1)根据平行四边形的性质,可得AB与CD的关系,根据平行四边形的判定,可得BFDE是平行四边形,再根据矩形的判定,可得答案;
(2)根据平行线的性质,可得∠DFA=∠FAB,根据等腰三角形的判定与性质,可得∠DAF=∠DFA,根据角平分线的判定,可得答案.
试题分析:(1)证明:∵四边形ABCD是平行四边形,
∴AB∥CD.
∵BE∥DF,BE=DF,
∴四边形BFDE是平行四边形.
∵DE⊥AB,
∴∠DEB=90°,
∴四边形BFDE是矩形;
(2)∵四边形ABCD是平行四边形,
∴AB∥DC,
∴∠DFA=∠FAB.
在Rt△BCF中,由勾股定理,得
BC===5,
∴AD=BC=DF=5,
∴∠DAF=∠DFA,
∴∠DAF=∠FAB,
即AF平分∠DAB.
【点睛】本题考查了平行四边形的性质,利用了平行四边形的性质,矩形的判定,等腰三角形的判定与性质,利用等腰三角形的判定与性质得出∠DAF=∠DFA是解题关键.
24、(1)EF是⊙O的切线,理由详见解析;(1)详见解析;(3)⊙O的半径的长为1.
【解析】
(1)连接OE,根据等腰三角形的性质得到∠A=∠AEO,∠B=∠BEF,于是得到∠
OEG=90°,即可得到结论;
(1)根据含30°的直角三角形的性质证明即可;
(3)由AD是⊙O的直径,得到∠AED=90°,根据三角形的内角和得到∠EOD=60°,求得
∠EGO=30°,根据三角形和扇形的面积公式即可得到结论.
【详解】
解:(1)连接OE,
∵OA=OE,
∴∠A=∠AEO,
∵BF=EF,
∴∠B=∠BEF,
∵∠ACB=90°,
∴∠A+∠B=90°,
∴∠AEO+∠BEF=90°,
∴∠OEG=90°,
∴EF是⊙O的切线;
(1)∵∠AED=90°,∠A=30°,
∴ED=AD,
∵∠A+∠B=90°,
∴∠B=∠BEF=60°,
∵∠BEF+∠DEG=90°,
∴∠DEG=30°,
∵∠ADE+∠A=90°,
∴∠ADE=60°,
∵∠ADE=∠EGD+∠DEG,
∴∠DGE=30°,
∴∠DEG=∠DGE,
∴DG=DE,
∴DG=DA;
(3)∵AD是⊙O的直径,
∴∠AED=90°,
∵∠A=30°,
∴∠EOD=60°,
∴∠EGO=30°,
∵阴影部分的面积
解得:r1=4,即r=1,
即⊙O的半径的长为1.
【点睛】
本题考查了切线的判定,等腰三角形的性质,圆周角定理,扇形的面积的计算,正确的作出辅助线是解题的关键.
25、(1)证明见解析;(2).
【解析】
试题分析:(1)根据等边三角形的性质根据SAS即可证明△ABE≌△CAD;
(2)由三角形全等可以得出∠ABE=∠CAD,由外角与内角的关系就可以得出结论.
试题解析:(1)∵△ABC为等边三角形,
∴AB=BC=AC,∠ABC=∠ACB=∠BAC=60°.
在△ABE和△CAD中,
AB=CA, ∠BAC=∠C,AE =CD,
∴△ABE≌△CAD(SAS),
(2)∵△ABE≌△CAD,
∴∠ABE=∠CAD,
∵∠BAD+∠CAD=60°,
∴∠BAD+∠EBA=60°,
∵∠BFD=∠ABE+∠BAD,
∴∠BFD=60°.
26、(1)b=3,k=10;(2)S△AOB=.
【解析】
(1)由直线y=x+b与双曲线y=相交于A、B两点,A(2,5),即可得到结论;
(2)过A作AD⊥x轴于D,BE⊥x轴于E,根据y=x+3,y=,得到(-5,-2),C(-3,0).求出OC=3,然后根据三角形的面积公式即可得到结论.
解:()把代入.∴∴.
把代入,∴,
∴.
()∵,.
∴时,,
∴,.∴.
又∵,
∴ .
27、(1)y=﹣10x2+130x+2300,0<x≤10且x为正整数;(2)每件玩具的售价定为32元时,月销售利润恰为2520元;(3)每件玩具的售价定为36元或37元时,每个月可获得最大利润,最大的月利润是2720元.
【解析】
(1)根据题意知一件玩具的利润为(30+x-20)元,月销售量为(230-10x),然后根据月销售利润=一件玩具的利润×月销售量即可求出函数关系式.
(2)把y=2520时代入y=-10x2+130x+2300中,求出x的值即可.
(3)把y=-10x2+130x+2300化成顶点式,求得当x=6.5时,y有最大值,再根据0<x≤10且x为正整数,分别计算出当x=6和x=7时y的值即可.
【详解】
(1)根据题意得:
y=(30+x﹣20)(230﹣10x)=﹣10x2+130x+2300,
自变量x的取值范围是:0<x≤10且x为正整数;
(2)当y=2520时,得﹣10x2+130x+2300=2520,
解得x1=2,x2=11(不合题意,舍去)
当x=2时,30+x=32(元)
答:每件玩具的售价定为32元时,月销售利润恰为2520元.
(3)根据题意得:
y=﹣10x2+130x+2300
=﹣10(x﹣6.5)2+2722.5,
∵a=﹣10<0,
∴当x=6.5时,y有最大值为2722.5,
∵0<x≤10且x为正整数,
∴当x=6时,30+x=36,y=2720(元),
当x=7时,30+x=37,y=2720(元),
答:每件玩具的售价定为36元或37元时,每个月可获得最大利润,最大的月利润是2720元.
【点睛】
本题主要考查了二次函数的实际应用,解题的关键是分析题意,找到关键描述语,求出函数的解析式,用到的知识点是二次函数的性质和解一元二次方程.
相关试卷
这是一份2022年武汉市达标名校中考考前最后一卷数学试卷含解析,共21页。试卷主要包含了考生要认真填写考场号和座位序号,若分式有意义,则a的取值范围是,估计的值在等内容,欢迎下载使用。
这是一份2022年安微省达标名校中考数学考前最后一卷含解析,共18页。试卷主要包含了考生要认真填写考场号和座位序号,下列各数中,无理数是,方程的根是,运用图形变化的方法研究下列问题,我市某一周的最高气温统计如下表,计算的正确结果是等内容,欢迎下载使用。
这是一份2022届天津市红桥区重点达标名校中考数学考前最后一卷含解析,共19页。试卷主要包含了把一副三角板如图等内容,欢迎下载使用。