


2022年天津市部分区(五区县中考数学最后一模试卷含解析
展开
这是一份2022年天津市部分区(五区县中考数学最后一模试卷含解析,共20页。试卷主要包含了如图等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.的倒数是( )
A. B.-3 C.3 D.
2.通州区大运河森林公园占地面积10700亩,是北京规模最大的滨河森林公园,将10700用科学记数法表示为( )
A.10.7×104 B.1.07×105 C.1.7×104 D.1.07×104
3.如图是一个空心圆柱体,其俯视图是( )
A. B. C. D.
4.下列关于事件发生可能性的表述,正确的是( )
A.事件:“在地面,向上抛石子后落在地上”,该事件是随机事件
B.体育彩票的中奖率为10%,则买100张彩票必有10张中奖
C.在同批次10000件产品中抽取100件发现有5件次品,则这批产品中大约有500件左右的次品
D.掷两枚硬币,朝上的一面是一正面一反面的概率为
5.如图,点A、B、C在⊙O上,∠OAB=25°,则∠ACB的度数是( )
A.135° B.115° C.65° D.50°
6.甲、乙两车从A地出发,匀速驶向B地.甲车以80km/h的速度行驶1h后,乙车才沿相同路线行驶.乙车先到达B地并停留1h后,再以原速按原路返回,直至与甲车相遇.在此过程中,两车之间的距离y(km)与乙车行驶时间x(h)之间的函数关系如图所示.下列说法:①乙车的速度是120km/h;②m=160;③点H的坐标是(7,80);④n=7.1.其中说法正确的有( )
A.4个 B.3个 C.2个 D.1个
7.△ABC的三条边长分别是5,13,12,则其外接圆半径和内切圆半径分别是( )
A.13,5 B.6.5,3 C.5,2 D.6.5,2
8.如图:A、B、C、D四点在一条直线上,若AB=CD,下列各式表示线段AC错误的是( )
A.AC=AD﹣CD B.AC=AB+BC
C.AC=BD﹣AB D.AC=AD﹣AB
9.如图,在△ABC中,点D是边AB上的一点,∠ADC=∠ACB,AD=2,BD=6,则边AC的长为( )
A.2 B.4 C.6 D.8
10.益阳市高新区某厂今年新招聘一批员工,他们中不同文化程度的人数见下表:
文化程度
高中
大专
本科
硕士
博士
人数
9
17
20
9
5
关于这组文化程度的人数数据,以下说法正确的是:( )
A.众数是20 B.中位数是17 C.平均数是12 D.方差是26
二、填空题(共7小题,每小题3分,满分21分)
11.函数y=的自变量x的取值范围是_____.
12.计算:﹣22÷(﹣)=_____.
13.若,则=_____.
14.已知扇形的圆心角为120°,弧长为6π,则扇形的面积是_____.
15.如图,抛物线交轴于,两点,交轴于点,点关于抛物线的对称轴的对称点为,点,分别在轴和轴上,则四边形周长的最小值为__________.
16.如图,△ABC是⊙O的内接三角形,AD是⊙O的直径,∠ABC=50°,则∠CAD=________ .
17.三个小伙伴各出资a元,共同购买了价格为b元的一个篮球,还剩下一点钱,则剩余金额为__元(用含a、b的代数式表示)
三、解答题(共7小题,满分69分)
18.(10分)如图,已知抛物线(>0)与轴交于A,B两点(A点在B点的左边),与轴交于点C。
(1)如图1,若△ABC为直角三角形,求的值;
(2)如图1,在(1)的条件下,点P在抛物线上,点Q在抛物线的对称轴上,若以BC为边,以点B,C,P,Q为顶点的四边形是平行四边形,求P点的坐标;
(3)如图2,过点A作直线BC的平行线交抛物线于另一点D,交轴交于点E,若AE:ED=1:4,求的值.
19.(5分)如图(1),已知点G在正方形ABCD的对角线AC上,GE⊥BC,垂足为点E,GF⊥CD,垂足为点F.
(1)证明与推断:
①求证:四边形CEGF是正方形;
②推断:的值为 :
(2)探究与证明:
将正方形CEGF绕点C顺时针方向旋转α角(0°<α<45°),如图(2)所示,试探究线段AG与BE之间的数量关系,并说明理由:
(3)拓展与运用:
正方形CEGF在旋转过程中,当B,E,F三点在一条直线上时,如图(3)所示,延长CG交AD于点H.若AG=6,GH=2,则BC= .
20.(8分)一个不透明的口袋中装有2个红球、1个白球、1个黑球,这些球除颜色外都相同,将球摇匀.先从中任意摸出1个球,再从余下的3个球中任意摸出1个球,请用列举法(画树状图或列表)求两次都摸到红球的概率.
21.(10分)如图,在△ABC中,∠ACB=90°,∠ABC=10°,△CDE是等边三角形,点D在边AB上.
如图1,当点E在边BC上时,求证DE=EB;如图2,当点E在△ABC内部时,猜想ED和EB数量关系,并加以证明;如图1,当点E在△ABC外部时,EH⊥AB于点H,过点E作GE∥AB,交线段AC的延长线于点G,AG=5CG,BH=1.求CG的长.
22.(10分)如图,一次函数的图象与反比例函数的图象交于C,D两点,与x,y轴交于B,A两点,且,,,作轴于E点.
求一次函数的解析式和反比例函数的解析式;
求的面积;
根据图象直接写出一次函数的值大于反比例函数的值时,自变量x的取值范围.
23.(12分)如图,AD是△ABC的中线,AD=12,AB=13,BC=10,求AC长.
24.(14分)山西特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克,若该专卖店销售这种核桃要想平均每天获利2240元,请回答:每千克核桃应降价多少元?在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、A
【解析】
先求出,再求倒数.
【详解】
因为
所以的倒数是
故选A
【点睛】
考核知识点:绝对值,相反数,倒数.
2、D
【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【详解】
解:10700=1.07×104,
故选:D.
【点睛】
此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
3、D
【解析】
根据从上边看得到的图形是俯视图,可得答案.
【详解】
该空心圆柱体的俯视图是圆环,如图所示:
故选D.
【点睛】
本题考查了三视图,明确俯视图是从物体上方看得到的图形是解题的关键.
4、C
【解析】
根据随机事件,必然事件的定义以及概率的意义对各个小题进行判断即可.
【详解】
解:A. 事件:“在地面,向上抛石子后落在地上”,该事件是必然事件,故错误.
B. 体育彩票的中奖率为10%,则买100张彩票可能有10张中奖,故错误.
C. 在同批次10000件产品中抽取100件发现有5件次品,则这批产品中大约有500件左右的次品,正确.
D. 掷两枚硬币,朝上的一面是一正面一反面的概率为,故错误.
故选:C.
【点睛】
考查必然事件,随机事件的定义以及概率的意义,概率=所求情况数与总情况数之比.
5、B
【解析】
由OA=OB得∠OAB=∠OBA=25°,根据三角形内角和定理计算出∠AOB=130°,则根据圆周角定理得∠P= ∠AOB,然后根据圆内接四边形的性质求解.
【详解】
解:在圆上取点 P ,连接 PA 、 PB.
∵OA=OB ,
∴∠OAB=∠OBA=25° ,
∴∠AOB=180°−2×25°=130° ,
∴∠P=∠AOB=65°,
∴∠ACB=180°−∠P=115°.
故选B.
【点睛】
本题考查的是圆,熟练掌握圆周角定理是解题的关键.
6、B
【解析】
根据题意,两车距离为函数,由图象可知两车起始距离为80,从而得到乙车速度,根据图象变化规律和两车运动状态,得到相关未知量.
【详解】
由图象可知,乙出发时,甲乙相距80km,2小时后,乙车追上甲.则说明乙每小时比甲快40km,则乙的速度为120km/h.①正确;
由图象第2﹣6小时,乙由相遇点到达B,用时4小时,每小时比甲快40km,则此时甲乙距离4×40=160km,则m=160,②正确;
当乙在B休息1h时,甲前进80km,则H点坐标为(7,80),③正确;
乙返回时,甲乙相距80km,到两车相遇用时80÷(120+80)=0.4小时,则n=6+1+0.4=7.4,④错误.
故选B.
【点睛】
本题以函数图象为背景,考查双动点条件下,两点距离与运动时间的函数关系,解答时既要注意图象变化趋势,又要关注动点的运动状态.
7、D
【解析】
根据边长确定三角形为直角三角形,斜边即为外切圆直径,内切圆半径为,
【详解】
解:如下图,
∵△ABC的三条边长分别是5,13,12,且52+122=132,
∴△ABC是直角三角形,
其斜边为外切圆直径,
∴外切圆半径==6.5,
内切圆半径==2,
故选D.
【点睛】
本题考查了直角三角形内切圆和外切圆的半径,属于简单题,熟悉概念是解题关键.
8、C
【解析】
根据线段上的等量关系逐一判断即可.
【详解】
A、∵AD-CD=AC,
∴此选项表示正确;
B、∵AB+BC=AC,
∴此选项表示正确;
C、∵AB=CD,
∴BD-AB=BD-CD,
∴此选项表示不正确;
D、∵AB=CD,
∴AD-AB=AD-CD=AC,
∴此选项表示正确.
故答案选:C.
【点睛】
本题考查了线段上两点间的距离及线段的和、差的知识,解题的关键是找出各线段间的关系.
9、B
【解析】
证明△ADC∽△ACB,根据相似三角形的性质可推导得出AC2=AD•AB,由此即可解决问题.
【详解】
∵∠A=∠A,∠ADC=∠ACB,
∴△ADC∽△ACB,
∴,
∴AC2=AD•AB=2×8=16,
∵AC>0,
∴AC=4,
故选B.
【点睛】
本题考查相似三角形的判定和性质、解题的关键是正确寻找相似三角形解决问题.
10、C
【解析】
根据众数、中位数、平均数以及方差的概念求解.
【详解】
A、这组数据中9出现的次数最多,众数为9,故本选项错误;
B、因为共有5组,所以第3组的人数为中位数,即9是中位数,故本选项错误;
C、平均数==12,故本选项正确;
D、方差= [(9-12)2+(17-12)2+(20-12)2+(9-12)2+(5-12)2]= ,故本选项错误.
故选C.
【点睛】
本题考查了中位数、平均数、众数的知识,解答本题的关键是掌握各知识点的概念.
二、填空题(共7小题,每小题3分,满分21分)
11、x≥﹣且x≠1
【解析】
分析:根据被开方数大于等于0,分母不等于0列式求解即可.
详解:根据题意得2x+1≥0,x-1≠0,
解得x≥-且x≠1.
故答案为x≥-且x≠1.
点睛:本题主要考查了函数自变量的取值范围的确定,根据分母不等于0,被开方数大于等于0列式计算即可,是基础题,比较简单.
12、1
【解析】
解:原式==1.故答案为1.
13、
【解析】
=.
14、27π
【解析】
试题分析:设扇形的半径为r.则,解得r=9,∴扇形的面积==27π.故答案为27π.
考点:扇形面积的计算.
15、
【解析】
根据抛物线解析式求得点D(1,4)、点E(2,3),作点D关于y轴的对称点D′(﹣1,4)、作点E关于x轴的对称点E′(2,﹣3),从而得到四边形EDFG的周长=DE+DF+FG+GE=DE+D′F+FG+GE′,当点D′、F、G、E′四点共线时,周长最短,据此根据勾股定理可得答案.
【详解】
如图,
在y=﹣x2+2x+3中,当x=0时,y=3,即点C(0,3),
∵y=﹣x2+2x+3=﹣(x-1)2+4,
∴对称轴为x=1,顶点D(1,4),
则点C关于对称轴的对称点E的坐标为(2,3),
作点D关于y轴的对称点D′(﹣1,4),作点E关于x轴的对称点E′(2,﹣3),
连结D′、E′,D′E′与x轴的交点G、与y轴的交点F即为使四边形EDFG的周长最小的点,
四边形EDFG的周长=DE+DF+FG+GE
=DE+D′F+FG+GE′
=DE+D′E′
=
=
∴四边形EDFG周长的最小值是.
【点睛】
本题主要考查抛物线的性质以及两点间的距离公式,解题的关键是熟练掌握抛物线的性质,利用数形结合得出答案.
16、40°
【解析】
连接CD,则∠ADC=∠ABC=50°,
∵AD是⊙O的直径,
∴∠ACD=90°,∴∠CAD+∠ADC=90°,∴∠CAD=90°-∠ADC=90°-50°=40°,故答案为: 40°.
17、(3a﹣b)
【解析】解:由题意可得,剩余金额为:(3a-b)元,故答案为:(3a-b).
点睛:本题考查列代数式,解答本题的关键是明确题意,列出相应的代数式.
三、解答题(共7小题,满分69分)
18、(1);(2)点P的坐标为 ;(3).
【解析】
(1)利用三角形相似可求AO•OB,再由一元二次方程根与系数关系求AO•OB构造方程求n;
(2)求出B、C坐标,设出点Q坐标,利用平行四边形对角线互相平分性质,分类讨论点P坐标,分别代入抛物线解析式,求出Q点坐标;
(3)设出点D坐标(a,b),利用相似表示OA,再由一元二次方程根与系数关系表示OB,得到点B坐标,进而找到b与a关系,代入抛物线求a、n即可.
【详解】
(1)若△ABC为直角三角形
∴△AOC∽△COB
∴OC2=AO•OB
当y=0时,0=x2-x-n
由一元二次方程根与系数关系
-OA•OB=OC2
n2==−2n
解得n=0(舍去)或n=2
∴抛物线解析式为y=;
(2)由(1)当=0时
解得x1=-1,x2=4
∴OA=1,OB=4
∴B(4,0),C(0,-2)
∵抛物线对称轴为直线x=-=−
∴设点Q坐标为(,b)
由平行四边形性质可知
当BQ、CP为平行四边形对角线时,点P坐标为(,b+2)
代入y=x2-x-2
解得b=,则P点坐标为(,)
当CQ、PB为为平行四边形对角线时,点P坐标为(-,b-2)
代入y=x2-x-2
解得b=,则P坐标为(-,)
综上点P坐标为(,),(-,);
(3)设点D坐标为(a,b)
∵AE:ED=1:4
则OE=b,OA=a
∵AD∥AB
∴△AEO∽△BCO
∵OC=n
∴
∴OB=
由一元二次方程根与系数关系得,
∴b=a2
将点A(-a,0),D(a,a2)代入y=x2-x-n
解得a=6或a=0(舍去)
则n= .
【点睛】
本题是代数几何综合题,考查了二次函数图象性质、一元二次方程根与系数关系、三角形相似以及平行四边形的性质,解答关键是综合运用数形结合分类讨论思想.
19、(1)①四边形CEGF是正方形;②;(2)线段AG与BE之间的数量关系为AG=BE;(3)3
【解析】
(1)①由、结合可得四边形CEGF是矩形,再由即可得证;
②由正方形性质知、,据此可得、,利用平行线分线段成比例定理可得;
(2)连接CG,只需证∽即可得;
(3)证∽得,设,知,由得、、,由可得a的值.
【详解】
(1)①∵四边形ABCD是正方形,
∴∠BCD=90°,∠BCA=45°,
∵GE⊥BC、GF⊥CD,
∴∠CEG=∠CFG=∠ECF=90°,
∴四边形CEGF是矩形,∠CGE=∠ECG=45°,
∴EG=EC,
∴四边形CEGF是正方形;
②由①知四边形CEGF是正方形,
∴∠CEG=∠B=90°,∠ECG=45°,
∴,GE∥AB,
∴,
故答案为;
(2)连接CG,
由旋转性质知∠BCE=∠ACG=α,
在Rt△CEG和Rt△CBA中,
=、=,
∴=,
∴△ACG∽△BCE,
∴,
∴线段AG与BE之间的数量关系为AG=BE;
(3)∵∠CEF=45°,点B、E、F三点共线,
∴∠BEC=135°,
∵△ACG∽△BCE,
∴∠AGC=∠BEC=135°,
∴∠AGH=∠CAH=45°,
∵∠CHA=∠AHG,
∴△AHG∽△CHA,
∴,
设BC=CD=AD=a,则AC=a,
则由得,
∴AH=a,
则DH=AD﹣AH=a,CH==a,
∴由得,
解得:a=3,即BC=3,
故答案为3.
【点睛】
本题考查了正方形的性质与判定,相似三角形的判定与性质等,综合性较强,有一定的难度,正确添加辅助线,熟练掌握正方形的判定与性质、相似三角形的判定与性质是解题的关键.
20、
【解析】
分析:列表得出所有等可能的情况数,找出两次都摸到红球的情况数,即可求出所求的概率.
详解:列表如下:
红
红
白
黑
红
﹣﹣﹣
(红,红)
(白,红)
(黑,红)
红
(红,红)
﹣﹣﹣
(白,红)
(黑,红)
白
(红,白)
(红,白)
﹣﹣﹣
(黑,白)
黑
(红,黑)
(红,黑)
(白,黑)
﹣﹣﹣
所有等可能的情况有12种,其中两次都摸到红球有2种可能,
则P(两次摸到红球)==.
点睛:此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.
21、(1)证明见解析;(2)ED=EB,证明见解析;(1)CG=2.
【解析】
(1)、根据等边三角形的性质得出∠CED=60°,从而得出∠EDB=10°,从而得出DE=BE;
(2)、取AB的中点O,连接CO、EO,根据△ACO和△CDE为等边三角形,从而得出△ACD和△OCE全等,然后得出△COE和△BOE全等,从而得出答案;
(1)、取AB的中点O,连接CO、EO、EB,根据题意得出△COE和△BOE全等,然后得出△CEG和△DCO全等,设CG=a,则AG=5a,OD=a,根据题意列出一元一次方程求出a的值得出答案.
【详解】
(1)∵△CDE是等边三角形,
∴∠CED=60°,
∴∠EDB=60°﹣∠B=10°,
∴∠EDB=∠B,
∴DE=EB;
(2) ED=EB, 理由如下:
取AB的中点O,连接CO、EO,
∵∠ACB=90°,∠ABC=10°,
∴∠A=60°,OC=OA,
∴△ACO为等边三角形,
∴CA=CO,
∵△CDE是等边三角形,
∴∠ACD=∠OCE,
∴△ACD≌△OCE,
∴∠COE=∠A=60°,
∴∠BOE=60°,
∴△COE≌△BOE,
∴EC=EB,
∴ED=EB;
(1)、取AB的中点O,连接CO、EO、EB, 由(2)得△ACD≌△OCE,
∴∠COE=∠A=60°,
∴∠BOE=60°,△COE≌△BOE,
∴EC=EB,
∴ED=EB,
∵EH⊥AB,
∴DH=BH=1,
∵GE∥AB,
∴∠G=180°﹣∠A=120°,
∴△CEG≌△DCO,
∴CG=OD,
设CG=a,则AG=5a,OD=a,
∴AC=OC=4a,
∵OC=OB,
∴4a=a+1+1,
解得,a=2,
即CG=2.
22、(1),;(2)8;(3)或.
【解析】
试题分析:(1)根据已知条件求出A、B、C点坐标,用待定系数法求出直线AB和反比例函数的解析式;
(2)联立一次函数的解析式和反比例的函数解析式可得交点D的坐标,从而根据三角形面积公式求解;
(3)根据函数的图象和交点坐标即可求解.
试题解析:解:(1)∵OB=4,OE=2,∴BE=2+4=1.
∵CE⊥x轴于点E,tan∠ABO==,∴OA=2,CE=3,∴点A的坐标为(0,2)、点B的坐标为C(4,0)、点C的坐标为(﹣2,3).
∵一次函数y=ax+b的图象与x,y轴交于B,A两点,∴,解得:.
故直线AB的解析式为.
∵反比例函数的图象过C,∴3=,∴k=﹣1,∴该反比例函数的解析式为;
(2)联立反比例函数的解析式和直线AB的解析式可得:,可得交点D的坐标为(1,﹣1),则△BOD的面积=4×1÷2=2,△BOC的面积=4×3÷2=1,故△OCD的面积为2+1=8;
(3)由图象得,一次函数的值大于反比例函数的值时x的取值范围:x<﹣2或0<x<1.
点睛:本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.
23、2.
【解析】
根据勾股定理逆定理,证△ABD是直角三角形,得AD⊥BC,可证AD垂直平分BC,所以AB=AC.
【详解】
解:∵AD是△ABC的中线,且BC=10,
∴BD=BC=1.
∵12+122=22,即BD2+AD2=AB2,
∴△ABD是直角三角形,则AD⊥BC,
又∵CD=BD,
∴AC=AB=2.
【点睛】
本题考核知识点:勾股定理、全等三角形、垂直平分线.解题关键点:熟记相关性质,证线段相等.
24、(1)4元或6元;(2)九折.
【解析】
解:(1)设每千克核桃应降价x元.
根据题意,得(60﹣x﹣40)(100+×20)=2240,
化简,得 x2﹣10x+24=0,解得x1=4,x2=6.
答:每千克核桃应降价4元或6元.
(2)由(1)可知每千克核桃可降价4元或6元.
∵要尽可能让利于顾客,∴每千克核桃应降价6元.
此时,售价为:60﹣6=54(元),.
答:该店应按原售价的九折出售.
相关试卷
这是一份2024年天津市部分区中考数学一模试卷(含解析),共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2023年天津市部分区县中考数学一模试卷(含解析),共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2023年天津市部分区县毕业班一模考试数学试卷,共8页。
