2022年四川省广安市华蓥市中考二模数学试题含解析
展开2021-2022中考数学模拟试卷
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.如图,已知△ADE是△ABC绕点A逆时针旋转所得,其中点D在射线AC上,设旋转角为α,直线BC与直线DE交于点F,那么下列结论不正确的是( )
A.∠BAC=α B.∠DAE=α C.∠CFD=α D.∠FDC=α
2.已知二次函数y=ax1+bx+c+1的图象如图所示,顶点为(﹣1,0),下列结论:①abc>0;②b1﹣4ac=0;③a>1;④ax1+bx+c=﹣1的根为x1=x1=﹣1;⑤若点B(﹣,y1)、C(﹣,y1)为函数图象上的两点,则y1>y1.其中正确的个数是( )
A.1 B.3 C.4 D.5
3.计算﹣8+3的结果是( )
A.﹣11 B.﹣5 C.5 D.11
4.设x1,x2是方程x2-2x-1=0的两个实数根,则的值是( )
A.-6 B.-5 C.-6或-5 D.6或5
5.要使分式有意义,则x的取值范围是( )
A.x= B.x> C.x< D.x≠
6.如图,已知直线a∥b∥c,直线m,n与a,b,c分别交于点A,C,E,B,D,F,若AC=4,CE=6,BD=3,则DF的值是( )
A.4 B.4.5 C.5 D.5.5
7.在平面直角坐标系中,位于第二象限的点是( )
A.(﹣1,0) B.(﹣2,﹣3) C.(2,﹣1) D.(﹣3,1)
8.如图,在▱ABCD中,对角线AC的垂直平分线分别交AD、BC于点E、F,连接CE,若△CED的周长为6,则▱ABCD的周长为( )
A.6 B.12 C.18 D.24
9.一个不透明的布袋里装有5个只有颜色不同的球,其中2个红球、3个白球.从布袋中一次性摸出两个球,则摸出的两个球中至少有一个红球的概率是( )
A. B. C. D.
10.计算的结果为( )
A.2 B.1 C.0 D.﹣1
二、填空题(共7小题,每小题3分,满分21分)
11.若二次函数y=-x2-4x+k的最大值是9,则k=______.
12.如图,线段AC=n+1(其中n为正整数),点B在线段AC上,在线段AC同侧作正方形ABMN及正方形BCEF,连接AM、ME、EA得到△AME.当AB=1时,△AME的面积记为S1;当AB=2时,△AME的面积记为S2;当AB=3时,△AME的面积记为S3;…;当AB=n时,△AME的面积记为Sn.当n≥2时,Sn﹣Sn﹣1= ▲ .
13.如图,在平面直角坐标系xOy中,四边形OABC是正方形,点C(0,4),D是OA中点,将△CDO以C为旋转中心逆时针旋转90°后,再将得到的三角形平移,使点C与点O重合,写出此时点D的对应点的坐标:_____.
14.如图,AB是⊙O的直径,弦CD交AB于点P,AP=2,BP=6,∠APC=30°,则CD的长为_______.
15.直线y=x与双曲线y=在第一象限的交点为(a,1),则k=_____.
16.如图,在平行四边形中,点在边上,将沿折叠得到,点落在对角线上.若,,,则的周长为________.
17.如图,抛物线交轴于,两点,交轴于点,点关于抛物线的对称轴的对称点为,点,分别在轴和轴上,则四边形周长的最小值为__________.
三、解答题(共7小题,满分69分)
18.(10分)某市旅游景区有A、B、C、D、E等著名景点,该市旅游部门统计绘制出2018年春节期间旅游情况统计图(如图),根据图中信息解答下列问题:
(1)2018年春节期间,该市A、B、C、D、E这五个景点共接待游客人数为多少?
(2)扇形统计图中E景点所对应的圆心角的度数是 ,并补全条形统计图.
(3)甲,乙两个旅行团在A、B、D三个景点中随机选择一个,求这两个旅行团选中同一景点的概率.
19.(5分)在抗洪抢险救灾中,某地粮食局为了保证库存粮食的安全,决定将甲、乙两个仓库的粮食,全部转移到没有受洪水威胁的A,B两仓库,已知甲库有粮食100吨,乙库有粮食80吨,而A库的容量为60吨,B库的容量为120吨,从甲、乙两库到A、B两库的路程和运费如表(表中“元/吨•千米”表示每吨粮食运送1千米所需人民币)
路程(千米)
运费(元/吨•千米)
甲库
乙库
甲库
乙库
A库
20
15
12
12
B库
25
20
10
8
若从甲库运往A库粮食x吨,
(1)填空(用含x的代数式表示):
①从甲库运往B库粮食 吨;
②从乙库运往A库粮食 吨;
③从乙库运往B库粮食 吨;
(2)写出将甲、乙两库粮食运往A、B两库的总运费y(元)与x(吨)的函数关系式,并求出当从甲、乙两库各运往A、B两库多少吨粮食时,总运费最省,最省的总运费是多少?
20.(8分)如图所示,某校九年级(3)班的一个学习小组进行测量小山高度的实践活动.部分同学在山脚A点处测得山腰上一点D的仰角为30°,并测得AD的长度为180米.另一部分同学在山顶B点处测得山脚A点的俯角为45°,山腰D点的俯角为60°,请你帮助他们计算出小山的高度BC.(计算过程和结果都不取近似值)
21.(10分)先化简,再求代数式()÷的值,其中x=sin60°,y=tan30°.
22.(10分)如图所示,在平面直角坐标系xOy中,正方形OABC的边长为2cm,点A、C分别在y轴的负半轴和x轴的正半轴上,抛物线y=ax2+bx+c经过点A、B和D(4,).
(1)求抛物线的表达式.
(2)如果点P由点A出发沿AB边以2cm/s的速度向点B运动,同时点Q由点B出发,沿BC边以1cm/s的速度向点C运动,当其中一点到达终点时,另一点也随之停止运动.设S=PQ2(cm2).
①试求出S与运动时间t之间的函数关系式,并写出t的取值范围;
②当S取时,在抛物线上是否存在点R,使得以点P、B、Q、R为顶点的四边形是平行四边形?如果存在,求出R点的坐标;如果不存在,请说明理由.
(3)在抛物线的对称轴上求点M,使得M到D、A的距离之差最大,求出点M的坐标.
23.(12分)如图,已知反比例函数y=与一次函数y=k2x+b的图象交于A(1,8),B(-4,m).求k1,k2,b的值;求△AOB的面积;若M(x1,y1),N(x2,y2)是反比例函数y=的图象上的两点,且x1
24.(14分)如图,⊙O是△ABC的外接圆,BC为⊙O的直径,点E为△ABC的内心,连接AE并延长交⊙O于D点,连接BD并延长至F,使得BD=DF,连接CF、BE.
(1)求证:DB=DE;
(2)求证:直线CF为⊙O的切线;
(3)若CF=4,求图中阴影部分的面积.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、D
【解析】
利用旋转不变性即可解决问题.
【详解】
∵△DAE是由△BAC旋转得到,
∴∠BAC=∠DAE=α,∠B=∠D,
∵∠ACB=∠DCF,
∴∠CFD=∠BAC=α,
故A,B,C正确,
故选D.
【点睛】
本题考查旋转的性质,解题的关键是熟练掌握旋转不变性解决问题,属于中考常考题型.
2、D
【解析】
根据二次函数的图象与性质即可求出答案.
【详解】
解:①由抛物线的对称轴可知:,
∴,
由抛物线与轴的交点可知:,
∴,
∴,故①正确;
②抛物线与轴只有一个交点,
∴,
∴,故②正确;
③令,
∴,
∵,
∴,
∴,
∴,
∵,
∴,故③正确;
④由图象可知:令,
即的解为,
∴的根为,故④正确;
⑤∵,
∴,故⑤正确;
故选D.
【点睛】
考查二次函数的图象与性质,解题的关键是熟练运用数形结合的思想.
3、B
【解析】
绝对值不等的异号加法,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得1.依此即可求解.
【详解】
解:−8+3=−2.
故选B.
【点睛】
考查了有理数的加法,在进行有理数加法运算时,首先判断两个加数的符号:是同号还是异号,是否有1.从而确定用那一条法则.在应用过程中,要牢记“先符号,后绝对值”.
4、A
【解析】
试题解析:∵x1,x2是方程x2-2x-1=0的两个实数根,
∴x1+x2=2,x1∙x2=-1
∴=.
故选A.
5、D
【解析】
本题主要考查分式有意义的条件:分母不能为0,即3x−7≠0,解得x.
【详解】
∵3x−7≠0,
∴x≠.
故选D.
【点睛】
本题考查的是分式有意义的条件:当分母不为0时,分式有意义.
6、B
【解析】
试题分析:根据平行线分线段成比例可得,然后根据AC=1,CE=6,BD=3,可代入求解DF=1.2.
故选B
考点:平行线分线段成比例
7、D
【解析】
点在第二象限的条件是:横坐标是负数,纵坐标是正数,直接得出答案即可.
【详解】
根据第二象限的点的坐标的特征:横坐标符号为负,纵坐标符号为正,各选项中只有C(﹣3,1)符合,故选:D.
【点睛】
本题考查点的坐标的性质,解题的关键是掌握点的坐标的性质.
8、B
【解析】
∵四边形ABCD是平行四边形,∴DC=AB,AD=BC,
∵AC的垂直平分线交AD于点E,∴AE=CE,
∴△CDE的周长=DE+CE+DC=DE+AE+DC=AD+DC=6,∴▱ABCD的周长=2×6=12,
故选B.
9、D
【解析】
画出树状图得出所有等可能的情况数,找出恰好是两个红球的情况数,即可求出所求的概率.
【详解】
画树状图如下:
一共有20种情况,其中两个球中至少有一个红球的有14种情况,
因此两个球中至少有一个红球的概率是:.
故选:D.
【点睛】
此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.
10、B
【解析】
按照分式运算规则运算即可,注意结果的化简.
【详解】
解:原式=,故选择B.
【点睛】
本题考查了分式的运算规则.
二、填空题(共7小题,每小题3分,满分21分)
11、5
【解析】y=−(x−2)2+4+k,
∵二次函数y=−x2−4x+k的最大值是9,
∴4+k=9,解得:k=5,
故答案为:5.
12、
【解析】
连接BE,
∵在线段AC同侧作正方形ABMN及正方形BCEF,
∴BE∥AM.∴△AME与△AMB同底等高.
∴△AME的面积=△AMB的面积.
∴当AB=n时,△AME的面积为,当AB=n-1时,△AME的面积为.
∴当n≥2时,
13、(4,2).
【解析】
利用图象旋转和平移可以得到结果.
【详解】
解:∵△CDO绕点C逆时针旋转90°,得到△CBD′,
则BD′=OD=2,
∴点D坐标为(4,6);
当将点C与点O重合时,点C向下平移4个单位,得到△OAD′′,
∴点D向下平移4个单位.故点D′′坐标为(4,2),
故答案为(4,2).
【点睛】
平移和旋转:平移是指在同一平面内,将一个图形整体按照某个直线方向移动一定的距离,这样的图形运动叫做图形的平移运动,简称平移.
定义在平面内,将一个图形绕一点按某个方向转动一个角度,这样的运动叫做图形的旋转.这个定点叫做旋转中心,转动的角度叫做旋转角.
14、
【解析】
如图,作OH⊥CD于H,连结OC,根据垂径定理得HC=HD,由题意得OA=4,即OP=2,在Rt△OPH中,根据含30°的直角三角形的性质计算出OH=OP=1,然后在在Rt△OHC中,利用勾股定理计算得到CH=,即CD=2CH=2.
【详解】
解:如图,作OH⊥CD于H,连结OC,
∵OH⊥CD,
∴HC=HD,
∵AP=2,BP=6,
∴AB=8,
∴OA=4,
∴OP=OA﹣AP=2,
在Rt△OPH中,
∵∠OPH=30°,
∴∠POH=60°,
∴OH=OP=1,
在Rt△OHC中,
∵OC=4,OH=1,
∴CH=,
∴CD=2CH=2.
故答案为2.
【点睛】
本题主要考查了圆的垂径定理,勾股定理和含30°角的直角三角形的性质,解此题的关键在于作辅助线得到直角三角形,再合理利用各知识点进行计算即可
15、1
【解析】
分析:首先根据正比例函数得出a的值,然后将交点坐标代入反比例函数解析式得出k的值.
详解:将(a,1)代入正比例函数可得:a=1, ∴交点坐标为(1,1),
∴k=1×1=1.
点睛:本题主要考查的是利用待定系数法求函数解析式,属于基础题型.根据正比例函数得出交点坐标是解题的关键.
16、6.
【解析】
先根据平行线的性质求出BC=AD=5,再根据勾股定理可得AC=4,然后根据折叠的性质可得AF=AB=3,EF=BE,从而可求出的周长.
【详解】
解:∵四边形是平行四边形,
∴BC=AD=5,
∵,
∴AC= ==4
∵沿折叠得到,
∴AF=AB=3,EF=BE,
∴的周长=CE+EF+FC=CE+BE+CF
=BC+AC-AF
=5+4-3=6
故答案为6.
【点睛】
本题考查了平行四边形的性质,勾股定理,折叠的性质,三角形的周长计算方法,运用转化思想是解题的关键.
17、
【解析】
根据抛物线解析式求得点D(1,4)、点E(2,3),作点D关于y轴的对称点D′(﹣1,4)、作点E关于x轴的对称点E′(2,﹣3),从而得到四边形EDFG的周长=DE+DF+FG+GE=DE+D′F+FG+GE′,当点D′、F、G、E′四点共线时,周长最短,据此根据勾股定理可得答案.
【详解】
如图,
在y=﹣x2+2x+3中,当x=0时,y=3,即点C(0,3),
∵y=﹣x2+2x+3=﹣(x-1)2+4,
∴对称轴为x=1,顶点D(1,4),
则点C关于对称轴的对称点E的坐标为(2,3),
作点D关于y轴的对称点D′(﹣1,4),作点E关于x轴的对称点E′(2,﹣3),
连结D′、E′,D′E′与x轴的交点G、与y轴的交点F即为使四边形EDFG的周长最小的点,
四边形EDFG的周长=DE+DF+FG+GE
=DE+D′F+FG+GE′
=DE+D′E′
=
=
∴四边形EDFG周长的最小值是.
【点睛】
本题主要考查抛物线的性质以及两点间的距离公式,解题的关键是熟练掌握抛物线的性质,利用数形结合得出答案.
三、解答题(共7小题,满分69分)
18、(1)50万人;(2)43.2°;统计图见解析(3).
【解析】
(1)根据A景点的人数以及百分比进行计算即可得到该市景点共接待游客数;
(2)先用360°乘以E的百分比求得E景点所对应的圆心角的度数,再根据B、D景点接待
游客数补全条形统计图;
(3)根据甲、乙两个旅行团在A、B、D三个景点中各选择一个景点,画出树状图,根据概
率公式进行计算,即可得到同时选择去同一景点的概率.
【详解】
解:(1)该市景点共接待游客数为:15÷30%=50(万人);
(2)扇形统计图中E景点所对应的圆心角的度数是:×360°=43.2°,
B景点的人数为50×24%=12(万人)、D景点的人数为50×18%=9(万人),
补全条形统计图如下:
故答案为43.2°;
(3)画树状图可得:
∵共有9种可能出现的结果,这些结果出现的可能性相等,其中同时选择去同一个景点的结果有3种,
∴P(同时选择去同一个景点)
【点睛】
本题考查的是统计以及用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.
19、(1)①(100﹣x);②(1﹣x);③(20+x);(2)从甲库运往A库1吨粮食,从甲库运往B库40吨粮食,从乙库运往B库80吨粮食时,总运费最省,最省的总运费是2元.
【解析】
分析:(Ⅰ)根据题意解答即可;
(Ⅱ)弄清调动方向,再依据路程和运费列出y(元)与x(吨)的函数关系式,最后可以利用一次函数的增减性确定“最省的总运费”.
详解:(Ⅰ)设从甲库运往A库粮食x吨;
①从甲库运往B库粮食(100﹣x)吨;
②从乙库运往A库粮食(1﹣x)吨;
③从乙库运往B库粮食(20+x)吨;
故答案为(100﹣x);(1﹣x);(20+x).
(Ⅱ)依题意有:若甲库运往A库粮食x吨,则甲库运到B库(100﹣x)吨,乙库运往A库(1﹣x)吨,乙库运到B库(20+x)吨.
则,解得:0≤x≤1.
从甲库运往A库粮食x吨时,总运费为:
y=12×20x+10×25(100﹣x)+12×15(1﹣x)+8×20×[120﹣(100﹣x)]
=﹣30x+39000;
∵从乙库运往A库粮食(1﹣x)吨,∴0≤x≤1,此时100﹣x>0,∴y=﹣30x+39000(0≤x≤1).
∵﹣30<0,∴y随x的增大而减小,∴当x=1时,y取最小值,最小值是2.
答:从甲库运往A库1吨粮食,从甲库运往B库40吨粮食,从乙库运往B库80吨粮食时,总运费最省,最省的总运费是2元.
点睛:本题是一次函数与不等式的综合题,先解不等式确定自变量的取值范围,然后依据一次函数的增减性来确定“最佳方案”.
20、米
【解析】
解:如图,过点D作DE⊥AC于点E,作DF⊥BC于点F,则有DE∥FC,DF∥EC.
∵∠DEC=90°,
∴四边形DECF是矩形,
∴DE=FC.
∵∠HBA=∠BAC=45°,
∴∠BAD=∠BAC﹣∠DAE=45°﹣30°=15°.
又∵∠ABD=∠HBD﹣∠HBA=60°﹣45°=15°,
∴△ADB是等腰三角形.
∴AD=BD=180(米).
在Rt△AED中,sin∠DAE=sin30°=,
∴DE=180•sin30°=180×=90(米),
∴FC=90米,
在Rt△BDF中,∠BDF=∠HBD=60°,sin∠BDF=sin60°=,
∴BF=180•sin60°=180×(米).
∴BC=BF+FC=90+90=90(+1)(米).
答:小山的高度BC为90(+1)米.
21、
【解析】
先根据分式混合运算的法则把原式进行化简,再计算x和y的值并代入进行计算即可
【详解】
原式
∴原式
【点睛】
考查分式的混合运算,掌握运算顺序是解题的关键.
22、(1)抛物线的解析式为:;
(2)①S与运动时间t之间的函数关系式是S=5t2﹣8t+4,t的取值范围是0≤t≤1;
②存在.R点的坐标是(3,﹣);
(3)M的坐标为(1,﹣).
【解析】
试题分析:(1)设抛物线的解析式是y=ax2+bx+c,求出A、B、D的坐标代入即可;
(2)①由勾股定理即可求出;②假设存在点R,可构成以P、B、R、Q为顶点的平行四边形,求出P、Q的坐标,再分为两种种情况:A、B、C即可根据平行四边形的性质求出R的坐标;
(3)A关于抛物线的对称轴的对称点为B,过B、D的直线与抛物线的对称轴的交点为所求M,求出直线BD的解析式,把抛物线的对称轴x=1代入即可求出M的坐标.
试题解析:(1)设抛物线的解析式是y=ax2+bx+c,
∵正方形的边长2,
∴B的坐标(2,﹣2)A点的坐标是(0,﹣2),
把A(0,﹣2),B(2,﹣2),D(4,﹣)代入得:,
解得a=,b=﹣,c=﹣2,
∴抛物线的解析式为:,
答:抛物线的解析式为:;
(2)①由图象知:PB=2﹣2t,BQ=t,
∴S=PQ2=PB2+BQ2,
=(2﹣2t)2+t2,
即S=5t2﹣8t+4(0≤t≤1).
答:S与运动时间t之间的函数关系式是S=5t2﹣8t+4,t的取值范围是0≤t≤1;
②假设存在点R,可构成以P、B、R、Q为顶点的平行四边形.
∵S=5t2﹣8t+4(0≤t≤1),
∴当S=时,5t2﹣8t+4=,得20t2﹣32t+11=0,
解得t=,t=(不合题意,舍去),
此时点P的坐标为(1,﹣2),Q点的坐标为(2,﹣),
若R点存在,分情况讨论:
(i)假设R在BQ的右边,如图所示,这时QR=PB,RQ∥PB,
则R的横坐标为3,R的纵坐标为﹣,
即R(3,﹣),
代入,左右两边相等,
∴这时存在R(3,﹣)满足题意;
(ii)假设R在QB的左边时,这时PR=QB,PR∥QB,
则R(1,﹣)代入,,
左右不相等,∴R不在抛物线上.(1分)
综上所述,存点一点R(3,﹣)满足题意.
答:存在,R点的坐标是(3,﹣);
(3)如图,M′B=M′A,
∵A关于抛物线的对称轴的对称点为B,过B、D的直线与抛物线的对称轴的交点为所求M,
理由是:∵MA=MB,若M不为L与DB的交点,则三点B、M、D构成三角形,
∴|MB|﹣|MD|<|DB|,
即M到D、A的距离之差为|DB|时,差值最大,
设直线BD的解析式是y=kx+b,把B、D的坐标代入得:,
解得:k=,b=﹣,
∴y=x﹣,
抛物线的对称轴是x=1,
把x=1代入得:y=﹣
∴M的坐标为(1,﹣);
答:M的坐标为(1,﹣).
考点:二次函数综合题.
23、 (1) k1=1,b=6(1)15(3)点M在第三象限,点N在第一象限
【解析】
试题分析:(1)把A(1,8)代入求得=8,把B(-4,m)代入求得m=-1,把A(1,8)、B(-4,-1)代入求得、b的值;(1)设直线y=1x+6与x轴的交点为C,可求得OC的长,根据S△ABC=S△AOC+S△BOC即可求得△AOB的面积;(3)由<可知有三种情况,①点M、N在第三象限的分支上,②点M、N在第一象限的分支上,③ M在第三象限,点N在第一象限,分类讨论把不合题意的舍去即可.
试题解析:解:(1)把A(1,8), B(-4,m)分别代入,得=8,m=-1.
∵A(1,8)、B(-4,-1)在图象上,
∴,
解得,.
(1)设直线y=1x+6与x轴的交点为C,当y=0时,x=-3,
∴OC=3
∴S△ABC=S△AOC+S△BOC=
(3)点M在第三象限,点N在第一象限.
①若<<0,点M、N在第三象限的分支上,则>,不合题意;
②若0<<,点M、N在第一象限的分支上,则>,不合题意;
③若<0<,M在第三象限,点N在第一象限,则<0<,符合题意.
考点:反比例函数与一次函数的交点坐标;用待定系数法求函数表达式;反比例函数的性质.
24、(1)证明见解析;(2)证明见解析;(3).
【解析】
(1)欲证明DB=DE.,只要证明∠DBE=∠DEB;
(2)欲证明CF是⊙O的切线.,只要证明BC⊥CF即可;
(3)根据S阴影部分S扇形S△OBD计算即可.
【详解】
解:(1)∵E是△ABC的内心,
∴∠BAE=∠CAE,∠EBA=∠EBC,
∵∠BED=∠BAE+∠EBA,∠DBE=∠EBC+∠DBC,∠DBC=∠EAC,
∴∠DBE=∠DEB,
∴DB=DE
(2)连接CD
∵DA平分∠BAC,
∴∠DAB=∠DAC,
∴BD=CD,
又∵BD=DF,
∴CD=DB=DF,
∴
∴BC⊥CF,
∴CF是⊙O的切线
(3)连接OD
∵O、D是BC、BF的中点,CF4, ∴OD2.
∵CF是⊙O的切线,
∴
∴△BOD为等腰直角三角形
∴S阴影部分S扇形S△OBD .
【点睛】
本题考查数学圆的综合题,考查了圆的切线的证明,扇形的面积公式等,注意切线的证明方法,是高频考点.
2024年四川省广安市华蓥市中考数学一模试卷附解析: 这是一份2024年四川省广安市华蓥市中考数学一模试卷附解析,共29页。试卷主要包含了解答题,实践应用,拓展探究等内容,欢迎下载使用。
2024年四川省广安市华蓥市中考数学一模试卷(含解析): 这是一份2024年四川省广安市华蓥市中考数学一模试卷(含解析),共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2023年四川省广安市华蓥市现代实验学校中考数学三模试卷(含解析): 这是一份2023年四川省广安市华蓥市现代实验学校中考数学三模试卷(含解析),共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。