开学活动
搜索
    上传资料 赚现金

    2022年四川省南充市陈寿中学中考数学猜题卷含解析

    2022年四川省南充市陈寿中学中考数学猜题卷含解析第1页
    2022年四川省南充市陈寿中学中考数学猜题卷含解析第2页
    2022年四川省南充市陈寿中学中考数学猜题卷含解析第3页
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年四川省南充市陈寿中学中考数学猜题卷含解析

    展开

    这是一份2022年四川省南充市陈寿中学中考数学猜题卷含解析,共20页。试卷主要包含了考生要认真填写考场号和座位序号等内容,欢迎下载使用。
    1.考生要认真填写考场号和座位序号。
    2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
    3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.如图,一束平行太阳光线FA、GB照射到正五边形ABCDE上,∠ABG=46°,则∠FAE的度数是( )
    A.26°.B.44°.C.46°.D.72°
    2.一个多边形内角和是外角和的2倍,它是( )
    A.五边形B.六边形C.七边形D.八边形
    3.若二次函数y=ax2+bx+c的x与y的部分对应值如下表:
    则抛物线的顶点坐标是( )
    A.(﹣1,3)B.(0,0)C.(1,﹣1)D.(2,0)
    4.观察下面“品”字形中各数之间的规律,根据观察到的规律得出a的值为( )
    A.23B.75C.77D.139
    5.如图,在正八边形ABCDEFGH中,连接AC,AE,则的值是( )
    A.1B.C.2D.
    6.下列所给函数中,y随x的增大而减小的是( )
    A.y=﹣x﹣1B.y=2x2(x≥0)
    C.D.y=x+1
    7.在“大家跳起来”的乡村学校舞蹈比赛中,某校10名学生参赛成绩统计如图所示.对于这10名学生的参赛成绩,下列说法中错误的是( )
    A.众数是90B.中位数是90C.平均数是90D.极差是15
    8.如图,A、B、C三点在正方形网格线的交点处,若将△ABC绕着点A逆时针旋转得到△AC′B′,则tanB′的值为( )
    A.B.C.D.
    9.在Rt△ABC中∠C=90°,∠A、∠B、∠C的对边分别为a、b、c,c=3a,tanA的值为( )
    A.B.C.D.3
    10.在实数﹣ ,0.21, ,, ,0.20202中,无理数的个数为( )
    A.1B.2C.3D.4
    二、填空题(共7小题,每小题3分,满分21分)
    11.在△ABC中,∠BAC=45°,∠ACB=75°,分别以A、C为圆心,以大于AC的长为半径画弧,两弧交于F、G作直线FG,分别交AB,AC于点D、E,若AC的长为4,则BC的长为_____.
    12.分解因式:a2b−8ab+16b=_____.
    13.若圆锥的底面半径长为10,侧面展开图是一个半圆,则该圆锥的母线长为_____.
    14.我们知道,四边形具有不稳定性.如图,在平面直角坐标系中,边长为2的正方形ABCD的边AB在x轴上,AB的中点是坐标原点O,固定点A,B,把正方形沿箭头方向推,使点D落在y轴正半轴上点D'处,则点C的对应点C'的坐标为_____.
    15.2017年5月5日我国自主研发的大型飞机C919成功首飞,如图给出了一种机翼的示意图,用含有m、n的式子表示AB的长为______.
    16.若式子有意义,则x的取值范围是 .
    17.的相反数是_____,倒数是_____,绝对值是_____
    三、解答题(共7小题,满分69分)
    18.(10分)如图,在平行四边形中,的平分线与边相交于点.
    (1)求证;
    (2)若点与点重合,请直接写出四边形是哪种特殊的平行四边形.
    19.(5分)如图,在平面直角坐标系中,O为坐标原点,△AOB是等腰直角三角形,∠AOB=90°,点A(2,1).
    (1)求点B的坐标;
    (2)求经过A、O、B三点的抛物线的函数表达式;
    (3)在(2)所求的抛物线上,是否存在一点P,使四边形ABOP的面积最大?若存在,求出点P的坐标;若不存在,请说明理由.
    20.(8分)如图,足球场上守门员在处开出一高球,球从离地面1米的处飞出(在轴上),运动员乙在距点6米的处发现球在自己头的正上方达到最高点,距地面约4米高,球落地后又一次弹起.据实验测算,足球在草坪上弹起后的抛物线与原来的抛物线形状相同,最大高度减少到原来最大高度的一半.
    求足球开始飞出到第一次落地时,该抛物线的表达式.足球第一次落地点距守门员多少米?(取)运动员乙要抢到第二个落点,他应再向前跑多少米?
    21.(10分)在平面直角坐标系xOy中,若抛物线顶点A的横坐标是,且与y轴交于点,点P为抛物线上一点.
    求抛物线的表达式;
    若将抛物线向下平移4个单位,点P平移后的对应点为如果,求点Q的坐标.
    22.(10分)已知关于x的一元二次方程3x2﹣6x+1﹣k=0有实数根,k为负整数.求k的值;如果这个方程有两个整数根,求出它的根.
    23.(12分)如图,在△ABC中,∠C=90°,以AB上一点O为圆心,OA长为半径的圆恰好与BC相切于点D,分别交AC,AB于点E,F.
    (1)若∠B=30°,求证:以A,O,D,E为顶点的四边形是菱形;
    (2)填空:若AC=6,AB=10,连接AD,则⊙O的半径为 ,AD的长为 .
    24.(14分)如图,点P是⊙O外一点,请你用尺规画出一条直线PA,使得其与⊙O相切于点A,(不写作法,保留作图痕迹)
    参考答案
    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、A
    【解析】
    先根据正五边形的性质求出∠EAB的度数,再由平行线的性质即可得出结论.
    【详解】
    解:∵图中是正五边形.
    ∴∠EAB=108°.
    ∵太阳光线互相平行,∠ABG=46°,
    ∴∠FAE=180°﹣∠ABG﹣∠EAB=180°﹣46°﹣108°=26°.
    故选A.
    【点睛】
    此题考查平行线的性质,多边形内角与外角,解题关键在于求出∠EAB.
    2、B
    【解析】
    多边形的外角和是310°,则内角和是2×310=720°.设这个多边形是n边形,内角和是(n﹣2)•180°,这样就得到一个关于n的方程,从而求出边数n的值.
    【详解】
    设这个多边形是n边形,根据题意得:
    (n﹣2)×180°=2×310°
    解得:n=1.
    故选B.
    【点睛】
    本题考查了多边形的内角与外角,熟记内角和公式和外角和定理并列出方程是解题的关键.根据多边形的内角和定理,求边数的问题就可以转化为解方程的问题来解决.
    3、C
    【解析】
    分析:由表中所给数据,可求得二次函数解析式,则可求得其顶点坐标.
    详解:当或时,,当时,,
    ,解得 ,
    二次函数解析式为,
    抛物线的顶点坐标为,
    故选C.
    点睛:本题主要考查二次函数的性质,利用条件求得二次函数的解析式是解题的关键.
    4、B
    【解析】
    由图可知:上边的数与左边的数的和正好等于右边的数,上边的数为连续的奇数,左边的数为21,22,23,…26,由此可得a,b.
    【详解】
    ∵上边的数为连续的奇数1,3,5,7,9,11,左边的数为21,22,23,…,∴b=26=1.
    ∵上边的数与左边的数的和正好等于右边的数,∴a=11+1=2.
    故选B.
    【点睛】
    本题考查了数字变化规律,观察出上边的数与左边的数的和正好等于右边的数是解题的关键.
    5、B
    【解析】
    连接AG、GE、EC,易知四边形ACEG为正方形,根据正方形的性质即可求解.
    【详解】
    解:连接AG、GE、EC,
    则四边形ACEG为正方形,故=.
    故选:B.
    【点睛】
    本题考查了正多边形的性质,正确作出辅助线是关键.
    6、A
    【解析】
    根据二次函数的性质、一次函数的性质及反比例函数的性质判断出函数符合y随x的增大而减小的选项.
    【详解】
    解:A.此函数为一次函数,y随x的增大而减小,正确;
    B.此函数为二次函数,当x<0时,y随x的增大而减小,错误;
    C.此函数为反比例函数,在每个象限,y随x的增大而减小,错误;
    D.此函数为一次函数,y随x的增大而增大,错误.
    故选A.
    【点睛】
    本题考查了二次函数、一次函数、反比例函数的性质,掌握函数的增减性是解决问题的关键.
    7、C
    【解析】
    由统计图中提供的数据,根据众数、中位数、平均数、极差的定义分别列出算式,求出答案:
    【详解】
    解:∵90出现了5次,出现的次数最多,∴众数是90;
    ∵共有10个数,∴中位数是第5、6个数的平均数,∴中位数是(90+90)÷2=90;
    ∵平均数是(80×1+85×2+90×5+95×2)÷10=89;
    极差是:95﹣80=1.
    ∴错误的是C.故选C.
    8、D
    【解析】
    过C点作CD⊥AB,垂足为D,根据旋转性质可知,∠B′=∠B,把求tanB′的问题,转化为在Rt△BCD中求tanB.
    【详解】
    过C点作CD⊥AB,垂足为D.
    根据旋转性质可知,∠B′=∠B.
    在Rt△BCD中,tanB=,
    ∴tanB′=tanB=.
    故选D.
    【点睛】
    本题考查了旋转的性质,旋转后对应角相等;三角函数的定义及三角函数值的求法.
    9、B
    【解析】
    根据勾股定理和三角函数即可解答.
    【详解】
    解:已知在Rt△ABC中∠C=90°,∠A、∠B、∠C的对边分别为a、b、c,c=3a,
    设a=x,则c=3x,b==2x.
    即tanA==.
    故选B.
    【点睛】
    本题考查勾股定理和三角函数,熟悉掌握是解题关键.
    10、C
    【解析】
    在实数﹣,0.21, , , ,0.20202中,
    根据无理数的定义可得其中无理数有﹣,,,共三个.
    故选C.
    二、填空题(共7小题,每小题3分,满分21分)
    11、
    【解析】
    连接CD在根据垂直平分线的性质可得到△ADC为等腰直角三角形,结合已知的即可得到∠BCD的大小,然后就可以解答出此题
    【详解】
    解:连接CD,
    ∵DE垂直平分AC,
    ∴AD=CD,
    ∴∠DCA=∠BAC=45°,
    ∴△ADC是等腰直角三角形,
    ∴,∠ADC=90°,
    ∴∠BDC=90°,
    ∵∠ACB=75°,
    ∴∠BCD=30°,
    ∴BC= ,
    故答案为.
    【点睛】
    此题主要考查垂直平分线的性质,解题关键在于连接CD利用垂直平分线的性质证明△ADC为等腰直角三角形
    12、b(a﹣4)1
    【解析】
    先提公因式,再用完全平方公式进行因式分解.
    【详解】
    解:a1b-8ab+16b=b(a1-8a+16)=b(a-4)1.
    【点睛】
    本题考查了提公因式与公式法的综合运用,熟练运用公式法分解因式是本题的关键.
    13、2
    【解析】
    侧面展开后得到一个半圆,半圆的弧长就是底面圆的周长.依此列出方程即可.
    【详解】
    设母线长为x,根据题意得
    2πx÷2=2π×5,
    解得x=1.
    故答案为2.
    【点睛】
    本题考查了圆锥的计算,解题的关键是明白侧面展开后得到一个半圆就是底面圆的周长,难度不大.
    14、(2,)
    【解析】
    过C作CH于H,由题意得2AO=AD’,所以∠D’AO=60°,AO=1,AD’=2,勾股定理知OD’=,BH=AO所以C’(2,).
    故答案为(2,).
    15、
    【解析】
    过点C作CE⊥CF延长BA交CE于点E,先求得DF的长,可得到AE的长,最后可求得AB的长.
    【详解】
    解:延长BA交CE于点E,设CF⊥BF于点F,如图所示.
    在Rt△BDF中,BF=n,∠DBF=30°,
    ∴.
    在Rt△ACE中,∠AEC=90°,∠ACE=45°,
    ∴AE=CE=BF=n,
    ∴.
    故答案为:.
    【点睛】
    此题考查解直角三角形的应用,解题的关键在于做辅助线.
    16、且
    【解析】
    ∵式子在实数范围内有意义,
    ∴x+1≥0,且x≠0,
    解得:x≥-1且x≠0.
    故答案为x≥-1且x≠0.
    17、 ,
    【解析】
    ∵只有符号不同的两个数是互为相反数,
    ∴的相反数是;
    ∵乘积为1的两个数互为倒数,
    ∴的倒数是;
    ∵负数得绝对值是它的相反数,
    ∴绝对值是
    故答案为(1). (2). (3).
    三、解答题(共7小题,满分69分)
    18、(1)见解析;(2)菱形.
    【解析】
    (1)根据角平分线的性质可得∠ADE=∠CDE,再由平行线的性质可得AB∥CD,易得AD=AE,从而可证得结论;
    (2)若点与点重合,可证得AD=AB,根据邻边相等的平行四边形是菱形即可作出判断.
    【详解】
    (1)∵DE平分∠ADC,
    ∴∠ADE=∠CDE.
    ∵四边形ABCD是平行四边形,
    ∴AB∥CD,AB=CD,AD=BC,AB=CD.
    ∵∠AED=∠CDE.
    ∴∠ADE=∠AED.
    ∴AD=AE.
    ∴BC=AE.
    ∵AB=AE+EB.
    ∴BE+BC=CD.
    (2)菱形,理由如下:
    由(1)可知,AD=AE,
    ∵点E与B重合,
    ∴AD=AB.
    ∵四边形ABCD是平行四边形
    ∴平行四边形ABCD为菱形.
    【点睛】
    本题考查了平行四边形的性质,平行线的性质,等腰三角形的性质,菱形的性质,熟练掌握各知识是解题的关键.
    19、 (1) B(-1.2);(2) y=;(3)见解析.
    【解析】
    (1)过A作AC⊥x轴于点C,过B作BD⊥x轴于点D,则可证明△ACO≌△ODB,则可求得OD和BD的长,可求得B点坐标;
    (2)根据A、B、O三点的坐标,利用待定系数法可求得抛物线解析式;
    (3)由四边形ABOP可知点P在线段AO的下方,过P作PE∥y轴交线段OA于点E,可求得直线OA解析式,设出P点坐标,则可表示出E点坐标,可表示出PE的长,进一步表示出△POA的面积,则可得到四边形ABOP的面积,再利用二次函数的性质可求得其面积最大时P点的坐标.
    【详解】
    (1)如图1,过A作AC⊥x轴于点C,过B作BD⊥x轴于点D,
    ∵△AOB为等腰三角形,
    ∴AO=BO,
    ∵∠AOB=90°,
    ∴∠AOC+∠DOB=∠DOB+∠OBD=90°,
    ∴∠AOC=∠OBD,
    在△ACO和△ODB中

    ∴△ACO≌△ODB(AAS),
    ∵A(2,1),
    ∴OD=AC=1,BD=OC=2,
    ∴B(-1,2);
    (2)∵抛物线过O点,
    ∴可设抛物线解析式为y=ax2+bx,
    把A、B两点坐标代入可得,解得,
    ∴经过A、B、O原点的抛物线解析式为y=x2-x;
    (3)∵四边形ABOP,
    ∴可知点P在线段OA的下方,
    过P作PE∥y轴交AO于点E,如图2,
    设直线AO解析式为y=kx,
    ∵A(2,1),
    ∴k=,
    ∴直线AO解析式为y=x,
    设P点坐标为(t,t2-t),则E(t,t),
    ∴PE=t-(t2-t)=-t2+t=-(t-1)2+,
    ∴S△AOP=PE×2=PE═-(t-1)2+,
    由A(2,1)可求得OA=OB=,
    ∴S△AOB=AO•BO=,
    ∴S四边形ABOP=S△AOB+S△AOP=-(t-1)2++=,
    ∵-<0,
    ∴当t=1时,四边形ABOP的面积最大,此时P点坐标为(1,-),
    综上可知存在使四边形ABOP的面积最大的点P,其坐标为(1,-).
    【点睛】
    本题为二次函数的综合应用,主要涉及待定系数法、等腰直角三角形的性质、全等三角形的判定和性质、三角形的面积以及方程思想等知识.在(1)中构造三角形全等是解题的关键,在(2)中注意待定系数法的应用,在(3)中用t表示出四边形ABOP的面积是解题的关键.本题考查知识点较多,综合性较强,难度适中.
    20、(1)(或)(2)足球第一次落地距守门员约13米.(3)他应再向前跑17米.
    【解析】
    (1)依题意代入x的值可得抛物线的表达式.
    (2)令y=0可求出x的两个值,再按实际情况筛选.
    (3)本题有多种解法.如图可得第二次足球弹出后的距离为CD,相当于将抛物线AEMFC向下平移了2个单位可得解得x的值即可知道CD、BD.
    【详解】
    解:(1)如图,设第一次落地时,
    抛物线的表达式为
    由已知:当时

    表达式为(或)
    (2)令
    (舍去).
    足球第一次落地距守门员约13米.
    (3)解法一:如图,第二次足球弹出后的距离为
    根据题意:(即相当于将抛物线向下平移了2个单位)
    解得
    (米).
    答:他应再向前跑17米.
    21、为;点Q的坐标为或.
    【解析】
    依据抛物线的对称轴方程可求得b的值,然后将点B的坐标代入线可求得c的值,即可求得抛物线的表达式;由平移后抛物线的顶点在x轴上可求得平移的方向和距离,故此,然后由点,轴可得到点Q和P关于x对称,可求得点Q的纵坐标,将点Q的纵坐标代入平移后的解析式可求得对应的x的值,则可得到点Q的坐标.
    【详解】
    抛物线顶点A的横坐标是,
    ,即,解得.

    将代入得:,
    抛物线的解析式为.
    抛物线向下平移了4个单位.
    平移后抛物线的解析式为,.

    点O在PQ的垂直平分线上.
    又轴,
    点Q与点P关于x轴对称.
    点Q的纵坐标为.
    将代入得:,解得:或.
    点Q的坐标为或.
    【点睛】
    本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求二次函数的解析式、二次函数的平移规律、线段垂直平分线的性质,发现点Q与点P关于x轴对称,从而得到点Q的纵坐标是解题的关键.
    22、(2)k=﹣2,﹣2.(2)方程的根为x2=x2=2.
    【解析】
    (2)根据方程有实数根,得到根的判别式的值大于等于0列出关于k的不等式,求出不等式的解集即可得到k的值;
    (2)将k的值代入原方程,求出方程的根,经检验即可得到满足题意的k的值.
    【详解】
    解:(2)根据题意,得△=(﹣6)2﹣4×3(2﹣k)≥0,
    解得 k≥﹣2.
    ∵k为负整数,
    ∴k=﹣2,﹣2.
    (2)当k=﹣2时,不符合题意,舍去;
    当k=﹣2时,符合题意,此时方程的根为x2=x2=2.
    【点睛】
    本题考查了根的判别式,一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:(2)△>0时,方程有两个不相等的实数根;(2)△=0时,方程有两个相等的实数根;(3)△<0时,方程没有实数根.也考查了一元二次方程的解法.
    23、 (1) 见解析;(2)
    【解析】
    (1) 先通过证明△AOE为等边三角形, 得出AE=OD, 再根据“同位角相等, 两直线平行” 证明AE//OD, 从而证得四边形AODE是平行四边形, 再根据 “一组邻边相等的平行四边形为菱形” 即可得证.
    (2) 利用在Rt△OBD中,sin∠B==可得出半径长度,在Rt△ODB中BD=,可求得BD的长,由CD=CB﹣BD可得CD的长,在RT△ACD中,AD=,即可求出AD长度.
    【详解】
    解:(1)证明:
    连接OE、ED、OD,
    在Rt△ABC中,∵∠B=30°,
    ∴∠A=60°,
    ∵OA=OE,∴△AEO是等边三角形,
    ∴AE=OE=AO
    ∵OD=OA,
    ∴AE=OD
    ∵BC是圆O的切线,OD是半径,
    ∴∠ODB=90°,又∵∠C=90°
    ∴AC∥OD,又∵AE=OD
    ∴四边形AODE是平行四边形,
    ∵OD=OA
    ∴四边形AODE是菱形.
    (2)
    在Rt△ABC中,∵AC=6,AB=10,
    ∴sin∠B==,BC=8
    ∵BC是圆O的切线,OD是半径,
    ∴∠ODB=90°,
    在Rt△OBD中,sin∠B==,
    ∴OB=OD
    ∵AO+OB=AB=10,
    ∴OD+OD=10
    ∴OD=
    ∴OB=OD=
    ∴BD=
    =5
    ∴CD=CB﹣BD=3
    ∴AD=
    =
    =3.
    【点睛】
    本题主要考查圆中的计算问题、 菱形以及相似三角形的判定与性质
    24、答案见解析
    【解析】
    连接OP,作线段OP的垂直平分线MN交OP于点K,以点K为圆心OK为半径作⊙K交⊙O于点A,A′,作直线PA,PA′,直线PA,PA′即为所求.
    【详解】
    解:连接OP,作线段OP的垂直平分线MN交OP于点K,以点K为圆心OK为半径作⊙K交⊙O于点A,A′,作直线PA,PA′,
    直线PA,PA′即为所求.
    【点睛】
    本题考查作图−复杂作图,解题的关键是灵活运用所学知识解决问题.
    x
    ﹣2
    ﹣1
    0
    1
    2
    y
    8
    3
    0
    ﹣1
    0

    相关试卷

    2022年四川省成都简阳市三星中学中考数学猜题卷含解析:

    这是一份2022年四川省成都简阳市三星中学中考数学猜题卷含解析,共25页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。

    2022年四川省广元中学中考猜题数学试卷含解析:

    这是一份2022年四川省广元中学中考猜题数学试卷含解析

    2022年四川省长宁县中考数学猜题卷含解析:

    这是一份2022年四川省长宁县中考数学猜题卷含解析,共17页。试卷主要包含了下列因式分解正确的是,cs30°的相反数是,单项式2a3b的次数是,计算等内容,欢迎下载使用。

    英语朗读宝
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map