搜索
    上传资料 赚现金
    英语朗读宝

    2022年四川省成都市双流黄甲中学中考一模数学试题含解析

    2022年四川省成都市双流黄甲中学中考一模数学试题含解析第1页
    2022年四川省成都市双流黄甲中学中考一模数学试题含解析第2页
    2022年四川省成都市双流黄甲中学中考一模数学试题含解析第3页
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年四川省成都市双流黄甲中学中考一模数学试题含解析

    展开

    这是一份2022年四川省成都市双流黄甲中学中考一模数学试题含解析,共22页。试卷主要包含了九年级,﹣2018的相反数是,计算﹣的结果为等内容,欢迎下载使用。
    1.考试结束后,请将本试卷和答题卡一并交回.
    2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
    3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
    4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
    5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.已知:如图,在平面直角坐标系xOy中,等边△AOB的边长为6,点C在边OA上,点D在边AB上,且OC=3BD,反比例函数y=(k≠0)的图象恰好经过点C和点D,则k的值为( )
    A.B.C.D.
    2.图(1)是一个长为2m,宽为2n(m>n)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空的部分的面积是( )
    A.2mnB.(m+n)2C.(m-n)2D.m2-n2
    3.在刚过去的2017年,我国整体经济实力跃上了一个新台阶,城镇新增就业1351万人,数据“1351万”用科学记数法表示为( )
    A.13.51×106B.1.351×107C.1.351×106D.0.1531×108
    4.如图,在平行线l1、l2之间放置一块直角三角板,三角板的锐角顶点A,B分别在直线l1、l2上,若∠l=65°,则∠2的度数是( )
    A.25°B.35°C.45°D.65°
    5.四个有理数﹣1,2,0,﹣3,其中最小的是( )
    A.﹣1 B.2 C.0 D.﹣3
    6.九年级(2)班同学根据兴趣分成五个小组,各小组人数分布如图所示,则在扇形图中第一小组对应的圆心角度数是( )
    A.B.C.D.
    7.﹣2018的相反数是( )
    A.﹣2018B.2018C.±2018D.﹣
    8.已知函数y=ax2+bx+c的图象如图所示,则关于x的方程ax2+bx+c﹣4=0的根的情况是
    A.有两个相等的实数根B.有两个异号的实数根
    C.有两个不相等的实数根D.没有实数根
    9.如图,一把带有60°角的三角尺放在两条平行线间,已知量得平行线间的距离为12cm,三角尺最短边和平行线成45°角,则三角尺斜边的长度为( )
    A.12cmB.12cmC.24cmD.24cm
    10.计算﹣的结果为( )
    A.B.C.D.
    二、填空题(共7小题,每小题3分,满分21分)
    11.如图,AB是⊙O的直径,点C在AB的延长线上,CD与⊙O相切于点D,若∠C=20°,则∠CDA= °.
    12.计算:=_________ .
    13.如图,在矩形ABCD中,AB=,E是BC的中点,AE⊥BD于点F,则CF的长是_________.
    14.函数y=+中,自变量x的取值范围是_____.
    15.直角三角形的两条直角边长为6,8,那么斜边上的中线长是____.
    16.圆柱的底面半径为1,母线长为2,则它的侧面积为_____.(结果保留π)
    17.已知:如图,在△AOB中,∠AOB=90°,AO=3 cm,BO=4 cm.将△AOB绕顶点O,按顺时针方向旋转到△A1OB1处,此时线段OB1与AB的交点D恰好为AB的中点,则线段B1D=__________cm.
    三、解答题(共7小题,满分69分)
    18.(10分)如图,在等边中,,点D是线段BC上的一动点,连接AD,过点D作,垂足为D,交射线AC与点设BD为xcm,CE为ycm.
    小聪根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.
    下面是小聪的探究过程,请补充完整:
    通过取点、画图、测量,得到了x与y的几组值,如下表:
    说明:补全表格上相关数值保留一位小数
    建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;
    结合画出的函数图象,解决问题:当线段BD是线段CE长的2倍时,BD的长度约为_____cm.
    19.(5分)中央电视台的“朗读者”节目激发了同学们的读书热情,为了引导学生“多读书,读好书”,某校对八年级部分学生的课外阅读量进行了随机调查,整理调查结果发现,学生课外阅读的本书最少的有5本,最多的有8本,并根据调查结果绘制了不完整的图表,如图所示:
    (1)统计表中的________,________,________;请将频数分布表直方图补充完整;求所有被调查学生课外阅读的平均本数;若该校八年级共有1200名学生,请你分析该校八年级学生课外阅读7本及以上的人数.
    20.(8分)如图,图①是某电脑液晶显示器的侧面图,显示屏AO可以绕点O旋转一定的角度.研究表明:显示屏顶端A与底座B的连线AB与水平线BC垂直时(如图②),人观看屏幕最舒适.此时测得∠BAO=15°,AO=30 cm,∠OBC=45°,求AB的长度.(结果精确到0.1 cm)
    21.(10分)某高中学校为高一新生设计的学生板凳的正面视图如图所示,其中BA=CD,BC=20cm,BC、EF平行于地面AD且到地面AD的距离分别为40cm、8cm.为使板凳两腿底端A、D之间的距离为50cm,那么横梁EF应为多长?(材质及其厚度等暂忽略不计).
    22.(10分)八年级(1)班学生在完成课题学习“体质健康测试中的数据分析”后,利用课外活动时间积极参加体育锻炼,每位同学从篮球、跳绳、立定跳远、长跑、铅球中选一项进行训练,训练后都进行了测试.现将项目选择情况及训练后篮球定时定点投篮测试成绩整理后作出如下统计图.
    请你根据上面提供的信息回答下列问题:扇形图中跳绳部分的扇形圆心角为 度,该班共有学生 人, 训练后篮球定时定点投篮平均每个人的进球数是 .老师决定从选择铅球训练的3名男生和1名女生中任选两名学生先进行测试,请用列表或画树形图的方法求恰好选中两名男生的概率.
    23.(12分)如图,在平面直角坐标系中,抛物线y=﹣x2﹣2ax与x轴相交于O、A两点,OA=4,点D为抛物线的顶点,并且直线y=kx+b与该抛物线相交于A、B两点,与y轴相交于点C,B点的横坐标是﹣1.
    (1)求k,a,b的值;
    (2)若P是直线AB上方抛物线上的一点,设P点的横坐标是t,△PAB的面积是S,求S关于t的函数关系式,并直接写出自变量t的取值范围;
    (3)在(2)的条件下,当PB∥CD时,点Q是直线AB上一点,若∠BPQ+∠CBO=180°,求Q点坐标.
    24.(14分)在直角坐标系中,过原点O及点A(8,0),C(0,6)作矩形OABC、连结OB,点D为OB的中点,点E是线段AB上的动点,连结DE,作DF⊥DE,交OA于点F,连结EF.已知点E从A点出发,以每秒1个单位长度的速度在线段AB上移动,设移动时间为t秒.
    如图1,当t=3时,求DF的长.如图2,当点E在线段AB上移动的过程中,∠DEF的大小是否发生变化?如果变化,请说明理由;如果不变,请求出tan∠DEF的值.连结AD,当AD将△DEF分成的两部分的面积之比为1:2时,求相应的t的值.
    参考答案
    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、A
    【解析】
    试题分析:过点C作CE⊥x轴于点E,过点D作DF⊥x轴于点F,如图所示.
    设BD=a,则OC=3a.
    ∵△AOB为边长为1的等边三角形,∴∠COE=∠DBF=10°,OB=1.
    在Rt△COE中,∠COE=10°,∠CEO=90°,OC=3a,∴∠OCE=30°,∴OE=a,CE= = a,∴点C(a, a).
    同理,可求出点D的坐标为(1﹣a,a).
    ∵反比例函数(k≠0)的图象恰好经过点C和点D,∴k=a×a=(1﹣a)×a,∴a=,k=.故选A.
    2、C
    【解析】
    解:由题意可得,正方形的边长为(m+n),故正方形的面积为(m+n)1.
    又∵原矩形的面积为4mn,∴中间空的部分的面积=(m+n)1-4mn=(m-n)1.
    故选C.
    3、B
    【解析】
    根据科学记数法进行解答.
    【详解】
    1315万即13510000,用科学记数法表示为1.351×107.故选择B.
    【点睛】
    本题主要考查科学记数法,科学记数法表示数的标准形式是a×10n(1≤│a│<10且n为整数).
    4、A
    【解析】
    如图,过点C作CD∥a,再由平行线的性质即可得出结论.
    【详解】
    如图,过点C作CD∥a,则∠1=∠ACD,
    ∵a∥b,
    ∴CD∥b,
    ∴∠2=∠DCB,
    ∵∠ACD+∠DCB=90°,
    ∴∠1+∠2=90°,
    又∵∠1=65°,
    ∴∠2=25°,
    故选A.
    【点睛】
    本题考查了平行线的性质与判定,根据题意作出辅助线,构造出平行线是解答此题的关键.
    5、D
    【解析】
    解:∵-1<-1<0<2,∴最小的是-1.故选D.
    6、C
    【解析】
    试题分析:由题意可得,
    第一小组对应的圆心角度数是:×360°=72°,
    故选C.
    考点:1.扇形统计图;2.条形统计图.
    7、B
    【解析】
    分析:只有符号不同的两个数叫做互为相反数.
    详解:-1的相反数是1.
    故选:B.
    点睛:本题主要考查的是相反数的定义,掌握相反数的定义是解题的关键.
    8、A
    【解析】
    根据抛物线的顶点坐标的纵坐标为4,判断方程ax2+bx+c﹣4=0的根的情况即是判断函数y=ax2+bx+c的图象与直线y=4交点的情况.
    【详解】
    ∵函数的顶点的纵坐标为4,
    ∴直线y=4与抛物线只有一个交点,
    ∴方程ax2+bx+c﹣4=0有两个相等的实数根,
    故选A.
    【点睛】
    本题考查了二次函数与一元二次方程,熟练掌握一元二次方程与二次函数间的关系是解题的关键.
    9、D
    【解析】
    过A作AD⊥BF于D,根据45°角的三角函数值可求出AB的长度,根据含30°角的直角三角形的性质求出斜边AC的长即可.
    【详解】
    如图,过A作AD⊥BF于D,
    ∵∠ABD=45°,AD=12,
    ∴=12,
    又∵Rt△ABC中,∠C=30°,
    ∴AC=2AB=24,
    故选:D.
    【点睛】
    本题考查解直角三角形,在直角三角形中,30°角所对的直角边等于斜边的一半,熟记特殊角三角函数值是解题关键.
    10、A
    【解析】
    根据分式的运算法则即可
    【详解】
    解:原式=,
    故选A.
    【点睛】
    本题主要考查分式的运算。
    二、填空题(共7小题,每小题3分,满分21分)
    11、1.
    【解析】
    连接OD,根据圆的切线定理和等腰三角形的性质可得出答案.
    【详解】
    连接OD,
    则∠ODC=90°,∠COD=70°,
    ∵OA=OD,
    ∴∠ODA=∠A=∠COD=35°,
    ∴∠CDA=∠CDO+∠ODA=90°+35°=1°,
    故答案为1.
    考点:切线的性质.
    12、2
    【解析】
    利用平方差公式求解,即可求得答案.
    【详解】
    =()2-()2=5-3=2.
    故答案为2.
    【点睛】
    此题考查了二次根式的乘除运算.此题难度不大,注意掌握平方差公式的应用.
    13、
    【解析】
    试题解析:∵四边形ABCD是矩形,
    ∵AE⊥BD,

    ∴△ABE∽△ADB,
    ∵E是BC的中点,



    过F作FG⊥BC于G,



    故答案为
    14、x≥﹣2且x≠1
    【解析】
    分析:
    根据使分式和二次根式有意义的要求列出关于x的不等式组,解不等式组即可求得x的取值范围.
    详解:
    ∵有意义,
    ∴ ,解得:且.
    故答案为:且.
    点睛:本题解题的关键是需注意:要使函数有意义,的取值需同时满足两个条件:和,二者缺一不可.
    15、1.
    【解析】
    试题分析:∵直角三角形的两条直角边长为6,8,∴由勾股定理得,斜边=10.
    ∴斜边上的中线长=×10=1.
    考点:1.勾股定理;2. 直角三角形斜边上的中线性质.
    16、4
    【解析】
    根据圆柱的侧面积公式,计算即可.
    【详解】
    圆柱的底面半径为r=1,母线长为l=2,
    则它的侧面积为S侧=2πrl=2π×1×2=4π.
    故答案为:4π.
    【点睛】
    题考查了圆柱的侧面积公式应用问题,是基础题.
    17、1.1
    【解析】
    试题解析:∵在△AOB中,∠AOB=90°,AO=3cm,BO=4cm,∴AB==1cm,∵点D为AB的中点,∴OD=AB=2.1cm.∵将△AOB绕顶点O,按顺时针方向旋转到△A1OB1处,∴OB1=OB=4cm,∴B1D=OB1﹣OD=1.1cm.
    故答案为1.1.
    三、解答题(共7小题,满分69分)
    18、(1)1.1;(2)见解析;(3).
    【解析】
    (1)(2)需要认真按题目要求测量,描点作图;
    (3)线段BD是线段CE长的2倍的条件可以转化为一次函数图象,通过数形结合解决问题.
    【详解】
    根据题意测量约
    故应填:
    根据题意画图:
    当线段BD是线段CE长的2倍时,得到图象,该图象与中图象的交点即为所求情况,测量得BD长约.
    故答案为(1)1.1;(2)见解析;(3)1.7.
    【点睛】
    本题考查函数作图和函数图象实际意义的理解,在中,考查学生由数量关系得到函数关系的转化思想.
    19、(1)10,0.28,50(2)图形见解析(3)6.4(4)528
    【解析】
    分析:(1)首先求出总人数,再根据频率,总数,频数的关系即可解决问题;
    (2)根据a的值画出条形图即可;
    (3)根据平均数的定义计算即可;
    (4)用样本估计总体的思想解决问题即可;
    详解:(1)由题意c==50,
    a=50×0.2=10,b==0.28,c=50;
    故答案为10,0.28,50;
    (2)将频数分布表直方图补充完整,如图所示:
    (3)所有被调查学生课外阅读的平均本数为:
    (5×10+6×18+7×14+8×8)÷50=320÷50=6.4(本).
    (4)该校七年级学生课外阅读7本及以上的人数为:
    (0.28+0.16)×1200=528(人).
    点睛:本题考查频数分布直方图、扇形统计图、样本估计总体等知识,解题的关键是熟练掌握基本概念,灵活运用所学知识解决问题,属于中考常考题型.
    20、37
    【解析】
    试题分析:过点作交于点.构造直角三角形,在中,计算出,在中, 计算出.
    试题解析:如图所示:过点作交于点.
    在中,


    又∵在中,


    答:的长度为
    21、44cm
    【解析】
    解:如图,
    设BM与AD相交于点H,CN与AD相交于点G,
    由题意得,MH=8cm,BH=40cm,则BM=32cm,
    ∵四边形ABCD是等腰梯形,AD=50cm,BC=20cm,
    ∴.
    ∵EF∥CD,∴△BEM∽△BAH.
    ∴,即,解得:EM=1.
    ∴EF=EM+NF+BC=2EM+BC=44(cm).
    答:横梁EF应为44cm.
    根据等腰梯形的性质,可得AH=DG,EM=NF,先求出AH、GD的长度,再由△BEM∽△BAH,可得出EM,继而得出EF的长度.
    22、(1)36 , 40, 1;(2).
    【解析】
    (1)先求出跳绳所占比例,再用比例乘以360°即可,用篮球的人数除以所占比例即可;根据加权平均数的概念计算训练后篮球定时定点投篮人均进球数.
    (2)画出树状图,根据概率公式求解即可.
    【详解】
    (1)扇形图中跳绳部分的扇形圆心角为360°×(1-10%-20%-10%-10%)=36度;
    该班共有学生(2+1+7+4+1+1)÷10%=40人;
    训练后篮球定时定点投篮平均每个人的进球数是=1,
    故答案为:36,40,1.
    (2)三名男生分别用A1,A2,A3表示,一名女生用B表示.根据题意,可画树形图如下:
    由上图可知,共有12种等可能的结果,选中两名学生恰好是两名男生(记为事件M)
    的结果有6种,
    ∴P(M)==.
    23、(1)k=1、a=2、b=4;(2)s=﹣t2﹣ t﹣6,自变量t的取值范围是﹣4<t<﹣1;(3)Q(﹣,)
    【解析】
    (1)根据题意可得A(-4,0)代入抛物线解析式可得a,求出抛物线解析式,根据B的横坐标可求B点坐标,把A,B坐标代入直线解析式,可求k,b
    (2)过P点作PN⊥OA于N,交AB于M,过B点作BH⊥PN,设出P点坐标,可求出N点坐标,即可以用t表示S.
    (3)由PB∥CD,可求P点坐标,连接OP,交AC于点R,过P点作PN⊥OA于M,交AB于N,过D点作DT⊥OA于T,根据P的坐标,可得∠POA=45°,由OA=OC可得∠CAO=45°则PO⊥AB,根据抛物线的对称性可知R在对称轴上.设Q点坐标,根据△BOR∽△PQS,可求Q点坐标.
    【详解】
    (1)∵OA=4
    ∴A(﹣4,0)
    ∴﹣16+8a=0
    ∴a=2,
    ∴y=﹣x2﹣4x,当x=﹣1时,y=﹣1+4=3,
    ∴B(﹣1,3),
    将A(﹣4,0)B(﹣1,3)代入函数解析式,得,
    解得,
    直线AB的解析式为y=x+4,
    ∴k=1、a=2、b=4;
    (2)过P点作PN⊥OA于N,交AB于M,过B点作BH⊥PN,如图1,
    由(1)知直线AB是y=x+4,抛物线是y=﹣x2﹣4x,
    ∴当x=t时,yP=﹣t2﹣4t,yN=t+4
    PN=﹣t2﹣4t﹣(t+4)=﹣t2﹣5t﹣4,
    BH=﹣1﹣t,AM=t﹣(﹣4)=t+4,
    S△PAB=PN(AM+BH)=(﹣t2﹣5t﹣4)(﹣1﹣t+t+4)=(﹣t2﹣5t﹣4)×3,
    化简,得s=﹣t2﹣ t﹣6,自变量t的取值范围是﹣4<t<﹣1;
    ∴﹣4<t<﹣1
    (3)y=﹣x2﹣4x,当x=﹣2时,y=4即D(﹣2,4),当x=0时,y=x+4=4,即C(0,4),
    ∴CD∥OA
    ∵B(﹣1,3).
    当y=3时,x=﹣3,
    ∴P(﹣3,3),
    连接OP,交AC于点R,过P点作PN⊥OA于M,交AB于N,过D点作DT⊥OA于T,如图2,
    可证R在DT上
    ∴PN=ON=3
    ∴∠PON=∠OPN=45°
    ∴∠BPR=∠PON=45°,
    ∵OA=OC,∠AOC=90°
    ∴∠PBR=∠BAO=45°,
    ∴PO⊥AC
    ∵∠BPQ+∠CBO=180,
    ∴∠BPQ=∠BCO+∠BOC
    过点Q作QS⊥PN,垂足是S,
    ∴∠SPQ=∠BOR∴tan∠SPQ=tan∠BOR,
    可求BR=,OR=2,
    设Q点的横坐标是m,
    当x=m时y=m+4,
    ∴SQ=m+3,PS=﹣m﹣1
    ∴,解得m=﹣.
    当x=﹣时,y=,
    Q(﹣,).
    【点睛】
    本题考查二次函数综合题、一次函数的应用、相似三角形的判定和性质、全等三角形的判定和性质等知识,解题的关键是灵活运用所学知识,学会添加常用辅助线,构造特殊四边形解决问题.
    24、(1)3;(2)∠DEF的大小不变,tan∠DEF=;(3)或.
    【解析】
    (1)当t=3时,点E为AB的中点,
    ∵A(8,0),C(0,6),
    ∴OA=8,OC=6,
    ∵点D为OB的中点,
    ∴DE∥OA,DE=OA=4,
    ∵四边形OABC是矩形,
    ∴OA⊥AB,
    ∴DE⊥AB,
    ∴∠OAB=∠DEA=90°,
    又∵DF⊥DE,
    ∴∠EDF=90°,
    ∴四边形DFAE是矩形,
    ∴DF=AE=3;
    (2)∠DEF的大小不变;理由如下:
    作DM⊥OA于M,DN⊥AB于N,如图2所示:
    ∵四边形OABC是矩形,
    ∴OA⊥AB,
    ∴四边形DMAN是矩形,
    ∴∠MDN=90°,DM∥AB,DN∥OA,
    ∴, ,
    ∵点D为OB的中点,
    ∴M、N分别是OA、AB的中点,
    ∴DM=AB=3,DN=OA=4,
    ∵∠EDF=90°,
    ∴∠FDM=∠EDN,
    又∵∠DMF=∠DNE=90°,
    ∴△DMF∽△DNE,
    ∴,
    ∵∠EDF=90°,
    ∴tan∠DEF=;
    (3)作DM⊥OA于M,DN⊥AB于N,
    若AD将△DEF的面积分成1:2的两部分,
    设AD交EF于点G,则点G为EF的三等分点;
    ①当点E到达中点之前时,如图3所示,NE=3﹣t,
    由△DMF∽△DNE得:MF=(3﹣t),
    ∴AF=4+MF=﹣t+,
    ∵点G为EF的三等分点,
    ∴G(,),
    设直线AD的解析式为y=kx+b,
    把A(8,0),D(4,3)代入得: ,
    解得: ,
    ∴直线AD的解析式为y=﹣x+6,
    把G(,)代入得:t=;
    ②当点E越过中点之后,如图4所示,NE=t﹣3,
    由△DMF∽△DNE得:MF=(t﹣3),
    ∴AF=4﹣MF=﹣t+,
    ∵点G为EF的三等分点,
    ∴G(,),
    代入直线AD的解析式y=﹣x+6得:t=;
    综上所述,当AD将△DEF分成的两部分的面积之比为1:2时,t的值为或.
    考点:四边形综合题.
    0
    1
    2
    3
    4
    5
    ___
    0
    0
    本数(本)
    频数(人数)
    频率
    5
    0.2
    6
    18
    0.36
    7
    14
    8
    8
    0.16
    合计
    1

    相关试卷

    2024年四川省成都市双流中学中考一模数学模拟试题(含解析):

    这是一份2024年四川省成都市双流中学中考一模数学模拟试题(含解析),共32页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    四川省成都市双流黄甲中学2023-2024学年数学九年级第一学期期末达标检测模拟试题含答案:

    这是一份四川省成都市双流黄甲中学2023-2024学年数学九年级第一学期期末达标检测模拟试题含答案,共8页。试卷主要包含了方程x2﹣x=0的解为,下列运算正确的是等内容,欢迎下载使用。

    2023-2024学年四川省成都市双流黄甲中学数学九年级第一学期期末联考试题含答案:

    这是一份2023-2024学年四川省成都市双流黄甲中学数学九年级第一学期期末联考试题含答案,共8页。试卷主要包含了下列说法不正确的是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map