|试卷下载
终身会员
搜索
    上传资料 赚现金
    2022年新疆维吾尔自治区伊犁哈萨克自治州伊宁县中考试题猜想数学试卷含解析
    立即下载
    加入资料篮
    2022年新疆维吾尔自治区伊犁哈萨克自治州伊宁县中考试题猜想数学试卷含解析01
    2022年新疆维吾尔自治区伊犁哈萨克自治州伊宁县中考试题猜想数学试卷含解析02
    2022年新疆维吾尔自治区伊犁哈萨克自治州伊宁县中考试题猜想数学试卷含解析03
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年新疆维吾尔自治区伊犁哈萨克自治州伊宁县中考试题猜想数学试卷含解析

    展开
    这是一份2022年新疆维吾尔自治区伊犁哈萨克自治州伊宁县中考试题猜想数学试卷含解析,共22页。试卷主要包含了下列等式正确的是,以下各图中,能确定的是等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    请考生注意:
    1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
    2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.这个数是( )
    A.整数 B.分数 C.有理数 D.无理数
    2.某种商品每件的标价是270元,按标价的八折销售时,仍可获利20%,则这种商品每件的进价为(  )
    A.180元 B.200元 C.225元 D.259.2元
    3.如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A,B两点,与y轴交于点C,且OA=OC.则下列结论:①abc<0;②;③ac-b+1=0;④OA·OB=.其中正确结论的个数是( )

    A.4 B.3 C.2 D.1
    4.如图,函数y=﹣2x+2的图象分别与x轴,y轴交于A,B两点,点C在第一象限,AC⊥AB,且AC=AB,则点C的坐标为(  )

    A.(2,1) B.(1,2) C.(1,3) D.(3,1)
    5.下列图形中,属于中心对称图形的是(  )
    A. B.
    C. D.
    6.下列等式正确的是(  )
    A.x3﹣x2=x B.a3÷a3=a
    C. D.(﹣7)4÷(﹣7)2=﹣72
    7.一次函数y=ax+b与反比例函数,其中ab<0,a、b为常数,它们在同一坐标系中的图象可以是(  )
    A. B. C. D.
    8.以下各图中,能确定的是( )
    A. B. C. D.
    9.如图,某厂生产一种扇形折扇,OB=10cm,AB=20cm,其中裱花的部分是用纸糊的,若扇子完全打开摊平时纸面面积为π cm2,则扇形圆心角的度数为(  )

    A.120° B.140° C.150° D.160°
    10.在一个不透明的袋子中装有除颜色外其余均相同的m个小球,其中 5 个黑球, 从袋中随机摸出一球,记下其颜色,这称为依次摸球试验,之后把它放回袋 中,搅匀后,再继续摸出一球.以下是利用计算机模拟的摸球试验次数与摸出黑球次数的列表:
    摸球试验次数
    100
    1000
    5000
    10000
    50000
    100000
    摸出黑球次数
    46
    487
    2506
    5008
    24996
    50007
    根据列表,可以估计出 m 的值是( )
    A.5 B.10 C.15 D.20
    二、填空题(共7小题,每小题3分,满分21分)
    11.四边形ABCD中,向量_____________.
    12.分解因式: ____________.
    13.如图,⊙M的半径为2,圆心M(3,4),点P是⊙M上的任意一点,PA⊥PB,且PA、PB与x轴分别交于A、B两点,若点A、点B关于原点O对称,则AB的最小值为_____.

    14.如果正比例函数y=(k-2)x的函数值y随x的增大而减小,且它的图象与反比例函数y=的图象没有公共点,那么k的取值范围是______.
    15.如图,点P(3a,a)是反比例函(k>0)与⊙O的一个交点,图中阴影部分的面积为10π,则反比例函数的表达式为______.

    16.计算:(﹣2a3)2=_____.
    17.经过某十字路口的汽车,它可能继续直行,也可能向左转或向右转.如果这三种可能性大小相同,现有两辆汽车先后经过这个十字路口,则至少有一辆汽车向左转的概率是___.
    三、解答题(共7小题,满分69分)
    18.(10分)如图,在▱ABCD中,以点4为圆心,AB长为半径画弧交AD于点F;再分别以点B、F为圆心,大于BF的长为半径画弧,两弧交于点P;连接AP并廷长交BC于点E,连接EF
    (1)根据以上尺规作图的过程,求证:四边形ABEF是菱形;
    (2)若AB=2,AE=2,求∠BAD的大小.

    19.(5分)先化简,再求值:,其中x满足x2-2x-2=0.
    20.(8分)如图1,经过原点O的抛物线y=ax2+bx(a≠0)与x轴交于另一点A(,0),在第一象限内与直线y=x交于点B(2,t).
    (1)求这条抛物线的表达式;
    (2)在第四象限内的抛物线上有一点C,满足以B,O,C为顶点的三角形的面积为2,求点C的坐标;
    (3)如图2,若点M在这条抛物线上,且∠MBO=∠ABO,在(2)的条件下,是否存在点P,使得△POC∽△MOB?若存在,求出点P的坐标;若不存在,请说明理由.

    21.(10分)如图,AB为⊙O的直径,C为⊙O上一点,AD和过点C的切线互相垂直,垂足为D,AB,DC的延长线交于点E.
    (1)求证:AC平分∠DAB;
    (2)若BE=3,CE=3,求图中阴影部分的面积.

    22.(10分)如图,已知A(﹣4,n),B(2,﹣4)是一次函数y=kx+b的图象与反比例函数 的图象的两个交点.
    (1)求反比例函数和一次函数的解析式;
    (2)求直线AB与x轴的交点C的坐标及△AOB的面积;
    (3)求方程的解集(请直接写出答案).

    23.(12分)如图,在五边形ABCDE中,∠BCD=∠EDC=90°,BC=ED,AC=AD.求证:△ABC≌△AED;当∠B=140°时,求∠BAE的度数.

    24.(14分)如图,已知一次函数y=kx+b的图象与x轴交于点A,与反比例函数 (x<0)的图象交于点B(﹣2,n),过点B作BC⊥x轴于点C,点D(3﹣3n,1)是该反比例函数图象上一点.求m的值;若∠DBC=∠ABC,求一次函数y=kx+b的表达式.




    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、D
    【解析】
    由于圆周率π是一个无限不循环的小数,由此即可求解.
    【详解】
    解:实数π是一个无限不循环的小数.所以是无理数.
    故选D.
    【点睛】
    本题主要考查无理数的概念,π是常见的一种无理数的形式,比较简单.
    2、A
    【解析】
    设这种商品每件进价为x元,根据题中的等量关系列方程求解.
    【详解】
    设这种商品每件进价为x元,则根据题意可列方程270×0.8-x=0.2x,解得x=180.故选A.
    【点睛】
    本题主要考查一元一次方程的应用,解题的关键是确定未知数,根据题中的等量关系列出正确的方程.
    3、B
    【解析】
    试题分析:由抛物线开口方向得a<0,由抛物线的对称轴位置可得b>0,由抛物线与y轴的交点位置可得c>0,则可对①进行判断;根据抛物线与x轴的交点个数得到b2﹣4ac>0,加上a<0,则可对②进行判断;利用OA=OC可得到A(﹣c,0),再把A(﹣c,0)代入y=ax2+bx+c得ac2﹣bc+c=0,两边除以c则可对③进行判断;设A(x1,0),B(x2,0),则OA=﹣x1,OB=x2,根据抛物线与x轴的交点问题得到x1和x2是方程ax2+bx+c=0(a≠0)的两根,利用根与系数的关系得到x1•x2=,于是OA•OB=﹣,则可对④进行判断.
    解:∵抛物线开口向下,
    ∴a<0,
    ∵抛物线的对称轴在y轴的右侧,
    ∴b>0,
    ∵抛物线与y轴的交点在x轴上方,
    ∴c>0,
    ∴abc<0,所以①正确;
    ∵抛物线与x轴有2个交点,
    ∴△=b2﹣4ac>0,
    而a<0,
    ∴<0,所以②错误;
    ∵C(0,c),OA=OC,
    ∴A(﹣c,0),
    把A(﹣c,0)代入y=ax2+bx+c得ac2﹣bc+c=0,
    ∴ac﹣b+1=0,所以③正确;
    设A(x1,0),B(x2,0),
    ∵二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A,B两点,
    ∴x1和x2是方程ax2+bx+c=0(a≠0)的两根,
    ∴x1•x2=,
    ∴OA•OB=﹣,所以④正确.
    故选B.
    考点:二次函数图象与系数的关系.
    4、D
    【解析】
    过点C作CD⊥x轴与D,如图,先利用一次函数图像上点的坐标特征确定B(0,2),A(1,0),再证明△ABO≌△CAD,得到AD=OB=2,CD=AO=1,则C点坐标可求.
    【详解】
    如图,过点C作CD⊥x轴与D.∵函数y=﹣2x+2的图象分别与x轴,y轴交于A,B两点,∴当x=0时,y=2,则B(0,2);当y=0时,x=1,则A(1,0).∵AC⊥AB,AC=AB,∴∠BAO+∠CAD=90°,∴∠ABO=∠CAD.在△ABO和△CAD中,,∴△ABO≌△CAD,∴AD=OB=2,CD=OA=1,∴OD=OA+AD=1+2=3,∴C点坐标为(3,1).故选D.

    【点睛】
    本题主要考查一次函数的基本概念。角角边定理、全等三角形的性质以及一次函数的应用,熟练掌握相关知识点是解答的关键.
    5、B
    【解析】
    A、将此图形绕任意点旋转180度都不能与原图重合,所以这个图形不是中心对称图形.
    【详解】
    A、将此图形绕任意点旋转180度都不能与原图重合,所以这个图形不是中心对称图形;
    B、将此图形绕中心点旋转180度与原图重合,所以这个图形是中心对称图形;
    C、将此图形绕任意点旋转180度都不能与原图重合,所以这个图形不是中心对称图形;
    D、将此图形绕任意点旋转180度都不能与原图重合,所以这个图形不是中心对称图形.
    故选B.
    【点睛】
    本题考查了轴对称与中心对称图形的概念:
    中心对称图形是要寻找对称中心,旋转180度后与原图重合.
    6、C
    【解析】
    直接利用同底数幂的乘除运算法则以及有理数的乘方运算法则分别计算得出答案.
    【详解】
    解:A、x3-x2,无法计算,故此选项错误;
    B、a3÷a3=1,故此选项错误;
    C、(-2)2÷(-2)3=-,正确;
    D、(-7)4÷(-7)2=72,故此选项错误;
    故选C.
    【点睛】
    此题主要考查了同底数幂的乘除运算以及有理数的乘方运算,正确掌握相关运算法则是解题关键.
    7、C
    【解析】
    根据一次函数的位置确定a、b的大小,看是否符合ab<0,计算a-b确定符号,确定双曲线的位置.
    【详解】
    A. 由一次函数图象过一、三象限,得a>0,交y轴负半轴,则b<0,
    满足ab<0,
    ∴a−b>0,
    ∴反比例函数y= 的图象过一、三象限,
    所以此选项不正确;
    B. 由一次函数图象过二、四象限,得a<0,交y轴正半轴,则b>0,
    满足ab<0,
    ∴a−b<0,
    ∴反比例函数y=的图象过二、四象限,
    所以此选项不正确;
    C. 由一次函数图象过一、三象限,得a>0,交y轴负半轴,则b<0,
    满足ab<0,
    ∴a−b>0,
    ∴反比例函数y=的图象过一、三象限,
    所以此选项正确;
    D. 由一次函数图象过二、四象限,得a<0,交y轴负半轴,则b<0,
    满足ab>0,与已知相矛盾
    所以此选项不正确;
    故选C.
    【点睛】
    此题考查反比例函数的图象,一次函数的图象,解题关键在于确定a、b的大小
    8、C
    【解析】
    逐一对选项进行分析即可得出答案.
    【详解】
    A中,利用三角形外角的性质可知,故该选项错误;
    B中,不能确定的大小关系,故该选项错误;
    C中,因为同弧所对的圆周角相等,所以,故该选项正确;
    D中,两直线不平行,所以,故该选项错误.
    故选:C.
    【点睛】
    本题主要考查平行线的性质及圆周角定理的推论,掌握圆周角定理的推论是解题的关键.
    9、C
    【解析】
    根据扇形的面积公式列方程即可得到结论.
    【详解】
    ∵OB=10cm,AB=20cm,
    ∴OA=OB+AB=30cm,
    设扇形圆心角的度数为α,
    ∵纸面面积为π cm2,
    ∴,
    ∴α=150°,
    故选:C.
    【点睛】
    本题考了扇形面积的计算的应用,解题的关键是熟练掌握扇形面积计算公式:扇形的面积= .
    10、B
    【解析】
    由概率公式可知摸出黑球的概率为,分析表格数据可知的值总是在0.5左右,据此可求解m值.
    【详解】
    解:分析表格数据可知的值总是在0.5左右,则由题意可得,解得m=10,
    故选择B.
    【点睛】
    本题考查了概率公式的应用.

    二、填空题(共7小题,每小题3分,满分21分)
    11、
    【解析】
    分析:
    根据“向量运算”的三角形法则进行计算即可.
    详解:
    如下图所示,由向量运算的三角形法则可得:

    =
    =.
    故答案为.

    点睛:理解向量运算的三角形法则是正确解答本题的关键.
    12、
    【解析】
    试题分析:根据因式分解的方法,先提公因式,再根据平方差公式分解:.
    考点:因式分解
    13、6
    【解析】
    点P在以O为圆心OA为半径的圆上,P是两个圆的交点,当⊙O与⊙M外切时,AB最小,根据条件求出AO即可求解;
    【详解】
    解:点P在以O为圆心OA为半径的圆上,
    ∴P是两个圆的交点,
    当⊙O与⊙M外切时,AB最小,
    ∵⊙M的半径为2,圆心M(3,4),
    ∴PM=5,
    ∴OA=3,
    ∴AB=6,
    故答案为6;
    【点睛】
    本题考查圆与圆的位置关系;能够将问题转化为两圆外切时AB最小是解题的关键.
    14、
    【解析】
    先根据正比例函数y=(k-1)x的函数值y随x的增大而减小,可知k-1<0;再根据它的图象与反比例函数y=的图象没有公共点,说明反比例函数y=
    的图象经过一、三象限,k>0,从而可以求出k的取值范围.
    【详解】
    ∵y=(k-1)x的函数值y随x的增大而减小,
    ∴k-1<0
    ∴k<1
    而y=(k-1)x的图象与反比例函数y=
    的图象没有公共点,
    ∴k>0
    综合以上可知:0<k<1.
    故答案为0<k<1.
    【点睛】
    本题考查的是一次函数与反比例函数的相关性质,清楚掌握函数中的k的意义是解决本题的关键.
    15、y=
    【解析】
    设圆的半径是r,根据圆的对称性以及反比例函数的对称性可得:
    πr2=10π
    解得:r=.
    ∵点P(3a,a)是反比例函y= (k>0)与O的一个交点,
    ∴3a2=k.

    ∴a2==4.
    ∴k=3×4=12,
    则反比例函数的解析式是:y=.
    故答案是:y=.
    点睛:本题主要考查了反比例函数图象的对称性,正确根据对称性求得圆的半径是解题的关键.
    16、4a1.
    【解析】
    根据积的乘方运算法则进行运算即可.
    【详解】
    原式
    故答案为
    【点睛】
    考查积的乘方,掌握运算法则是解题的关键.
    17、.
    【解析】
    根据题意,画出树状图,然后根据树状图和概率公式求概率即可.
    【详解】
    解:画树状图得:

    共有9种等可能的结果,至少有一辆汽车向左转的有5种情况,
    至少有一辆汽车向左转的概率是:.
    故答案为:.
    【点睛】
    此题考查的是求概率问题,掌握树状图的画法和概率公式是解决此题的关键.

    三、解答题(共7小题,满分69分)
    18、 (1)见解析;(2) 60°.
    【解析】
    (1)先证明△AEB≌△AEF,推出∠EAB=∠EAF,由AD∥BC,推出∠EAF=∠AEB=∠EAB,得到BE=AB=AF,由此即可证明;
    (2)连结BF,交AE于G.根据菱形的性质得出AB=2,AG=AE=,∠BAF=2∠BAE,AE⊥BF.然后解直角△ABG,求出∠BAG=30°,那么∠BAF=2∠BAE=60°.
    【详解】
    解:(1)在△AEB和△AEF中,

    ∴△AEB≌△AEF,
    ∴∠EAB=∠EAF,
    ∵AD∥BC,
    ∴∠EAF=∠AEB=∠EAB,
    ∴BE=AB=AF.
    ∵AF∥BE,
    ∴四边形ABEF是平行四边形,
    ∵AB=BE,
    ∴四边形ABEF是菱形;
    (2)连结BF,交AE于G.
    ∵AB=AF=2,
    ∴GA=AE=×2=,
    在Rt△AGB中,cos∠BAE==,
    ∴∠BAG=30°,
    ∴∠BAF=2∠BAG=60°,
    【点睛】
    本题考查了平行四边形的性质与菱形的判定与性质,解题的关键是熟练的掌握平行四边形的性质与菱形的判定与性质.
    19、
    【解析】
    分析:先根据分式的混合运算顺序和运算法则化简原式,再由x2-2x-2=0得x2=2x+2=2(x+1),整体代入计算可得.
    详解:原式=
    =
    =,
    ∵x2-2x-2=0,
    ∴x2=2x+2=2(x+1),
    则原式=.
    点睛:本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.
    20、(1)y=2x2﹣3x;(2)C(1,﹣1);(3)(,)或(﹣,).
    【解析】
    (1)由直线解析式可求得B点坐标,由A、B坐标,利用待定系数法可求得抛物线的表达式;
    (2)过C作CD∥y轴,交x轴于点E,交OB于点D,过B作BF⊥CD于点F,可设出C点坐标,利用C点坐标可表示出CD的长,从而可表示出△BOC的面积,由条件可得到关于C点坐标的方程,可求得C点坐标;
    (3)设MB交y轴于点N,则可证得△ABO≌△NBO,可求得N点坐标,可求得直线BN的解析式,联立直线BM与抛物线解析式可求得M点坐标,过M作MG⊥y轴于点G,由B、C的坐标可求得OB和OC的长,由相似三角形的性质可求得的值,当点P在第一象限内时,过P作PH⊥x轴于点H,由条件可证得△MOG∽△POH,由的值,可求得PH和OH,可求得P点坐标;当P点在第三象限时,同理可求得P点坐标.
    【详解】
    (1)∵B(2,t)在直线y=x上,
    ∴t=2,
    ∴B(2,2),
    把A、B两点坐标代入抛物线解析式可得:,解得:,
    ∴抛物线解析式为;
    (2)如图1,过C作CD∥y轴,交x轴于点E,交OB于点D,过B作BF⊥CD于点F,∵点C是抛物线上第四象限的点,
    ∴可设C(t,2t2﹣3t),则E(t,0),D(t,t),
    ∴OE=t,BF=2﹣t,CD=t﹣(2t2﹣3t)=﹣2t2+4t,
    ∴S△OBC=S△CDO+S△CDB=CD•OE+CD•BF=(﹣2t2+4t)(t+2﹣t)=﹣2t2+4t,
    ∵△OBC的面积为2,
    ∴﹣2t2+4t=2,解得t1=t2=1,
    ∴C(1,﹣1);

    (3)存在.设MB交y轴于点N,
    如图2,
    ∵B(2,2),
    ∴∠AOB=∠NOB=45°,
    在△AOB和△NOB中,
    ∵∠AOB=∠NOB,OB=OB,∠ABO=∠NBO,
    ∴△AOB≌△NOB(ASA),
    ∴ON=OA=,
    ∴N(0,),
    ∴可设直线BN解析式为y=kx+,把B点坐标代入可得2=2k+,解得k=,
    ∴直线BN的解析式为,联立直线BN和抛物线解析式可得:,解得:或,
    ∴M(,),
    ∵C(1,﹣1),
    ∴∠COA=∠AOB=45°,且B(2,2),
    ∴OB=,OC=,
    ∵△POC∽△MOB,
    ∴,∠POC=∠BOM,
    当点P在第一象限时
    ,如图3,过M作MG⊥y轴于点G,过P作PH⊥x轴于点H,如图3
    ∵∠COA=∠BOG=45°,
    ∴∠MOG=∠POH,且∠PHO=∠MGO,
    ∴△MOG∽△POH,

    ∵M(,),
    ∴MG=,OG=,
    ∴PH=MG=,OH=OG=,
    ∴P(,);
    当点P在第三象限时,如图4,过M作MG⊥y轴于点G,过P作PH⊥y轴于点H,
    同理可求得PH=MG=,OH=OG=,
    ∴P(﹣,);
    综上可知:存在满足条件的点P,其坐标为(,)或(﹣,).

    【点睛】
    本题为二次函数的综合应用,涉及待定系数法、三角形的面积、二次函数的性质、全等三角形的判定和性质、相似三角形的判定和性质、方程思想及分类讨论思想等知识.在(1)中注意待定系数法的应用,在(2)中用C点坐标表示出△BOC的面积是解题的关键,在(3)中确定出点P的位置,构造相似三角形是解题的关键,注意分两种情况.
    21、(1)证明见解析;(2)
    【解析】
    (1)连接OC,如图,利用切线的性质得CO⊥CD,则AD∥CO,所以∠DAC=∠ACO,加上∠ACO=∠CAO,从而得到∠DAC=∠CAO;
    (2)设⊙O半径为r,利用勾股定理得到r2+27=(r+3)2,解得r=3,再利用锐角三角函数的定义计算出∠COE=60°,然后根据扇形的面积公式,利用S阴影=S△COE﹣S扇形COB进行计算即可.
    【详解】
    解:(1)连接OC,如图,
    ∵CD与⊙O相切于点E,
    ∴CO⊥CD,
    ∵AD⊥CD,
    ∴AD∥CO,
    ∴∠DAC=∠ACO,
    ∵OA=OC,
    ∴∠ACO=∠CAO,
    ∴∠DAC=∠CAO,
    即AC平分∠DAB;
    (2)设⊙O半径为r,
    在Rt△OEC中,∵OE2+EC2=OC2,
    ∴r2+27=(r+3)2,解得r=3,
    ∴OC=3,OE=6,
    ∴cos∠COE=,
    ∴∠COE=60°,
    ∴S阴影=S△COE﹣S扇形COB=•3•3﹣.

    【点睛】
    本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.简记作:见切点,连半径,见垂直.也考查了圆周角定理和扇形的面积公式.
    22、(1)y=﹣,y=﹣x﹣2(2)3(3)﹣4<x<0或x>2
    【解析】
    试题分析:(1)将B坐标代入反比例解析式中求出m的值,即可确定出反比例解析式;将A坐标代入反比例解析式求出n的值,确定出A的坐标,将A与B坐标代入一次函数解析式中求出k与b的值,即可确定出一次函数解析式;
    (2)对于直线AB,令y=0求出x的值,即可确定出C坐标,三角形AOB面积=三角形AOC面积+三角形BOC面积,求出即可;
    (3)由两函数交点A与B的横坐标,利用图象即可求出所求不等式的解集.
    试题解析:(1)∵B(2,﹣4)在y=上,
    ∴m=﹣1.
    ∴反比例函数的解析式为y=﹣.
    ∵点A(﹣4,n)在y=﹣上,
    ∴n=2.
    ∴A(﹣4,2).
    ∵y=kx+b经过A(﹣4,2),B(2,﹣4),
    ∴,
    解之得.
    ∴一次函数的解析式为y=﹣x﹣2.
    (2)∵C是直线AB与x轴的交点,
    ∴当y=0时,x=﹣2.
    ∴点C(﹣2,0).
    ∴OC=2.
    ∴S△AOB=S△ACO+S△BCO=×2×2+×2×4=3.
    (3)不等式的解集为:﹣4<x<0或x>2.
    23、(1)详见解析;(2)80°.
    【分析】(1)根据∠ACD=∠ADC,∠BCD=∠EDC=90°,可得∠ACB=∠ADE,进而运用SAS即可判定全等三角形;
    (2)根据全等三角形对应角相等,运用五边形内角和,即可得到∠BAE的度数.
    【解析】
    (1)根据∠ACD=∠ADC,∠BCD=∠EDC=90°,可得∠ACB=∠ADE,进而运用SAS即可判定全等三角形;
    (2)根据全等三角形对应角相等,运用五边形内角和,即可得到∠BAE的度数.
    【详解】
    证明:(1)∵AC=AD,
    ∴∠ACD=∠ADC,
    又∵∠BCD=∠EDC=90°,
    ∴∠ACB=∠ADE,
    在△ABC和△AED中,

    ∴△ABC≌△AED(SAS);
    解:(2)当∠B=140°时,∠E=140°,
    又∵∠BCD=∠EDC=90°,
    ∴五边形ABCDE中,∠BAE=540°﹣140°×2﹣90°×2=80°.
    【点睛】
    考点:全等三角形的判定与性质.
    24、(1)-6;(2).
    【解析】
    (1)由点B(﹣2,n)、D(3﹣3n,1)在反比例函数(x<0)的图象上可得﹣2n=3﹣3n,即可得出答案;
    (2)由(1)得出B、D的坐标,作DE⊥BC.延长DE交AB于点F,证△DBE≌△FBE得DE=FE=4,即可知点F(2,1),再利用待定系数法求解可得.
    【详解】
    解:(1)∵点B(﹣2,n)、D(3﹣3n,1)在反比例函数(x<0)的图象上,
    ∴,解得:;
    (2)由(1)知反比例函数解析式为,∵n=3,∴点B(﹣2,3)、D(﹣6,1),
    如图,过点D作DE⊥BC于点E,延长DE交AB于点F,
    在△DBE和△FBE中,∵∠DBE=∠FBE,BE=BE,∠BED=∠BEF=90°,
    ∴△DBE≌△FBE(ASA),∴DE=FE=4,
    ∴点F(2,1),将点B(﹣2,3)、F(2,1)代入y=kx+b,
    ∴,解得:,
    ∴.

    【点睛】
    本题主要考查了反比例函数与一次函数的综合问题,解题的关键是能借助全等三角形确定一些相关线段的长.

    相关试卷

    新疆维吾尔自治区伊犁哈萨克自治州伊宁县2023-2024学年七年级上学期期中数学试题(含解析): 这是一份新疆维吾尔自治区伊犁哈萨克自治州伊宁县2023-2024学年七年级上学期期中数学试题(含解析),共11页。试卷主要包含了精心选一选.,细心填一填.,专心解一解.等内容,欢迎下载使用。

    新疆维吾尔自治区 伊犁哈萨克自治州 伊宁县2023-2024学年 上学期七年级数学 期中试题: 这是一份新疆维吾尔自治区 伊犁哈萨克自治州 伊宁县2023-2024学年 上学期七年级数学 期中试题,共2页。

    新疆维吾尔自治区伊犁哈萨克自治州伊宁县2023-2024学年八年级上学期11月期中数学试题: 这是一份新疆维吾尔自治区伊犁哈萨克自治州伊宁县2023-2024学年八年级上学期11月期中数学试题,共11页。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map