2022年陕西省定边县重点名校中考押题数学预测卷含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.如图,将图1中阴影部分拼成图2,根据两个图形中阴影部分的关系,可以验证下列哪个计算公式( )
A.(a+b)(a﹣b)=a2﹣b2 B.(a﹣b)2=a2﹣2ab+b2
C.(a+b)2=a2+2ab+b2 D.(a+b)2=(a﹣b)2+4ab
2.2016的相反数是( )
A. B. C. D.
3.如图是由四个相同的小正方体堆成的物体,它的正视图是( )
A. B. C. D.
4.将抛物线向右平移 1 个单位长度,再向下平移 3 个单位长度,所得的抛物线的函数表达式为( )
A. B.
C. D.
5.如图,A(4,0),B(1,3),以OA、OB为边作□OACB,反比例函数(k≠0)的图象经过点C.则下列结论不正确的是( )
A.□OACB的面积为12
B.若y<3,则x>5
C.将□OACB向上平移12个单位长度,点B落在反比例函数的图象上.
D.将□OACB绕点O旋转180°,点C的对应点落在反比例函数图象的另一分支上.
6.剪纸是水族的非物质文化遗产之一,下列剪纸作品是中心对称图形的是( )
A. B.
C. D.
7.关于x的一元二次方程x2﹣2x+k+2=0有实数根,则k的取值范围在数轴上表示正确的是( )
A. B.
C. D.
8.制作一块3m×2m长方形广告牌的成本是120元,在每平方米制作成本相同的情况下,若将此广告牌的四边都扩大为原来的3倍,那么扩大后长方形广告牌的成本是( )
A.360元 B.720元 C.1080元 D.2160元
9.如图是某蓄水池的横断面示意图,分为深水池和浅水池,如果向这个蓄水池以固定的流量注水,下面能大致表示水的最大深度与时间之间的关系的图象是( )
A. B. C. D.
10.如图,直线y=kx+b与x轴交于点(﹣4,0),则y>0时,x的取值范围是( )
A.x>﹣4 B.x>0 C.x<﹣4 D.x<0
二、填空题(共7小题,每小题3分,满分21分)
11.从﹣2,﹣1,1,2四个数中,随机抽取两个数相乘,积为大于﹣4小于2的概率是__.
12.如图,在平面直角坐标系中,抛物线y=﹣x2+4x与x轴交于点A,点M是x轴上方抛物线上一点,过点M作MP⊥x轴于点P,以MP为对角线作矩形MNPQ,连结NQ,则对角线NQ的最大值为_________.
13.如果m,n互为相反数,那么|m+n﹣2016|=___________.
14.关于的方程有两个不相等的实数根,那么的取值范围是__________.
15.4的平方根是 .
16.我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳记数”.如图,一位妇女在从右到左依次排列的绳子上打结,满六进一,用来记录采集到的野果数量,由图可知,她一共采集到的野果数量为_____个.
17.如图,半径为5的半圆的初始状态是直径平行于桌面上的直线b,然后把半圆沿直线b进行无滑动滚动,使半圆的直径与直线b重合为止,则圆心O运动路径的长度等于_____.
三、解答题(共7小题,满分69分)
18.(10分)如图,一农户要建一个矩形猪舍,猪舍的一边利用长为12m的住房墙,另外三边用25m长的建筑材料围成,为方便进出,在垂直于住房墙的一边留一个1m宽的门,所围矩形猪舍的长、宽分别为多少时,猪舍面积为80m2?
19.(5分)(1)计算:sin45°
(2)解不等式组:
20.(8分)如图,在平行四边形ABCD中,过点A作AE⊥DC,垂足为点E,连接BE,点F为BE上一点,连接AF,∠AFE=∠D.
(1)求证:∠BAF=∠CBE;
(2)若AD=5,AB=8,sinD=.求证:AF=BF.
21.(10分)解不等式组
请结合题意填空,完成本题的解答.
(I)解不等式(1),得 ;
(II)解不等式(2),得 ;
(III)把不等式①和②的解集在数轴上表示出来:
(IV)原不等式组的解集为 .
22.(10分)在“双十二”期间,两个超市开展促销活动,活动方式如下:
超市:购物金额打9折后,若超过2000元再优惠300元;
超市:购物金额打8折.
某学校计划购买某品牌的篮球做奖品,该品牌的篮球在两个超市的标价相同,根据商场的活动方式:若一次性付款4200元购买这种篮球,则在商场购买的数量比在商场购买的数量多5个,请求出这种篮球的标价;学校计划购买100个篮球,请你设计一个购买方案,使所需的费用最少.(直接写出方案)
23.(12分)已知抛物线经过点,.把抛物线与线段围成的封闭图形记作.
(1)求此抛物线的解析式;
(2)点为图形中的抛物线上一点,且点的横坐标为,过点作轴,交线段于点.当为等腰直角三角形时,求的值;
(3)点是直线上一点,且点的横坐标为,以线段为边作正方形,且使正方形与图形在直线的同侧,当,两点中只有一个点在图形的内部时,请直接写出的取值范围.
24.(14分)如图,AB是⊙O的一条弦,E是AB的中点,过点E作EC⊥OA于点C,过点B作⊙O的切线交CE的延长线于点D.
(1)求证:DB=DE;
(2)若AB=12,BD=5,求⊙O的半径.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、B
【解析】
根据图形确定出图1与图2中阴影部分的面积,由此即可解答.
【详解】
∵图1中阴影部分的面积为:(a﹣b)2;图2中阴影部分的面积为:a2﹣2ab+b2;
∴(a﹣b)2=a2﹣2ab+b2,
故选B.
【点睛】
本题考查了完全平方公式的几何背景,用不同的方法表示出阴影部分的面积是解题的关键.
2、C
【解析】
根据相反数的定义“只有符号不同的两个数互为相反数”可知:2016的相反数是-2016.
故选C.
3、A
【解析】
【分析】根据正视图是从物体的正面看得到的图形即可得.
【详解】从正面看可得从左往右2列正方形的个数依次为2,1,
如图所示:
故选A.
【点睛】本题考查了三视图的知识,正视图是从物体的正面看得到的视图.
4、A
【解析】
根据二次函数的平移规律即可得出.
【详解】
解:向右平移 1 个单位长度,再向下平移 3 个单位长度,所得的抛物线的函数表达式为
故答案为:A.
【点睛】
本题考查了二次函数的平移,解题的关键是熟知二次函数的平移规律.
5、B
【解析】
先根据平行四边形的性质得到点的坐标,再代入反比例函数(k≠0)求出其解析式,再根据反比例函数的图象与性质对选项进行判断.
【详解】
解:A(4,0),B(1,3),,
,
反比例函数(k≠0)的图象经过点,
,
反比例函数解析式为.
□OACB的面积为,正确;
当时,,故错误;
将□OACB向上平移12个单位长度,点的坐标变为,在反比例函数图象上,故正确;
因为反比例函数的图象关于原点中心对称,故将□OACB绕点O旋转180°,点C的对应点落在反比例函数图象的另一分支上,正确.
故选:B.
【点睛】
本题综合考查了平行四边形的性质和反比例函数的图象与性质,结合图形,熟练掌握和运用相关性质定理是解答关键.
6、D
【解析】
根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心进行分析即可.
【详解】
解:A、不是中心对称图形,故此选项错误;
B、不是中心对称图形,故此选项错误;
C、不是中心对称图形,故此选项错误;
D、是中心对称图形,故此选项正确;
故选:D.
【点睛】
此题主要考查了中心对称图形,关键是掌握中心对称图形的定义.
7、C
【解析】
由一元二次方程有实数根可知△≥0,即可得出关于k的一元一次不等式,解之即可得出k的取值范围.
【详解】
∵关于x的一元二次方程x2−2x+k+2=0有实数根,
∴△=(−2)2−4(k+2)⩾0,
解得:k⩽−1,
在数轴上表示为:
故选C.
【点睛】
本题考查了一元二次方程根的判别式.根据一元二次方程根的情况利用根的判别式列出不等式是解题的关键.
8、C
【解析】
根据题意求出长方形广告牌每平方米的成本,根据相似多边形的性质求出扩大后长方形广告牌的面积,计算即可.
【详解】
3m×2m=6m2,
∴长方形广告牌的成本是120÷6=20元/m2,
将此广告牌的四边都扩大为原来的3倍,
则面积扩大为原来的9倍,
∴扩大后长方形广告牌的面积=9×6=54m2,
∴扩大后长方形广告牌的成本是54×20=1080元,
故选C.
【点睛】
本题考查的是相似多边形的性质,掌握相似多边形的面积比等于相似比的平方是解题的关键.
9、C
【解析】
首先看图可知,蓄水池的下部分比上部分的体积小,故h与t的关系变为先快后慢.
【详解】
根据题意和图形的形状,可知水的最大深度h与时间t之间的关系分为两段,先快后慢。
故选:C.
【点睛】
此题考查函数的图象,解题关键在于观察图形
10、A
【解析】
试题分析:充分利用图形,直接从图上得出x的取值范围.
由图可知,当y<1时,x<-4,故选C.
考点:本题考查的是一次函数的图象
点评:解答本题的关键是掌握在x轴下方的部分y<1,在x轴上方的部分y>1.
二、填空题(共7小题,每小题3分,满分21分)
11、
【解析】
列表得出所有等可能结果,从中找到积为大于-4小于2的结果数,根据概率公式计算可得.
【详解】
解:列表如下:
| -2 | -1 | 1 | 2 |
-2 |
| 2 | -2 | -4 |
-1 | 2 |
| -1 | -2 |
1 | -2 | -1 |
| 2 |
2 | -4 | -2 | 2 |
|
由表可知,共有12种等可能结果,其中积为大于-4小于2的有6种结果,
∴积为大于-4小于2的概率为=,
故答案为:.
【点睛】
此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;用到的知识点为:概率=所求情况数与总情况数之比.
12、4
【解析】
∵四边形MNPQ是矩形,
∴NQ=MP,
∴当MP最大时,NQ就最大.
∵点M是抛物线在轴上方部分图象上的一点,且MP⊥轴于点P,
∴当点M是抛物线的顶点时,MP的值最大.
∵,
∴抛物线的顶点坐标为(2,4),
∴当点M的坐标为(2,4)时,MP最大=4,
∴对角线NQ的最大值为4.
13、1.
【解析】
试题分析:先用相反数的意义确定出m+n=0,从而求出|m+n﹣1|,∵m,n互为相反数,∴m+n=0,∴|m+n﹣1|=|﹣1|=1;故答案为1.
考点:1.绝对值的意义;2.相反数的性质.
14、且
【解析】
分析:根据一元二次方程的定义以及根的判别式的意义可得△=4-12m>1且m≠1,求出m的取值范围即可.
详解:∵一元二次方程mx2-2x+3=1有两个不相等的实数根,
∴△>1且m≠1,
∴4-12m>1且m≠1,
∴m<且m≠1,
故答案为:m<且m≠1.
点睛:本题考查了一元二次方程ax2+bx+c=1(a≠1,a,b,c为常数)根的判别式△=b2-4ac.当△>1,方程有两个不相等的实数根;当△=1,方程有两个相等的实数根;当△<1,方程没有实数根.也考查了一元二次方程的定义.
15、±1.
【解析】
试题分析:∵,∴4的平方根是±1.故答案为±1.
考点:平方根.
16、1
【解析】
分析:类比于现在我们的十进制“满十进一”,可以表示满六进一的数为:万位上的数×64+千位上的数×63+百位上的数×62+十位上的数×6+个位上的数,即1×64+2×63+3×62+0×6+2=1.
详解:2+0×6+3×6×6+2×6×6×6+1×6×6×6×6=1,
故答案为:1.
点睛:本题是以古代“结绳计数”为背景,按满六进一计数,运用了类比的方法,根据图中的数学列式计算;本题题型新颖,一方面让学生了解了古代的数学知识,另一方面也考查了学生的思维能力.
17、5π
【解析】
根据题意得出球在无滑动旋转中通过的路程为圆弧,根据弧长公式求出弧长即可.
【详解】
解:由图形可知,圆心先向前走OO1的长度,从O到O1的运动轨迹是一条直线,长度为圆的周长,
然后沿着弧O1O2旋转圆的周长,
则圆心O运动路径的长度为:×2π×5=5π,
故答案为5π.
【点睛】
本题考查的是弧长的计算和旋转的知识,解题关键是确定半圆作无滑动翻转所经过的路线并求出长度.
三、解答题(共7小题,满分69分)
18、10,1.
【解析】
试题分析:可以设矩形猪舍垂直于住房墙一边长为m,可以得出平行于墙的一边的长为m,由题意得出方程求出边长的值.
试题解析:设矩形猪舍垂直于住房墙一边长为m,可以得出平行于墙的 一边的长为m,由题意得化简,得,解得:
当时,(舍去),
当时,,
答:所围矩形猪舍的长为10m、宽为1m.
考点:一元二次方程的应用题.
19、(1);(2)﹣2<x≤1.
【解析】
(1)根据绝对值、特殊角的三角函数值可以解答本题;
(2)根据解一元一次不等式组的方法可以解答本题.
【详解】
(1)sin45°
=3-+×-5+×
=3-+3-5+1
=7--5;
(2)(2)
由不等式①,得
x>-2,
由不等式②,得
x≤1,
故原不等式组的解集是-2<x≤1.
【点睛】
本题考查解一元一次不等式组、实数的运算、特殊角的三角函数值,解答本题的关键是明确解它们各自的解答方法.
20、(1)见解析;(2)2.
【解析】
(1)根据相似三角形的判定,易证△ABF∽△BEC,从而可以证明∠BAF=∠CBE成立;
(2)根据锐角三角函数和三角形的相似可以求得AF的长
【详解】
(1)证明:∵四边形ABCD是平行四边形,
∴AB∥CD,AD∥BC,AD=BC,
∴∠D+∠C=180°,∠ABF=∠BEC,
∵∠AFB+∠AFE=180°,∠AFE=∠D,
∴∠C=∠AFB,
∴△ABF∽△BEC,
∴∠BAF=∠CBE;
(2)∵AE⊥DC,AD=5,AB=8,sin∠D=,
∴AE=4,DE=3
∴EC=5
∵AE⊥DC,AB∥DC,
∴∠AED=∠BAE=90°,
在Rt△ABE中,根据勾股定理得:BE=
∵BC=AD=5,
由(1)得:△ABF∽△BEC,
∴ ==
即 ==
解得:AF=BF=2
【点睛】
本题考查相似三角形的判定与性质、平行四边形的性质、解直角三角形,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答
21、(1)x≥;(1)x≤1;(3)答案见解析;(4)≤x≤1.
【解析】
分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.
【详解】
解:(I)解不等式(1),得x≥;
(II)解不等式(1),得x≤1;
(III)把不等式①和②的解集在数轴上表示出来:
(IV)原不等式组的解集为:≤x≤1.
故答案为x≥、x≤1、≤x≤1.
【点睛】
本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.
22、(1)这种篮球的标价为每个50元;(2)见解析
【解析】
(1)设这种篮球的标价为每个x元,根据题意可知在B超市可买篮球个,在A超市可买篮球个,根据在B商场比在A商场多买5个列方程进行求解即可;
(2)分情况,单独在A超市买100个、单独在B超市买100个、两家超市共买100个进行讨论即可得.
【详解】
(1)设这种篮球的标价为每个x元,
依题意,得,
解得:x=50,
经检验:x=50是原方程的解,且符合题意,
答:这种篮球的标价为每个50元;
(2)购买100个篮球,最少的费用为3850元,
单独在A超市一次买100个,则需要费用:100×50×0.9-300=4200元,
在A超市分两次购买,每次各买50个,则需要费用:2(50×50×0.9-300)=3900元,
单独在B超市购买:100×50×0.8=4000元,
在A、B两个超市共买100个,
根据A超市的方案可知在A超市一次购买:=44,即购买45个时花费最小,为45×50×0.9-300=1725元,两次购买,每次各买45个,需要1725×2=3450元,其余10个在B超市购买,需要10×50×0.8=400元,这样一共需要3450+400=3850元,
综上可知最少费用的购买方案:在A超市分两次购买,每次购买45个篮球,费用共为3450元;在B超市购买10个,费用400元,两超市购买100个篮球总费用3850元.
【点睛】
本题考查了分式方程的应用,弄清题意,找准等量关系列出方程是解题的关键.
23、(1);(2)-2或-1;(3)-1≤n<1或1<n≤3.
【解析】
(1)把点,代入抛物线得关于a,b的二元一次方程组,解出这个方程组即可;
(2)根据题意画出图形,分三种情况进行讨论;
(3)作出图形,把其中一点恰好在抛物线上时算出,再确定其取值范围.
【详解】
解:(1)依题意,得:
解得:
∴此抛物线的解析式 ;
(2)设直线AB的解析式为y=kx+b,依题意得:
解得:
∴直线AB的解析式为y=-x.
∵点P的横坐标为m,且在抛物线上,
∴点P的坐标为(m, )
∵轴,且点Q有线段AB上,
∴点Q的坐标为(m,-m)
① 当PQ=AP时,如图,∵∠APQ=90°,轴,
∴
解得,m=-2或m=1(舍去)
② 当AQ=AP时,如图,过点A作AC⊥PQ于C,
∵为等腰直角三角形,
∴2AC=PQ
即m=1(舍去)或m=-1.
综上所述,当为等腰直角三角形时,求的值是-2惑-1.;
(3)①如图,当n<1时,依题意可知C,D的横坐标相同,CE=2(1-n)
∴点E的坐标为(n,n-2)
当点E恰好在抛物线上时,解得,n=-1.
∴此时n的取值范围-1≤n<1.
②如图,当n>1时,依题可知点E的坐标为(2-n,-n)
当点E在抛物线上时,
解得,n=3或n=1.
∵n>1.
∴n=3.
∴此时n的取值范围1<n≤3.
综上所述,n的取值范围为-1≤n<1或1<n≤3.
【点睛】
本题主要考查了二次函数与几何图形的综合应用,掌握相关几何图形的性质和二次函数的性质是解题的关键.
24、(1)证明见解析;(2)
【解析】
试题分析:(1)由切线性质及等量代换推出∠4=∠5,再利用等角对等边可得出结论;
(2)由已知条件得出sin∠DEF和sin∠AOE的值,利用对应角的三角函数值相等推出结论.
试题解析:(1)∵DC⊥OA, ∴∠1+∠3=90°, ∵BD为切线,∴OB⊥BD, ∴∠2+∠5=90°, ∵OA=OB, ∴∠1=∠2,∵∠3=∠4,∴∠4=∠5,在△DEB中, ∠4=∠5,∴DE=DB.
(2)作DF⊥AB于F,连接OE,∵DB=DE, ∴EF=BE=3,在 RT△DEF中,EF=3,DE=BD=5,EF=3 , ∴DF=∴sin∠DEF== , ∵∠AOE=∠DEF, ∴在RT△AOE中,sin∠AOE= ,
∵AE=6, ∴AO=.
【点睛】本题考查了圆的性质,切线定理,三角形相似,三角函数等知识,结合图形正确地选择相应的知识点与方法进行解题是关键.
2022年陕西省延安市重点名校中考数学押题卷含解析: 这是一份2022年陕西省延安市重点名校中考数学押题卷含解析,共18页。试卷主要包含了下列各数中,为无理数的是,五个新篮球的质量,已知,则的值是,a的倒数是3,则a的值是,如图所示的几何体的左视图是等内容,欢迎下载使用。
2022年陕西省定边县中考数学押题卷含解析: 这是一份2022年陕西省定边县中考数学押题卷含解析,共21页。试卷主要包含了一、单选题等内容,欢迎下载使用。
2022年河北保定曲阳县重点名校中考押题数学预测卷含解析: 这是一份2022年河北保定曲阳县重点名校中考押题数学预测卷含解析,共24页。试卷主要包含了下列运算正确的是,计算6m3÷的结果是,已知点 A等内容,欢迎下载使用。