终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    2022年四川省三台县市级名校中考数学押题卷含解析

    立即下载
    加入资料篮
    2022年四川省三台县市级名校中考数学押题卷含解析第1页
    2022年四川省三台县市级名校中考数学押题卷含解析第2页
    2022年四川省三台县市级名校中考数学押题卷含解析第3页
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年四川省三台县市级名校中考数学押题卷含解析

    展开

    这是一份2022年四川省三台县市级名校中考数学押题卷含解析,共21页。试卷主要包含了下列方程中,没有实数根的是,若,则的值为等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    注意事项
    1.考试结束后,请将本试卷和答题卡一并交回.
    2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
    3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
    4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
    5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.今年我市计划扩大城区绿地面积,现有一块长方形绿地,它的短边长为60m,若将短边增长到长边相等(长边不变),使扩大后的棣地的形状是正方形,则扩大后的绿地面积比原来增加1600,设扩大后的正方形绿地边长为xm,下面所列方程正确的是( )
    A.x(x-60)=1600
    B.x(x+60)=1600
    C.60(x+60)=1600
    D.60(x-60)=1600
    2.如果将抛物线向下平移1个单位,那么所得新抛物线的表达式是
    A. B. C. D.
    3.下面的几何图形是由四个相同的小正方体搭成的,其中主视图和左视图相同的是(  )
    A. B. C. D.
    4.如图1,在等边△ABC中,D是BC的中点,P为AB 边上的一个动点,设AP=x,图1中线段DP的长为y,若表示y与x的函数关系的图象如图2所示,则△ABC的面积为( )

    A.4 B. C.12 D.
    5.浙江省陆域面积为101800平方千米。数据101800用科学记数法表示为( )
    A.1.018×104 B.1.018×105 C.10.18×105 D.0.1018×106
    6.已知矩形ABCD中,AB=3,BC=4,E为BC的中点,以点B为圆心,BA的长为半径画圆,交BC于点F,再以点C为圆心,CE的长为半径画圆,交CD于点G,则S1-S2=(  )

    A.6 B. C.12﹣π D.12﹣π
    7.如图,是由7个相同的小立方体木块堆成的一个几何体,拿掉1个小立方体木块之后,这个几何体的主(正)视图没变,则拿掉这个小立方体木块之后的几何体的俯视图是(  )

    A. B. C. D.
    8.下列方程中,没有实数根的是( )
    A. B.
    C. D.
    9.若,则的值为( )
    A.12 B.2 C.3 D.0
    10.如图所示的几何体是一个圆锥,下面有关它的三视图的结论中,正确的是(  )

    A.主视图是中心对称图形
    B.左视图是中心对称图形
    C.主视图既是中心对称图形又是轴对称图形
    D.俯视图既是中心对称图形又是轴对称图形
    11.二次函数(a、b、c是常数,且a≠0)的图象如图所示,下列结论错误的是( )

    A.4ac<b2 B.abc<0 C.b+c>3a D.a<b
    12.某反比例函数的图象经过点(-2,3),则此函数图象也经过( )
    A.(2,-3) B.(-3,3) C.(2,3) D.(-4,6)
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.关于x的方程kx2﹣(2k+1)x+k+2=0有实数根,则k的取值范围是_____.
    14.如图,五边形是正五边形,若,则__________.

    15.已知一组数据,,,,的平均数是,那么这组数据的方差等于________.
    16.如图,在△ABC中,AB=AC,以点C为圆心,以CB长为半径作圆弧,交AC的延长线于点D,连结BD,若∠A=32°,则∠CDB的大小为_____度.

    17.若关于x的分式方程的解为非负数,则a的取值范围是_____.
    18.计算的结果是____.
    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)某校开展“我最喜爱的一项体育活动”调查,要求每名学生必选且只能选一项,现随机抽查了m名学生,并将其结果绘制成如下不完整的条形图和扇形图.

    请结合以上信息解答下列问题:
    (1)m=   ;
    (2)请补全上面的条形统计图;
    (3)在图2中,“乒乓球”所对应扇形的圆心角的度数为   ;
    (4)已知该校共有1200名学生,请你估计该校约有   名学生最喜爱足球活动.
    20.(6分)已知:如图,E,F是▱ABCD的对角线AC上的两点,BE∥DF.
    求证:AF=CE.

    21.(6分)为了提高服务质量,某宾馆决定对甲、乙两种套房进行星级提升,已知甲种套房提升费用比乙种套房提升费用少3万元,如果提升相同数量的套房,甲种套房费用为625万元,乙种套房费用为700万元.
    (1)甲、乙两种套房每套提升费用各多少万元?
    (2)如果需要甲、乙两种套房共80套,市政府筹资金不少于2090万元,但不超过2096万元,且所筹资金全部用于甲、乙种套房星级提升,市政府对两种套房的提升有几种方案?哪一种方案的提升费用最少?
    (3)在(2)的条件下,根据市场调查,每套乙种套房的提升费用不会改变,每套甲种套房提升费用将会提高a万元(a>0),市政府如何确定方案才能使费用最少?
    22.(8分)如图,抛物线y=-x2+bx+c与x轴交于A、B两点,且B点的坐标为(3,0),经过A点的直线交抛物线于点D (2, 3).求抛物线的解析式和直线AD的解析式;过x轴上的点E (a,0) 作直线EF∥AD,交抛物线于点F,是否存在实数a,使得以A、D、E、F为顶点的四边形是平行四边形?如果存在,求出满足条件的a;如果不存在,请说明理由.

    23.(8分)某高校学生会在某天午餐后,随机调查了部分同学就餐饭菜的剩余情况,并将结果统计后绘制成了如图所示的不完整的统计图.

    (1)这次被调查的同学共有名;
    (2)补全条形统计图;
    (3)计算在扇形统计图中剩大量饭菜所对应扇形圆心角的度数;
    (4)校学生会通过数据分析,估计这次被调查的所有学生一餐浪费的食物可以供200人用一餐.据此估算,该校20000名学生一餐浪费的食物可供多少人食用一餐?
    24.(10分)某中学为了考察九年级学生的中考体育测试成绩(满分30分),随机抽查了40名学生的成绩(单位:分),得到如下的统计图①和图②.请根据相关信息,解答下列问题:

    (1)图中m的值为_______________.
    (2)求这40个样本数据的平均数、众数和中位数:
    (3)根据样本数据,估计该中学九年级2000名学生中,体育测试成绩得满分的大约有多少名学生。
    25.(10分)如图,以D为顶点的抛物线y=﹣x2+bx+c交x轴于A、B两点,交y轴于点C,直线BC的表达式为y=﹣x+1.求抛物线的表达式;在直线BC上有一点P,使PO+PA的值最小,求点P的坐标;在x轴上是否存在一点Q,使得以A、C、Q为顶点的三角形与△BCD相似?若存在,请求出点Q的坐标;若不存在,请说明理由.

    26.(12分)计算:(﹣4)×(﹣)+2﹣1﹣(π﹣1)0+.
    27.(12分)如图, 二次函数的图象与 x 轴交于和两点,与 y 轴交于点 C,一次函数的图象过点 A、C.

    (1)求二次函数的表达式
    (2)根据函数图象直接写出使二次函数值大于一次函数值的自变量 x 的取值范围.



    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、A
    【解析】
    试题分析:根据题意可得扩建的部分相当于一个长方形,这个长方形的长和宽分别为x米和(x-60)米,根据长方形的面积计算法则列出方程.
    考点:一元二次方程的应用.
    2、C
    【解析】
    根据向下平移,纵坐标相减,即可得到答案.
    【详解】
    ∵抛物线y=x2+2向下平移1个单位,
    ∴抛物线的解析式为y=x2+2-1,即y=x2+1.
    故选C.
    3、C
    【解析】
    试题分析:观察可得,只有选项C的主视图和左视图相同,都为,故答案选C.
    考点:简单几何体的三视图.
    4、D
    【解析】
    分析:
    由图1、图2结合题意可知,当DP⊥AB时,DP最短,由此可得DP最短=y最小=,这样如图3,过点P作PD⊥AB于点P,连接AD,结合△ABC是等边三角形和点D是BC边的中点进行分析解答即可.
    详解:
    由题意可知:当DP⊥AB时,DP最短,由此可得DP最短=y最小=,如图3,过点P作PD⊥AB于点P,连接AD,
    ∵△ABC是等边三角形,点D是BC边上的中点,
    ∴∠ABC=60°,AD⊥BC,
    ∵DP⊥AB于点P,此时DP=,
    ∴BD=,
    ∴BC=2BD=4,
    ∴AB=4,
    ∴AD=AB·sin∠B=4×sin60°=,
    ∴S△ABC=AD·BC=.
    故选D.

    点睛:“读懂题意,知道当DP⊥AB于点P时,DP最短=”是解答本题的关键.
    5、B
    【解析】
    .
    故选B.
    点睛:在把一个绝对值较大的数用科学记数法表示为的形式时,我们要注意两点:①必须满足:;②比原来的数的整数位数少1(也可以通过小数点移位来确定).
    6、D
    【解析】
    根据题意可得到CE=2,然后根据S1﹣S2 =S矩形ABCD-S扇形ABF-S扇形GCE,即可得到答案
    【详解】
    解:∵BC=4,E为BC的中点,
    ∴CE=2,
    ∴S1﹣S2=3×4﹣ ,
    故选D.
    【点睛】
    此题考查扇形面积的计算,矩形的性质及面积的计算.
    7、B
    【解析】
    俯视图是从上面看几何体得到的图形,据此进行判断即可.
    【详解】
    由7个相同的小立方体木块堆成的一个几何体,拿掉1个小立方体木块之后,这个几何体的主(正)视图没变,得
    拿掉第一排的小正方形,
    拿掉这个小立方体木块之后的几何体的俯视图是,
    故选B.
    【点睛】
    本题主要考查了简单几何体的三视图,解题时注意:俯视图就是从几何体上面看到的图形.
    8、B
    【解析】
    分别计算四个方程的判别式的值,然后根据判别式的意义确定正确选项.
    【详解】
    解:A、△=(-2)2-4×(-3)=16>0,方程有两个不相等的两个实数根,所以A选项错误;
    B、△=(-2)2-4×3=-8<0,方程没有实数根,所以B选项正确;
    C、△=(-2)2-4×1=0,方程有两个相等的两个实数根,所以C选项错误;
    D、△=(-2)2-4×(-1)=8>0,方程有两个不相等的两个实数根,所以D选项错误.
    故选:B.
    【点睛】
    本题考查根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:当△>0根时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.
    9、A
    【解析】
    先根据得出,然后利用提公因式法和完全平方公式对进行变形,然后整体代入即可求值.
    【详解】
    ∵,
    ∴,
    ∴.
    故选:A.
    【点睛】
    本题主要考查整体代入法求代数式的值,掌握完全平方公式和整体代入法是解题的关键.
    10、D
    【解析】
    先得到圆锥的三视图,再根据中心对称图形和轴对称图形的定义求解即可.
    【详解】
    解:A、主视图不是中心对称图形,故A错误;
    B、左视图不是中心对称图形,故B错误;
    C、主视图不是中心对称图形,是轴对称图形,故C错误;
    D、俯视图既是中心对称图形又是轴对称图形,故D正确.
    故选:D.
    【点睛】
    本题考查简单几何体的三视图,中心对称图形和轴对称图形,熟练掌握各自的定义是解题关键.
    11、D
    【解析】
    根据二次函数的图象与性质逐一判断即可求出答案.
    【详解】
    由图象可知:△>0,
    ∴b2﹣4ac>0,
    ∴b2>4ac,
    故A正确;
    ∵抛物线开口向上,
    ∴a<0,
    ∵抛物线与y轴的负半轴,
    ∴c<0,
    ∵抛物线对称轴为x=<0,
    ∴b<0,
    ∴abc<0,
    故B正确;
    ∵当x=1时,y=a+b+c>0,
    ∵4a<0,
    ∴a+b+c>4a,
    ∴b+c>3a,
    故C正确;
    ∵当x=﹣1时,y=a﹣b+c>0,
    ∴a﹣b+c>c,
    ∴a﹣b>0,
    ∴a>b,
    故D错误;
    故选D.
    考点:本题主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程、不等式之间的转换,根的判别式的熟练运用.
    12、A
    【解析】
    设反比例函数y=(k为常数,k≠0),由于反比例函数的图象经过点(-2,3),则k=-6,然后根据反比例函数图象上点的坐标特征分别进行判断.
    【详解】
    设反比例函数y=(k为常数,k≠0),
    ∵反比例函数的图象经过点(-2,3),
    ∴k=-2×3=-6,
    而2×(-3)=-6,(-3)×(-3)=9,2×3=6,-4×6=-24,
    ∴点(2,-3)在反比例函数y=- 的图象上.
    故选A.
    【点睛】
    本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、k≤.
    【解析】
    分k=1及k≠1两种情况考虑:当k=1时,通过解一元一次方程可得出原方程有解,即k=1符合题意;等k≠1时,由△≥1即可得出关于k的一元一次不等式,解之即可得出k的取值范围.综上此题得解.
    【详解】
    当k=1时,原方程为-x+2=1,
    解得:x=2,
    ∴k=1符合题意;
    当k≠1时,有△=[-(2k+1)]2-4k(k+2)≥1,
    解得:k≤且k≠1.
    综上:k的取值范围是k≤.
    故答案为:k≤.
    【点睛】
    本题考查了根的判别式以及一元二次方程的定义,分k=1及k≠1两种情况考虑是解题的关键.
    14、72
    【解析】
    分析:延长AB交于点F,根据得到∠2=∠3,根据五边形是正五边形得到∠FBC=72°,最后根据三角形的外角等于与它不相邻的两个内角的和即可求出.
    详解:延长AB交于点F,

    ∵,
    ∴∠2=∠3,
    ∵五边形是正五边形,
    ∴∠ABC=108°,
    ∴∠FBC=72°,
    ∠1-∠2=∠1-∠3=∠FBC=72°
    故答案为:72°.
    点睛:此题主要考查了平行线的性质和正五边形的性质,正确把握五边形的性质是解题关键.
    15、5.2
    【解析】
    分析:首先根据平均数求出x的值,然后根据方差的计算法则进行计算即可得出答案.
    详解:∵平均数为6, ∴(3+4+6+x+9)÷5=6, 解得:x=8,
    ∴方差为:.
    点睛:本题主要考查的是平均数和方差的计算法则,属于基础题型.明确计算公式是解决这个问题的关键.
    16、1
    【解析】
    根据等腰三角形的性质以及三角形内角和定理在△ABC中可求得∠ACB=∠ABC=74°,根据等腰三角形的性质以及三角形外角的性质在△BCD中可求得∠CDB=∠CBD=∠ACB=1°.
    【详解】
    ∵AB=AC,∠A=32°,
    ∴∠ABC=∠ACB=74°,
    又∵BC=DC,
    ∴∠CDB=∠CBD=∠ACB=1°,
    故答案为1.
    【点睛】
    本题主要考查等腰三角形的性质,三角形外角的性质,掌握等边对等角是解题的关键,注意三角形内角和定理的应用.
    17、且
    【解析】
    分式方程去分母得:2(2x-a)=x-2,
    去括号移项合并得:3x=2a-2,
    解得:,
    ∵分式方程的解为非负数,
    ∴ 且 ,
    解得:a≥1 且a≠4 .
    18、
    【解析】
    原式= ,
    故答案为.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、(1)150,(2)36°,(3)1.
    【解析】
    (1)根据图中信息列式计算即可;
    (2)求得“足球“的人数=150×20%=30人,补全上面的条形统计图即可;
    (3)360°×乒乓球”所占的百分比即可得到结论;
    (4)根据题意计算即可.
    【详解】
    (1)m=21÷14%=150,
    (2)“足球“的人数=150×20%=30人,
    补全上面的条形统计图如图所示;
    (3)在图2中,“乒乓球”所对应扇形的圆心角的度数为360°×=36°;
    (4)1200×20%=1人,
    答:估计该校约有1名学生最喜爱足球活动.
    故答案为150,36°,1.

    【点睛】
    本题考查了条形统计图,观察条形统计图、扇形统计图获得有效信息是解题关键.
    20、参见解析.
    【解析】
    分析:先证∠ACB=∠CAD,再证出△BEC≌△DFA,从而得出CE=AF.
    详解:
    证明:平行四边形中,,,

    又,



    点睛:本题利用了平行四边形的性质,全等三角形的判定和性质.
    21、(1)甲:25万元;乙:28万元;(2)三种方案;甲种套房提升50套,乙种套房提升30套费用最少;(3)当a=3时,三种方案的费用一样,都是2240万元;当a>3时,取m=48时费用最省;当0<a<3时,取m=50时费用最省.
    【解析】
    试题分析:(1)设甲种套房每套提升费用为x万元,根据题意建立方程求出其解即可;
    (2)设甲种套房提升m套,那么乙种套房提升(80-m)套,根据条件建立不等式组求出其解就可以求出提升方案,再表示出总费用与m之间的函数关系式,根据一次函数的性质就可以求出结论;
    (3)根据(2)表示出W与m之间的关系式,由一次函数的性质分类讨论就可以得出结论.
    (1)设甲种套房每套提升费用为x万元,依题意,

    解得:x=25
    经检验:x=25符合题意,
    x+3=28;
    答:甲,乙两种套房每套提升费用分别为25万元,28万元.
    (2)设甲种套房提升套,那么乙种套房提升(m-48)套,
    依题意,得
    解得:48≤m≤50
    即m=48或49或50,所以有三种方案分别
    是:方案一:甲种套房提升48套,乙种套房提升32套.
    方案二:甲种套房提升49套,乙种套房提升1.
    套方案三:甲种套房提升50套,乙种套房提升30套.
    设提升两种套房所需要的费用为W.

    所以当时,费用最少,即第三种方案费用最少.(3)在(2)的基础上有:

    当a=3时,三种方案的费用一样,都是2240万元.
    当a>3时,取m=48时费用W最省.
    当0<a<3时,取m=50时费用最省.
    考点: 1.一次函数的应用;2.分式方程的应用;3.一元一次不等式组的应用.
    22、(1) y=-x2+2x+3;y=x+1;(2)a的值为-3或.
    【解析】
    (1)把点B和D的坐标代入抛物线y=-x2+bx+c得出方程组,解方程组即可;由抛物线解析式求出点A的坐标,设直线AD的解析式为y=kx+a,把A和D的坐标代入得出方程组,解方程组即可;
    (2)分两种情况:①当a<-1时,DF∥AE且DF=AE,得出F(0,3),由AE=-1-a=2,求出a的值;
    ②当a>-1时,显然F应在x轴下方,EF∥AD且EF=AD,设F (a-3,-3),代入抛物线解析式,即可得出结果.
    【详解】
    解:(1)把点B和D的坐标代入抛物线y=-x2+bx+c得:
    解得:b=2,c=3,
    ∴抛物线的解析式为y=-x2+2x+3;
    当y=0时,-x2+2x+3=0,
    解得:x=3,或x=-1,
    ∵B(3,0),
    ∴A(-1,0);
    设直线AD的解析式为y=kx+a,
    把A和D的坐标代入得:
    解得:k=1,a=1,
    ∴直线AD的解析式为y=x+1;
    (2)分两种情况:①当a<-1时,DF∥AE且DF=AE,
    则F点即为(0,3),
    ∵AE=-1-a=2,
    ∴a=-3;
    ②当a>-1时,显然F应在x轴下方,EF∥AD且EF=AD,
    设F (a-3,-3),
    由-(a-3)2+2(a-3)+3=-3,
    解得:a=;
    综上所述,满足条件的a的值为-3或.
    【点睛】
    本题考查抛物线与x轴的交点;二次函数的性质;待定系数法求二次函数解析式及平行四边形的判定,综合性较强.
    23、(1)1000 (2)200 (3)54° (4)4000人
    【解析】
    试题分析:(1)根据没有剩饭的人数是400人,所占的百分比是40%,据此即可求得调查的总人数;
    (2)利用(1)中求得结果减去其它组的人数即可求得剩少量饭的人数,从而补全直方图;
    (3)利用360°乘以对应的比例即可求解;
    (4)利用20000除以调查的总人数,然后乘以200即可求解.
    试题解析:(1)被调查的同学的人数是400÷40%=1000(名);
    (2)剩少量的人数是1000-400-250-150=200(名),

    (3)在扇形统计图中剩大量饭菜所对应扇形圆心角的度数是:360°×=54°;
    (4)×200=4000(人).
    答:校20000名学生一餐浪费的食物可供4000人食用一餐.
    【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
    24、(1)25;(2)平均数:28.15,所以众数是28,中位数为28,(3)体育测试成绩得满分的大约有300名学生.
    【解析】
    (1)根据统计图中的数据可以求得m的值;
    (2)根据条形统计图中的数据可以计算出平均数,得到众数和中位数;
    (3)根据样本中得满分所占的百分比,可以求得该中学九年级2000名学生中,体育测试成绩得满分的大约有多少名学生.
    【详解】
    解:(1),∴m的值为25;
    (2)平均数:,
    因为在这组样本数据中,28出现了12次,出现的次数最多,所以众数是28;
    因为将这组样本数据按从小到大的顺序排列,其中处于中间的两个数都是28,所以
    这组样本数据的中位数为28;
    (3)×2000=300(名)
    ∴估计该中学九年级2000名学生中,体育测试成绩得满分的大约有300名学生.
    【点睛】
    本题考查条形统计图、用样本估计总体、加权平均数、中位数、众数,解答本题的关键是明确它们各自的计算方法.
    25、(1)y=﹣x2+2x+1;(2)P ( ,);(1)当Q的坐标为(0,0)或(9,0)时,以A、C、Q为顶点的三角形与△BCD相似.
    【解析】
    (1)先求得点B和点C的坐标,然后将点B和点C的坐标代入抛物线的解析式得到关于b、c的方程,从而可求得b、c的值;(2)作点O关于BC的对称点O′,则O′(1,1),则OP+AP的最小值为AO′的长,然后求得AO′的解析式,最后可求得点P的坐标;(1)先求得点D的坐标,然后求得CD、BC、BD的长,依据勾股定理的逆定理证明△BCD为直角三角形,然后分为△AQC∽△DCB和△ACQ∽△DCB两种情况求解即可.
    【详解】
    (1)把x=0代入y=﹣x+1,得:y=1,
    ∴C(0,1).
    把y=0代入y=﹣x+1得:x=1,
    ∴B(1,0),A(﹣1,0).
    将C(0,1)、B(1,0)代入y=﹣x2+bx+c得: ,解得b=2,c=1.
    ∴抛物线的解析式为y=﹣x2+2x+1.
    (2)如图所示:作点O关于BC的对称点O′,则O′(1,1).

    ∵O′与O关于BC对称,
    ∴PO=PO′.
    ∴OP+AP=O′P+AP≤AO′.
    ∴OP+AP的最小值=O′A==2.
    O′A的方程为y=
    P点满足解得:
    所以P ( ,)
    (1)y=﹣x2+2x+1=﹣(x﹣1)2+4,
    ∴D(1,4).
    又∵C(0,1,B(1,0),
    ∴CD=,BC=1,DB=2.
    ∴CD2+CB2=BD2,
    ∴∠DCB=90°.
    ∵A(﹣1,0),C(0,1),
    ∴OA=1,CO=1.
    ∴.
    又∵∠AOC=DCB=90°,
    ∴△AOC∽△DCB.
    ∴当Q的坐标为(0,0)时,△AQC∽△DCB.
    如图所示:连接AC,过点C作CQ⊥AC,交x轴与点Q.

    ∵△ACQ为直角三角形,CO⊥AQ,
    ∴△ACQ∽△AOC.
    又∵△AOC∽△DCB,
    ∴△ACQ∽△DCB.
    ∴,即,解得:AQ=3.
    ∴Q(9,0).
    综上所述,当Q的坐标为(0,0)或(9,0)时,以A、C、Q为顶点的三角形与△BCD相似.
    【点睛】
    本题考查了二次函数的综合应用,解题的关键是掌握待定系数法求二次函数的解析式、轴对称图形的性质、相似三角形的性质和判定,分类讨论的思想.
    26、
    【解析】
    分析:按照实数的运算顺序进行运算即可.
    详解:原式


    点睛:本题考查实数的运算,主要考查零次幂,负整数指数幂,特殊角的三角函数值以及二次根式,熟练掌握各个知识点是解题的关键.
    27、(1);(2).
    【解析】
    (1)将和两点代入函数解析式即可;
    (2)结合二次函数图象即可.
    【详解】
    解:(1)∵二次函数与轴交于和两点,

    解得
    ∴二次函数的表达式为.
    (2)由函数图象可知,二次函数值大于一次函数值的自变量x的取值范围是.
    【点睛】
    本题考查了待定系数法求二次函数解析式以及二次函数与不等式,解题的关键是熟悉二次函数的性质.

    相关试卷

    黄金卷市级名校2021-2022学年中考数学押题试卷含解析:

    这是一份黄金卷市级名校2021-2022学年中考数学押题试卷含解析,共17页。试卷主要包含了答题时请按要求用笔,计算36÷,下列各式等内容,欢迎下载使用。

    昌都市市级名校2021-2022学年中考押题数学预测卷含解析:

    这是一份昌都市市级名校2021-2022学年中考押题数学预测卷含解析,共22页。试卷主要包含了下列运算正确的是,-的立方根是等内容,欢迎下载使用。

    2021-2022学年四川省达川区市级名校中考押题数学预测卷含解析:

    这是一份2021-2022学年四川省达川区市级名校中考押题数学预测卷含解析,共19页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map