终身会员
搜索
    上传资料 赚现金
    2022年四川省成都市实验外国语校中考数学最后一模试卷含解析
    立即下载
    加入资料篮
    2022年四川省成都市实验外国语校中考数学最后一模试卷含解析01
    2022年四川省成都市实验外国语校中考数学最后一模试卷含解析02
    2022年四川省成都市实验外国语校中考数学最后一模试卷含解析03
    还剩22页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年四川省成都市实验外国语校中考数学最后一模试卷含解析

    展开
    这是一份2022年四川省成都市实验外国语校中考数学最后一模试卷含解析,共25页。

    2021-2022中考数学模拟试卷
    请考生注意:
    1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
    2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.下列对一元二次方程x2+x﹣3=0根的情况的判断,正确的是(  )
    A.有两个不相等实数根 B.有两个相等实数根
    C.有且只有一个实数根 D.没有实数根
    2.下列说法正确的是(   )
    A.“明天降雨的概率是60%”表示明天有60%的时间都在降雨
    B.“抛一枚硬币正面朝上的概率为50%”表示每抛2次就有一次正面朝上
    C.“彩票中奖的概率为1%”表示买100张彩票肯定会中奖
    D.“抛一枚正方体骰子,朝上的点数为2的概率为”表示随着抛掷次数的增加,“抛出朝上的点数为2”这一事件发生的概率稳定在附近
    3.已知两组数据,2、3、4和3、4、5,那么下列说法正确的是(  )
    A.中位数不相等,方差不相等
    B.平均数相等,方差不相等
    C.中位数不相等,平均数相等
    D.平均数不相等,方差相等
    4.下面四个几何体中,左视图是四边形的几何体共有()

    A.1个 B.2个 C.3个 D.4个
    5.将二次函数的图象先向左平移1个单位,再向下平移2个单位,所得图象对应的函数表达式是( )
    A. B.
    C. D.
    6.若不等式组的整数解共有三个,则a的取值范围是(  )
    A.5<a<6 B.5<a≤6 C.5≤a<6 D.5≤a≤6
    7.若反比例函数的图像经过点,则一次函数与在同一平面直角坐标系中的大致图像是( )
    A. B. C. D.
    8.如图,AD是半圆O的直径,AD=12,B,C是半圆O上两点.若,则图中阴影部分的面积是( )

    A.6π B.12π C.18π D.24π
    9.如图,正方形ABCD的边长为2,其面积标记为S1,以CD为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积标记为S2,…,按照此规律继续下去,则S9的值为( )

    A.()6 B.()7 C.()6 D.()7
    10.如图,在Rt△ABC中,∠C=90°,∠CAB的平分线交BC于D,DE是AB的垂直平分线,垂足为E,若BC=3,则DE的长为(  )

    A.1 B.2 C.3 D.4
    二、填空题(共7小题,每小题3分,满分21分)
    11.如果不等式组的解集是x<2,那么m的取值范围是_____
    12.一元二次方程2x2﹣3x﹣4=0根的判别式的值等于_____.
    13.为迎接五月份全县中考九年级体育测试,小强每天坚持引体向上锻炼,他记录了某一周每天做引体向上的个数,如下表:

    其中有三天的个数被墨汁覆盖了,但小强已经计算出这组数据唯一众数是13,平均数是12,那么这组数据的方差是_____.
    14.计算a10÷a5=_______.
    15.分解因式:    .
    16.分解因式:a2b−8ab+16b=_____.
    17.如图,将一张矩形纸片ABCD沿对角线BD折叠,点C的对应点为,再将所折得的图形沿EF折叠,使得点D和点A重合若,,则折痕EF的长为______.

    三、解答题(共7小题,满分69分)
    18.(10分)如图,平面直角坐标系中,将含30°的三角尺的直角顶点C落在第二象限.其斜边两端点A、B分别落在x轴、y轴上且AB=12cm
    (1)若OB=6cm.
    ①求点C的坐标;
    ②若点A向右滑动的距离与点B向上滑动的距离相等,求滑动的距离;
    (2)点C与点O的距离的最大值是多少cm.

    19.(5分)我们给出如下定义:顺次连接任意一个四边形各边中点所得的四边形叫中点四边形.如图1,四边形ABCD中,点E,F,G,H分别为边AB,BC,CD,DA的中点.求证:中点四边形EFGH是平行四边形;如图2,点P是四边形ABCD内一点,且满足PA=PB,PC=PD,∠APB=∠CPD,点E,F,G,H分别为边AB,BC,CD,DA的中点,猜想中点四边形EFGH的形状,并证明你的猜想;若改变(2)中的条件,使∠APB=∠CPD=90°,其他条件不变,直接写出中点四边形EFGH的形状.(不必证明)

    20.(8分)某公司销售一种新型节能电子小产品,现准备从国内和国外两种销售方案中选择一种进行销售:①若只在国内销售,销售价格y(元/件)与月销量x(件)的函数关系式为y=-x+150,成本为20元/件,月利润为W内(元);②若只在国外销售,销售价格为150元/件,受各种不确定因素影响,成本为a元/件(a为常数,10≤a≤40),当月销量为x(件)时,每月还需缴纳x2元的附加费,月利润为W外(元).
    (1)若只在国内销售,当x=1000(件)时,y= (元/件);
    (2)分别求出W内、W外与x间的函数关系式(不必写x的取值范围);
    (3)若在国外销售月利润的最大值与在国内销售月利润的最大值相同,求a的值.
    21.(10分)如图,C是⊙O上一点,点P在直径AB的延长线上,⊙O的半径为3,PB=2,PC=1.
    (1)求证:PC是⊙O的切线.
    (2)求tan∠CAB的值.

    22.(10分)已知开口向下的抛物线y=ax2-2ax+2与y轴的交点为A,顶点为B,对称轴与x轴的交点为C,点A与点D关于对称轴对称,直线BD与x轴交于点M,直线AB与直线OD交于点N.
    (1)求点D的坐标.
    (2)求点M的坐标(用含a的代数式表示).
    (3)当点N在第一象限,且∠OMB=∠ONA时,求a的值.

    23.(12分)台州市某水产养殖户进行小龙虾养殖.已知每千克小龙虾养殖成本为6元,在整个销售旺季的80天里,销售单价p(元/千克)与时间第t(天)之间的函数关系为:p= t+16,日销售量y(千克)与时间第t(天)之间的函数关系如图所示:
    (1)求日销售量y与时间t的函数关系式?
    (2)哪一天的日销售利润最大?最大利润是多少?
    (3)该养殖户有多少天日销售利润不低于2400元?

    24.(14分)(1)问题发现
    如图1,在Rt△ABC中,∠A=90°,=1,点P是边BC上一动点(不与点B重合),∠PAD=90°,∠APD=∠B,连接 CD.
    (1)①求的值;②求∠ACD的度数.
    (2)拓展探究
    如图 2,在Rt△ABC中,∠A=90°,=k.点P是边BC上一动点(不与点B重合),∠PAD=90°,∠APD=∠B,连接CD,请判断∠ACD与∠B 的数量关系以及PB与CD之间的数量关系,并说明理由.
    (3)解决问题
    如图 3,在△ABC中,∠B=45°,AB=4,BC=12,P 是边BC上一动点(不与点B重合),∠PAD=∠BAC,∠APD=∠B,连接CD.若 PA=5,请直接写出CD的长.




    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、A
    【解析】
    【分析】根据方程的系数结合根的判别式,即可得出△=13>0,进而即可得出方程x2+x﹣3=0有两个不相等的实数根.
    【详解】∵a=1,b=1,c=﹣3,
    ∴△=b2﹣4ac=12﹣4×(1)×(﹣3)=13>0,
    ∴方程x2+x﹣3=0有两个不相等的实数根,
    故选A.
    【点睛】本题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.
    2、D
    【解析】
    根据概率是指某件事发生的可能性为多少,随着试验次数的增加,稳定在某一个固定数附近,可得答案.
    【详解】
    解:A. “明天降雨的概率是60%”表示明天下雨的可能性较大,故A不符合题意;
    B. “抛一枚硬币正面朝上的概率为”表示每次抛正面朝上的概率都是,故B不符合题意;
    C. “彩票中奖的概率为1%”表示买100张彩票有可能中奖.故C不符合题意;
    D. “抛一枚正方体骰子,朝上的点数为2的概率为”表示随着抛掷次数的增加,“抛出朝上的点数为2”这一事件发生的概率稳定在附近,故D符合题意;
    故选D
    【点睛】
    本题考查了概率的意义,正确理解概率的含义是解决本题的关键.
    3、D
    【解析】
    分别利用平均数以及方差和中位数的定义分析,进而求出答案.
    【详解】
    2、3、4的平均数为:(2+3+4)=3,中位数是3,方差为: [(2﹣3)2+(3﹣3)2+(3﹣4)2]= ;
    3、4、5的平均数为:(3+4+5)=4,中位数是4,方差为: [(3﹣4)2+(4﹣4)2+(5﹣4)2]= ;
    故中位数不相等,方差相等.
    故选:D.
    【点睛】
    本题考查了平均数、中位数、方差的意义,解答本题的关键是熟练掌握这三种数的计算方法.
    4、B
    【解析】
    简单几何体的三视图.
    【分析】左视图是从左边看到的图形,因为圆柱的左视图是矩形,圆锥的左视图是等腰三角形,球的左视图是圆,正方体的左视图是正方形,所以,左视图是四边形的几何体是圆柱和正方体2个.故选B.
    5、B
    【解析】
    抛物线平移不改变a的值,由抛物线的顶点坐标即可得出结果.
    【详解】
    解:原抛物线的顶点为(0,0),向左平移1个单位,再向下平移1个单位,那么新抛物线的顶点为(-1,-1),
    可设新抛物线的解析式为:y=(x-h)1+k,
    代入得:y=(x+1)1-1.
    ∴所得图象的解析式为:y=(x+1)1-1;
    故选:B.
    【点睛】
    本题考查二次函数图象的平移规律;解决本题的关键是得到新抛物线的顶点坐标.
    6、C
    【解析】
    首先确定不等式组的解集,利用含a的式子表示,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于a的不等式,从而求出a的范围.
    【详解】
    解不等式组得:2<x≤a,
    ∵不等式组的整数解共有3个,
    ∴这3个是3,4,5,因而5≤a<1.
    故选C.
    【点睛】
    本题考查了一元一次不等式组的整数解,正确解出不等式组的解集,确定a的范围,是解答本题的关键.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.
    7、D
    【解析】
    甶待定系数法可求出函数的解析式为:,由上步所得可知比例系数为负,联系反比例函数,一次函数的性质即可确定函数图象.
    【详解】
    解:由于函数的图像经过点,则有

    ∴图象过第二、四象限,
    ∵k=-1,
    ∴一次函数y=x-1,
    ∴图象经过第一、三、四象限,
    故选:D.
    【点睛】
    本题考查反比例函数的图象与性质,一次函数的图象,解题的关键是求出函数的解析式,根据解析式进行判断;
    8、A
    【解析】
    根据圆心角与弧的关系得到∠AOB=∠BOC=∠COD=60°,根据扇形面积公式计算即可.
    【详解】
    ∵,
    ∴∠AOB=∠BOC=∠COD=60°.
    ∴阴影部分面积=.
    故答案为:A.
    【点睛】
    本题考查的知识点是扇形面积的计算,解题关键是利用圆心角与弧的关系得到∠AOB=∠BOC=∠COD=60°.
    9、A
    【解析】
    试题分析:如图所示.

    ∵正方形ABCD的边长为2,△CDE为等腰直角三角形,∴DE2+CE2=CD2,DE=CE,∴S2+S2=S1.观察发现规律:S1=22=4,S2=S1=2,S2=S2=1,S4=S2=,…,由此可得Sn=()n﹣2.当n=9时,S9=()9﹣2=()6,故选A.
    考点:勾股定理.
    10、A
    【解析】
    试题分析:由角平分线和线段垂直平分线的性质可求得∠B=∠CAD=∠DAB=30°,∵DE垂直平分AB,
    ∴DA=DB,∴∠B=∠DAB,∵AD平分∠CAB,∴∠CAD=∠DAB, ∵∠C=90°,∴3∠CAD=90°,
    ∴∠CAD=30°, ∵AD平分∠CAB,DE⊥AB,CD⊥AC, ∴CD=DE=BD, ∵BC=3, ∴CD=DE=1
    考点:线段垂直平分线的性质

    二、填空题(共7小题,每小题3分,满分21分)
    11、m≥1.
    【解析】
    分析:先解第一个不等式,再根据不等式组的解集是x<1,从而得出关于m的不等式,解不等式即可.
    详解:解第一个不等式得,x<1,
    ∵不等式组的解集是x<1,
    ∴m≥1,
    故答案为m≥1.
    点睛:本题是已知不等式组的解集,求不等式中字母取值范围的问题.可以先将字母当作已知数处理,求出解集与已知解集比较,进而求得字母的范围.求不等式的公共解,要遵循以下原则:同大取较大,同小取较小,大小小大中间找,大大小小解不了.
    12、41
    【解析】
    已知一元二次方程的根判别式为△=b2﹣4ac,代入计算即可求解.
    【详解】
    依题意,一元二次方程2x2﹣3x﹣4=0,a=2,b=﹣3,c=﹣4
    ∴根的判别式为:△=b2﹣4ac=(﹣3)2﹣4×2×(﹣4)=41
    故答案为:41
    【点睛】
    本题考查了一元二次方程的根的判别式,熟知一元二次方程 ax2+bx+c=0(a≠0)的根的判别式为△=b2﹣4ac是解决问题的关键.
    13、
    【解析】
    分析:根据已知条件得到被墨汁覆盖的三个数为:10,13,13,根据方差公式即可得到结论.
    详解:∵平均数是12,
    ∴这组数据的和=12×7=84,
    ∴被墨汁覆盖三天的数的和=84−4×12=36,
    ∵这组数据唯一众数是13,
    ∴被墨汁覆盖的三个数为:10,13,13,


    故答案为
    点睛:考查方差,算术平均数,众数,根据这组数据唯一众数是13,得到被墨汁覆盖的三个数为:10,13,13是解题的关键.
    14、a1.
    【解析】
    试题分析:根据同底数幂的除法底数不变指数相减,可得答案.
    原式=a10-1=a1,
    故答案为a1.
    考点:同底数幂的除法.
    15、.
    【解析】
    要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方公式或平方差公式,若是就考虑用公式法继续分解因式.因此,
    先提取公因式后继续应用平方差公式分解即可:.
    考点:提公因式法和应用公式法因式分解.
    16、b(a﹣4)1
    【解析】
    先提公因式,再用完全平方公式进行因式分解.
    【详解】
    解:a1b-8ab+16b=b(a1-8a+16)=b(a-4)1.
    【点睛】
    本题考查了提公因式与公式法的综合运用,熟练运用公式法分解因式是本题的关键.
    17、
    【解析】
    首先由折叠的性质与矩形的性质,证得是等腰三角形,则在中,利用勾股定理,借助于方程即可求得AN的长,又由≌,易得:,由三角函数的性质即可求得MF的长,又由中位线的性质求得EM的长,则问题得解
    【详解】
    如图,设与AD交于N,EF与AD交于M,

    根据折叠的性质可得:,,,
    四边形ABCD是矩形,
    ,,,



    设,则,
    在中,,


    即,
    ,,,
    ≌,





    由折叠的性质可得:,




    故答案为.
    【点睛】
    本题考查了折叠的性质,全等三角形的判定与性质,三角函数的性质以及勾股定理等知识,综合性较强,有一定的难度,解题时要注意数形结合思想与方程思想的应用.

    三、解答题(共7小题,满分69分)
    18、(1)①点C的坐标为(-3,9);②滑动的距离为6(﹣1)cm;(2)OC最大值1cm.
    【解析】
    试题分析:(1)①过点C作y轴的垂线,垂足为D,根据30°的直角三角形的性质解答即可;②设点A向右滑动的距离为x,根据题意得点B向上滑动的距离也为x,根据锐角三角函数和勾股定理解答即可;(2)设点C的坐标为(x,y),过C作CE⊥x轴,CD⊥y轴,垂足分别为E,D,证得△ACE∽△BCD,利用相似三角形的性质解答即可.
    试题解析:解:(1)①过点C作y轴的垂线,垂足为D,如图1:

    在Rt△AOB中,AB=1,OB=6,则BC=6,
    ∴∠BAO=30°,∠ABO=60°,
    又∵∠CBA=60°,∴∠CBD=60°,∠BCD=30°,
    ∴BD=3,CD=3,
    所以点C的坐标为(﹣3,9);
    ②设点A向右滑动的距离为x,根据题意得点B向上滑动的距离也为x,如图2:

    AO=1×cos∠BAO=1×cos30°=6.
    ∴A'O=6﹣x,B'O=6+x,A'B'=AB=1
    在△A'O B'中,由勾股定理得,
    (6﹣x)2+(6+x)2=12,解得:x=6(﹣1),
    ∴滑动的距离为6(﹣1);
    (2)设点C的坐标为(x,y),过C作CE⊥x轴,CD⊥y轴,垂足分别为E,D,如图3:

    则OE=﹣x,OD=y,
    ∵∠ACE+∠BCE=90°,∠DCB+∠BCE=90°,
    ∴∠ACE=∠DCB,又∵∠AEC=∠BDC=90°,
    ∴△ACE∽△BCD,
    ∴,即,
    ∴y=﹣x,
    OC2=x2+y2=x2+(﹣x)2=4x2,
    ∴当|x|取最大值时,即C到y轴距离最大时,OC2有最大值,即OC取最大值,如图,即当C'B'旋转到与y轴垂直时.此时OC=1,
    故答案为1.
    考点:相似三角形综合题.
    19、(1)证明见解析;(2)四边形EFGH是菱形,证明见解析;(3)四边形EFGH是正方形.
    【解析】
    (1)如图1中,连接BD,根据三角形中位线定理只要证明EH∥FG,EH=FG即可.
    (2)四边形EFGH是菱形.先证明△APC≌△BPD,得到AC=BD,再证明EF=FG即可.
    (3)四边形EFGH是正方形,只要证明∠EHG=90°,利用△APC≌△BPD,得∠ACP=∠BDP,即可证明∠COD=∠CPD=90°,再根据平行线的性质即可证明.
    【详解】
    (1)证明:如图1中,连接BD.
    ∵点E,H分别为边AB,DA的中点,
    ∴EH∥BD,EH=BD,
    ∵点F,G分别为边BC,CD的中点,
    ∴FG∥BD,FG=BD,
    ∴EH∥FG,EH=GF,
    ∴中点四边形EFGH是平行四边形.
    (2)四边形EFGH是菱形.
    证明:如图2中,连接AC,BD.
    ∵∠APB=∠CPD,
    ∴∠APB+∠APD=∠CPD+∠APD,
    即∠APC=∠BPD,
    在△APC和△BPD中,
    ∵AP=PB,∠APC=∠BPD,PC=PD,
    ∴△APC≌△BPD,
    ∴AC=BD.
    ∵点E,F,G分别为边AB,BC,CD的中点,
    ∴EF=AC,FG=BD,
    ∵四边形EFGH是平行四边形,
    ∴四边形EFGH是菱形.
    (3)四边形EFGH是正方形.
    证明:如图2中,设AC与BD交于点O.AC与PD交于点M,AC与EH交于点N.
    ∵△APC≌△BPD,
    ∴∠ACP=∠BDP,
    ∵∠DMO=∠CMP,
    ∴∠COD=∠CPD=90°,
    ∵EH∥BD,AC∥HG,
    ∴∠EHG=∠ENO=∠BOC=∠DOC=90°,
    ∵四边形EFGH是菱形,
    ∴四边形EFGH是正方形.

    考点:平行四边形的判定与性质;中点四边形.
    20、(1)140;(2)W内=-x2+130x,W外=-x2+ (150-a)x;(3)a=1.
    【解析】
    试题分析:(1)将x=1000代入函数关系式求得y,;
    (2)根据等量关系“利润=销售额﹣成本”“利润=销售额﹣成本﹣附加费”列出函数关系式;
    (3)对w内函数的函数关系式求得最大值,再求出w外的最大值并令二者相等求得a值.
    试题解析:(1)x=1000,y=-×1000+150=140;
    (2)W内=(y-1)x=(-x+150-1)x=-x2+130x.
    W外=(150-a)x-x2=-x2+(150-a)x;
    (3)W内=-x2+130x=-(x-6500)2+2,
    由W外=-x2+(150-a)x得:W外最大值为:(750-5a)2,
    所以:(750-5a)2=2.
    解得a=280或a=1.
    经检验,a=280不合题意,舍去,
    ∴a=1.
    考点:二次函数的应用.
    21、(1)见解析;(2).
    【解析】
    (1)连接OC、BC,根据题意可得OC2+PC2=OP2,即可证得OC⊥PC,由此可得出结论.
    (2)先根据题意证明出△PBC∽△PCA,再根据相似三角形的性质得出边的比值,由此可得出结论.
    【详解】
    (1)如图,连接OC、BC

    ∵⊙O的半径为3,PB=2
    ∴OC=OB=3,OP=OB+PB=5
    ∵PC=1
    ∴OC2+PC2=OP2
    ∴△OCP是直角三角形,
    ∴OC⊥PC
    ∴PC是⊙O的切线.
    (2)∵AB是直径
    ∴∠ACB=90°
    ∴∠ACO+∠OCB=90°
    ∵OC⊥PC
    ∴∠BCP+∠OCB=90°
    ∴∠BCP=∠ACO
    ∵OA=OC
    ∴∠A=∠ACO
    ∴∠A=∠BCP
    在△PBC和△PCA中:
    ∠BCP=∠A,∠P=∠P
    ∴△PBC∽△PCA,

    ∴tan∠CAB=
    【点睛】
    本题考查了切线与相似三角形的判定与性质,解题的关键是熟练的掌握切线的判定与相似三角形的判定与性质.
    22、(1)D(2,2);(2);(3)
    【解析】
    (1)令x=0求出A的坐标,根据顶点坐标公式或配方法求出顶点B的坐标、对称轴直线,根据点A与点D关于对称轴对称,确定D点坐标.
    (2)根据点B、D的坐标用待定系数法求出直线BD的解析式,令y=0,即可求得M点的坐标.
    (3)根据点A、B的坐标用待定系数法求出直线AB的解析式,求直线OD的解析式,进而求出交点N的坐标,得到ON的长.过A点作AE⊥OD,可证△AOE为等腰直角三角形,根据OA=2,可求得AE、OE的长,表示出EN的长.根据tan∠OMB=tan∠ONA,得到比例式,代入数值即可求得a的值.
    【详解】
    (1)当x=0时,,
    ∴A点的坐标为(0,2)

    ∴顶点B的坐标为:(1,2-a),对称轴为x= 1,
    ∵点A与点D关于对称轴对称
    ∴D点的坐标为:(2,2)
    (2)设直线BD的解析式为:y=kx+b
    把B(1,2-a)D(2,2)代入得:
    ,解得:
    ∴直线BD的解析式为:y=ax+2-2a
    当y=0时,ax+2-2a=0,解得:x=
    ∴M点的坐标为:
    (3)由D(2,2)可得:直线OD解析式为:y=x
    设直线AB的解析式为y=mx+n,代入A(0,2)B(1,2-a)可得:
    解得:
    ∴直线AB的解析式为y= -ax+2
    联立成方程组: ,解得:
    ∴N点的坐标为:()
    ON=()
    过A点作AE⊥OD于E点,则△AOE为等腰直角三角形.
    ∵OA=2
    ∴OE=AE=,EN=ON-OE=()-=)
    ∵M,C(1,0), B(1,2-a)
    ∴MC=,BE=2-a
    ∵∠OMB=∠ONA
    ∴tan∠OMB=tan∠ONA
    ∴,即
    解得:a=或
    ∵抛物线开口向下,故a<0,
    ∴ a=舍去,

    【点睛】
    本题是一道二次函数与一次函数及三角函数综合题,掌握并灵活应用二次函数与一次函数的图象与性质,以及构建直角三角形借助点的坐标使用相等角的三角函数是解题的关键.
    23、 (1)y=﹣2t+200(1≤t≤80,t为整数); (2)第30天的日销售利润最大,最大利润为2450元;(3)共有21天符合条件.
    【解析】
    (1)根据函数图象,设解析式为y=kt+b,将(1,198)、(80,40)代入,利用待定系数法求解可得;
    (2)设日销售利润为w,根据“总利润=每千克利润×销售量”列出函数解析式,由二次函数的性质分别求得最值即可判断;
    (3)求出w=2400时t的值,结合函数图象即可得出答案;
    【详解】
    (1)设解析式为y=kt+b,将(1,198)、(80,40)代入,得:
    ,解得:,∴y=﹣2t+200(1≤t≤80,t为整数);
    (2)设日销售利润为w,则w=(p﹣6)y,
    当1≤t≤80时,w=(t+16﹣6)(﹣2t+200)=﹣(t﹣30)2+2450,
    ∴当t=30时,w最大=2450;

    ∴第30天的日销售利润最大,最大利润为2450元.
    (3)由(2)得:当1≤t≤80时,
    w=﹣(t﹣30)2+2450,
    令w=2400,即﹣ (t﹣30)2+2450=2400,
    解得:t1=20、t2=40,
    ∴t的取值范围是20≤t≤40,
    ∴共有21天符合条件.
    【点睛】
    本题考查二次函数的应用,熟练掌握待定系数求函数解析式、由相等关系得出利润的函数解析式、利用二次函数的图象解不等式及二次函数的图象与性质是解题关键.
    24、(1)1,45°;(2)∠ACD=∠B, =k;(3).
    【解析】
    (1)根据已知条件推出△ABP≌△ACD,根据全等三角形的性质得到PB=CD,∠ACD=∠B=45°,于是得到
    根据已知条件得到△ABC∽△APD,由相似三角形的性质得到,得到 ABP∽△CAD,根据相似三角形的性质得到结论;
    过A作AH⊥BC 于 H,得到△ABH 是等腰直角三角形,求得 AH=BH=4, 根据勾股定理得到根据相似三角形的性质得到 ,推出△ABP∽△CAD,根据相似三角形的性质即可得到结论.
    【详解】
    (1)∵∠A=90°,

    ∴AB=AC,
    ∴∠B=45°,
    ∵∠PAD=90°,∠APD=∠B=45°,
    ∴AP=AD,
    ∴∠BAP=∠CAD,
    在△ABP 与△ACD 中,
    AB=AC, ∠BAP=∠CAD,AP=AD,
    ∴△ABP≌△ACD,
    ∴PB=CD,∠ACD=∠B=45°,
    ∴=1,
    (2)
    ∵∠BAC=∠PAD=90°,∠B=∠APD,
    ∴△ABC∽△APD,

    ∵∠BAP+∠PAC=∠PAC+∠CAD=90°,
    ∴∠BAP=∠CAD,
    ∴△ABP∽△CAD,
    ∴∠ACD=∠B,

    (3)过 A 作 AH⊥BC 于 H,

    ∵∠B=45°,
    ∴△ABH 是等腰直角三角形,

    ∴AH=BH=4,
    ∵BC=12,
    ∴CH=8,

    ∴PH==3,
    ∴PB=1,
    ∵∠BAC=∠PAD=,∠B=∠APD,
    ∴△ABC∽△APD,
    ∴,
    ∵∠BAP+∠PAC=∠PAC+∠CAD,
    ∴∠BAP=∠CAD,
    ∴△ABP∽△CAD,
    ∴即

    过 A 作 AH⊥BC 于 H,

    ∵∠B=45°,
    ∴△ABH 是等腰直角三角形,

    ∴AH=BH=4,
    ∵BC=12,
    ∴CH=8,

    ∴PH==3,
    ∴PB=7,
    ∵∠BAC=∠PAD=,∠B=∠APD,
    ∴△ABC∽△APD,
    ∴,
    ∵∠BAP+∠PAC=∠PAC+∠CAD,
    ∴∠BAP=∠CAD,
    ∴△ABP∽△CAD,
    ∴即

    【点睛】
    本题考查了等腰直角三角形的性质,全等三角形的判定和性质,相似三角形的判定
    和性质,勾股定理,熟练掌握相似三角形的判定和性质是解题的关键.

    相关试卷

    2022年四川省成都实验外国语校中考数学考前最后一卷含解析: 这是一份2022年四川省成都实验外国语校中考数学考前最后一卷含解析,共24页。

    2022年四川省成都市浦江县中考数学最后一模试卷含解析: 这是一份2022年四川省成都市浦江县中考数学最后一模试卷含解析,共20页。

    2022年湖南省株洲湘渌实验校中考数学最后一模试卷含解析: 这是一份2022年湖南省株洲湘渌实验校中考数学最后一模试卷含解析,共17页。试卷主要包含了下列说法中,正确的是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map