2022年四川省南充市顺庆区中考数学模拟预测题含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(共10小题,每小题3分,共30分)
1.有一组数据:3,4,5,6,6,则这组数据的平均数、众数、中位数分别是( )
A.4.8,6,6 B.5,5,5 C.4.8,6,5 D.5,6,6
2. 的相反数是( )
A.﹣ B. C. D.2
3.-5的相反数是( )
A.5 B. C. D.
4.肥皂泡的泡壁厚度大约是0.00000071米,数字0.00000071用科学记数法表示为( )
A.7.1×107 B.0.71×10﹣6 C.7.1×10﹣7 D.71×10﹣8
5.不等式组的解集是 ( )
A.x>-1 B.x>3
C.-1<x<3 D.x<3
6.如图,⊙O 是等边△ABC 的外接圆,其半径为 3,图中阴影部分的面积是( )
A.π B. C.2π D.3π
7.如图,∠AOB=45°,OC是∠AOB的角平分线,PM⊥OB,垂足为点M,PN∥OB,PN与OA相交于点N,那么的值等于( )
A. B. C. D.
8.下面的图形是轴对称图形,又是中心对称图形的有( )
A.1个 B.2个 C.3个 D.4个
9.四张分别画有平行四边形、菱形、等边三角形、圆的卡片,它们的背面都相同。现将它们背面朝上,从中任取一张,卡片上所画图形恰好是中心对称图形的概率是( )
A. B.1 C. D.
10.下列图形中,哪一个是圆锥的侧面展开图?
A. B. C. D.
二、填空题(本大题共6个小题,每小题3分,共18分)
11.A,B两市相距200千米,甲车从A市到B市,乙车从B市到A市,两车同时出发,已知甲车速度比乙车速度快15千米/小时,且甲车比乙车早半小时到达目的地.若设乙车的速度是x千米/小时,则根据题意,可列方程____________.
12.一元二次方程x2=3x的解是:________.
13.如图,△ABC≌△ADE,∠EAC=40°,则∠B=_______°.
14.若两个相似三角形的面积比为1∶4,则这两个相似三角形的周长比是__________.
15.如果点、是二次函数是常数图象上的两点,那么______填“”、“”或“”
16.如图,AB是半径为2的⊙O的弦,将沿着弦AB折叠,正好经过圆心O,点C是折叠后的上一动点,连接并延长BC交⊙O于点D,点E是CD的中点,连接AC,AD,EO.则下列结论:①∠ACB=120°,②△ACD是等边三角形,③EO的最小值为1,其中正确的是_____.(请将正确答案的序号填在横线上)
三、解答题(共8题,共72分)
17.(8分)甲、乙两公司各为“希望工程”捐款2000元.已知乙公司比甲公司人均多捐20元,且乙公司的人数是甲公司人数的,问甲、乙两公司人均捐款各多少元?
18.(8分)小方与同学一起去郊游,看到一棵大树斜靠在一小土坡上,他想知道树有多长,于是他借来测角仪和卷尺.如图,他在点C处测得树AB顶端A的仰角为30°,沿着CB方向向大树行进10米到达点D,测得树AB顶端A的仰角为45°,又测得树AB倾斜角∠1=75°.
(1)求AD的长.
(2)求树长AB.
19.(8分)某超市预测某饮料有发展前途,用1600元购进一批饮料,面市后果然供不应求,又用6000元购进这批饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.第一批饮料进货单价多少元?若二次购进饮料按同一价格销售,两批全部售完后,获利不少于1200元,那么销售单价至少为多少元?
20.(8分)(1)计算:(﹣2)﹣2+cos60°﹣(﹣2)0;
(2)化简:(a﹣)÷ .
21.(8分)如图,矩形的两边、的长分别为3、8,是的中点,反比例函数的图象经过点,与交于点.
若点坐标为,求的值及图象经过、两点的一次函数的表达式;若,求反比例函数的表达式.
22.(10分)我市某外资企业生产的一批产品上市后30天内全部售完,该企业对这批产品上市后每天的销售情况进行了跟踪调查.其中,国内市场的日销售量y1(万件)与时间t(t为整数,单位:天)的部分对应值如下表所示.而国外市场的日销售量y2(万件)与时间t(t为整数,单位:天)的关系如图所示.
(1)请你从所学过的一次函数、二次函数和反比例函数中确定哪种函数能表示y1与t的变化规律,写出y1与t的函数关系式及自变量t的取值范围;
(2)分别探求该产品在国外市场上市20天前(不含第20天)与20天后(含第20天)的日销售量y2与时间t所符合的函数关系式,并写出相应自变量t的取值范围;
(3)设国内、外市场的日销售总量为y万件,写出y与时间t的函数关系式,并判断上市第几天国内、外市场的日销售总量y最大,并求出此时的最大值.
23.(12分)如图,以AB边为直径的⊙O经过点P,C是⊙O上一点,连结PC交AB于点E,且∠ACP=60°,PA=PD.试判断PD与⊙O的位置关系,并说明理由;若点C是弧AB的中点,已知AB=4,求CE•CP的值.
24.某校开展“我最喜爱的一项体育活动”调查,要求每名学生必选且只能选一项,现随机抽查了m名学生,并将其结果绘制成如下不完整的条形图和扇形图.
请结合以上信息解答下列问题:m= ;请补全上面的条形统计图;在图2中,“乒乓球”所对应扇形的圆心角的度数为 ;已知该校共有1200名学生,请你估计该校约有 名学生最喜爱足球活动.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、C
【解析】
解:在这一组数据中6是出现次数最多的,故众数是6;
而将这组数据从小到大的顺序排列3,4,5,6,6,处于中间位置的数是5,
平均数是:(3+4+5+6+6)÷5=4.8,
故选C.
【点睛】
本题考查众数;算术平均数;中位数.
2、A
【解析】
分析:
根据相反数的定义结合实数的性质进行分析判断即可.
详解:
的相反数是.
故选A.
点睛:熟记相反数的定义:“只有符号不同的两个数(实数)互为相反数”是正确解答这类题的关键.
3、A
【解析】
由相反数的定义:“只有符号不同的两个数互为相反数”可知-5的相反数是5.
故选A.
4、C
【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【详解】
0.00000071的小数点向或移动7位得到7.1,
所以0.00000071用科学记数法表示为7.1×10﹣7,
故选C.
【点睛】
本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
5、B
【解析】
根据解不等式组的方法可以求得原不等式组的解集.
【详解】
,
解不等式①,得x>-1,
解不等式②,得x>1,
由①②可得,x>1,
故原不等式组的解集是x>1.
故选B.
【点睛】
本题考查解一元一次不等式组,解题的关键是明确解一元一次不等式组的方法.
6、D
【解析】
根据等边三角形的性质得到∠A=60°,再利用圆周角定理得到∠BOC=120°,然后根据扇形的面积公式计算图中阴影部分的面积即可.
【详解】
∵△ABC 为等边三角形,
∴∠A=60°,
∴∠BOC=2∠A=120°,
∴图中阴影部分的面积= =3π.
故选D.
【点睛】
本题考查了三角形的外接圆与外心、圆周角定理及扇形的面积公式,求得∠BOC=120°是解决问题的关键.
7、B
【解析】
过点P作PE⊥OA于点E,根据角平分线上的点到角的两边的距离相等可得PE=PM,再根据两直线平行,内错角相等可得∠POM=∠OPN,根据三角形的一个外角等于与它不相邻的两个内角的和求出∠PNE=∠AOB,再根据直角三角形解答.
【详解】
如图,过点P作PE⊥OA于点E,
∵OP是∠AOB的平分线,
∴PE=PM,
∵PN∥OB,
∴∠POM=∠OPN,
∴∠PNE=∠PON+∠OPN=∠PON+∠POM=∠AOB=45°,
∴=.
故选:B.
【点睛】
本题考查了角平分线上的点到角的两边距离相等的性质,直角三角形的性质,以及三角形的一个外角等于与它不相邻的两个内角的和,作辅助线构造直角三角形是解题的关键.
8、B
【解析】
根据轴对称图形和中心对称图形的定义对各个图形进行逐一分析即可.
【详解】
解:第一个图形是轴对称图形,但不是中心对称图形;
第二个图形是中心对称图形,但不是轴对称图形;
第三个图形既是轴对称图形,又是中心对称图形;
第四个图形即是轴对称图形,又是中心对称图形;
∴既是轴对称图形,又是中心对称图形的有两个,
故选:B.
【点睛】
此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180°后两部分重合.
9、A
【解析】
∵在:平行四边形、菱形、等边三角形和圆这4个图形中属于中心对称图形的有:平行四边形、菱形和圆三种,
∴从四张卡片中任取一张,恰好是中心对称图形的概率=.
故选A.
10、B
【解析】
根据圆锥的侧面展开图的特点作答.
【详解】
A选项:是长方体展开图.
B选项:是圆锥展开图.
C选项:是棱锥展开图.
D选项:是正方体展开图.
故选B.
【点睛】
考查了几何体的展开图,注意圆锥的侧面展开图是扇形.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、.
【解析】
直接利用甲车比乙车早半小时到达目的地得出等式即可.
【详解】
解:设乙车的速度是x千米/小时,则根据题意,
可列方程:.
故答案为:.
【点睛】
此题主要考查了由实际问题抽象出分式方程,正确表示出两车所用时间是解题关键.
12、x1=0,x2=1
【解析】
先移项,然后利用因式分解法求解.
【详解】
x2=1x
x2-1x=0,
x(x-1)=0,
x=0或x-1=0,
∴x1=0,x2=1.
故答案为:x1=0,x2=1
【点睛】
本题考查了解一元二次方程-因式分解法:先把方程右边变形为0,再把方程左边分解为两个一次式的乘积,这样原方程转化为两个一元一次方程,然后解一次方程即可得到一元二次方程的解
13、1°
【解析】
根据全等三角形的对应边相等、对应角相等得到∠BAC=∠DAE,AB=AD,根据等腰三角形的性质和三角形内角和定理计算即可.
【详解】
∵△ABC≌△ADE,
∴∠BAC=∠DAE,AB=AD,
∴∠BAD=∠EAC=40°,
∴∠B=(180°-40°)÷2=1°,
故答案为1.
【点睛】
本题考查的是全等三角形的性质和三角形内角和定理,掌握全等三角形的对应边相等、对应角相等是解题的关键.
14、
【解析】
试题分析:∵两个相似三角形的面积比为1:4,∴这两个相似三角形的相似比为1:1,∴这两个相似三角形的周长比是1:1,故答案为1:1.
考点:相似三角形的性质.
15、
【解析】
根据二次函数解析式可知函数图象对称轴是x=0,且开口向上,分析可知两点均在对称轴左侧的图象上;接下来,结合二次函数的性质可判断对称轴左侧图象的增减性,
【详解】
解:二次函数的函数图象对称轴是x=0,且开口向上,
∴在对称轴的左侧y随x的增大而减小,
∵-3>-4,∴>.
故答案为>.
【点睛】
本题考查了二次函数的图像和数形结合的数学思想.
16、①②
【解析】
根据折叠的性质可知,结合垂径定理、三角形的性质、同圆或等圆中圆周角与圆心的性质等可以判断①②是否正确,EO的最小值问题是个难点,这是一个动点问题,只要把握住E在什么轨迹上运动,便可解决问题.
【详解】
如图1,连接OA和OB,作OF⊥AB.
由题知: 沿着弦AB折叠,正好经过圆心O
∴OF=OA= OB
∴∠AOF=∠BOF=60°
∴∠AOB=120°
∴∠ACB=120°(同弧所对圆周角相等)
∠D=∠AOB=60°(同弧所对的圆周角是圆心角的一半)
∴∠ACD=180°-∠ACB=60°
∴△ACD是等边三角形(有两个角是60°的三角形是等边三角形)
故,①②正确
下面研究问题EO的最小值是否是1
如图2,连接AE和EF
∵△ACD是等边三角形,E是CD中点
∴AE⊥BD(三线合一)
又∵OF⊥AB
∴F是AB中点
即,EF是△ABE斜边中线
∴AF=EF=BF
即,E点在以AB为直径的圆上运动.
所以,如图3,当E、O、F在同一直线时,OE长度最小
此时,AE=EF,AE⊥EF
∵⊙O的半径是2,即OA=2,OF=1
∴AF= (勾股定理)
∴OE=EF-OF=AF-OF=-1
所以,③不正确
综上所述:①②正确,③不正确.
故答案是:①②.
【点睛】
考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.也考查了垂径定理.
三、解答题(共8题,共72分)
17、甲、乙两公司人均捐款分别为80元、100元.
【解析】
试题分析:本题考察的是分式的应用题,设甲公司人均捐款x元,根据题意列出方程即可.
试题解析:
设甲公司人均捐款x元
解得:
经检验,为原方程的根, 80+20=100
答:甲、乙两公司人均各捐款为80元、100元.
18、(1);(2).
【解析】
试题分析:(1)过点A作AE⊥CB于点E,设AE=x,分别表示出CE、DE,再由CD=10,可得方程,解出x的值,在Rt△ADE中可求出AD;
(2)过点B作BF⊥AC于点F,设BF=y,分别表示出CF、AF,解出y的值后,在Rt△ABF中可求出AB的长度.
试题解析:(1)如图,过A作AH⊥CB于H,设AH=x,CH=x,DH=x.
∵CH―DH=CD,∴x―x=10,∴x=.
∵∠ADH=45°,∴AD=x=.
(2)如图,过B作BM ⊥AD于M.
∵∠1=75°,∠ADB=45°,∴∠DAB=30°.
设MB=m,∴AB=2m,AM=m,DM=m.
∵AD=AM+DM,∴=m+m.∴m=.∴AB=2m=.
19、(1)第一批饮料进货单价为8元.(2) 销售单价至少为11元.
【解析】
【分析】(1)设第一批饮料进货单价为元,根据等量关系第二批饮料的数量是第一批的3倍,列方程进行求解即可;
(2)设销售单价为元,根据两批全部售完后,获利不少于1200元,列不等式进行求解即可得.
【详解】(1)设第一批饮料进货单价为元,则:
解得:
经检验:是分式方程的解
答:第一批饮料进货单价为8元.
(2)设销售单价为元,则:
,
化简得:,
解得:,
答:销售单价至少为11元.
【点睛】本题考查了分式方程的应用,一元一次不等式的应用,弄清题意,找出等量关系与不等关系是关键.
20、(1);(2);
【解析】
(1)根据负整数指数幂、特殊角的三角函数值、零指数幂可以解答本题;
(2)根据分式的减法和除法可以解答本题.
【详解】
解:(1)原式
(2)原式
【点睛】
本题考查分式的混合运算、实数的运算、负整数指数幂、特殊角的三角函数值、零指数幂,解答本题的关键是明确它们各自的计算方法.
21、(1),;(2).
【解析】
分析:(1)由已知求出A、E的坐标,即可得出m的值和一次函数函数的解析式;
(2)由,得到,由,得到.设点坐标为,则点坐标为,代入反比例函数解析式即可得到结论.
详解:(1)∵为的中点,
∴.
∵反比例函数图象过点,
∴.
设图象经过、两点的一次函数表达式为:,
∴,
解得,
∴.
(2)∵,
∴.
∵,
∴,
∴.
设点坐标为,则点坐标为.
∵两点在图象上,
∴,
解得:,
∴,
∴,
∴.
点睛:本题考查了矩形的性质以及反比例函数一次函数的解析式.解题的关键是求出点A、E、F的坐标.
22、(1)y1=﹣t(t﹣30)(0≤t≤30);(2)∴y2=;(3)上市第20天,国内、外市场的日销售总量y最大,最大值为80万件.
【解析】
(1)根据题意得出y1与t之间是二次函数关系,然后利用待定系数法求出函数解析式;
(2)利用待定系数法分别求出两个函数解析式,从而得出答案;
(3)分0≤t<20、t=20和20≤t≤30三种情况根据y=y1+y2求出函数解析式,然后根据二次函数的性质得出最值,从而得出整体的最值.
【详解】
解:(1)由图表数据观察可知y1与t之间是二次函数关系,
设y1=a(t﹣0)(t﹣30)
再代入t=5,y1=25可得a=﹣
∴y1=﹣t(t﹣30)(0≤t≤30)
(2)由函数图象可知y2与t之间是分段的一次函数由图象可知:
0≤t<20时,y2=2t,当20≤t≤30时,y2=﹣4t+120,
∴y2=,
(3)当0≤t<20时,y=y1+y2=﹣t(t﹣30)+2t=80﹣(t﹣20)2 ,
可知抛物线开口向下,t的取值范围在对称轴左侧,y随t的增大而增大,所以最大值小于当t=20时的值80,
当20≤t≤30时,y=y1+y2=﹣t(t﹣30)﹣4t+120=125﹣(t﹣5)2 ,
可知抛物线开口向下,t的取值范围在对称轴右侧,y随t的增大而减小,所以最大值为当t=20时的值80,
故上市第20天,国内、外市场的日销售总量y最大,最大值为80万件.
23、(1)PD是⊙O的切线.证明见解析.(2)1.
【解析】
试题分析:(1)连结OP,根据圆周角定理可得∠AOP=2∠ACP=120°,然后计算出∠PAD和∠D的度数,进而可得∠OPD=90°,从而证明PD是⊙O的切线;
(2)连结BC,首先求出∠CAB=∠ABC=∠APC=45°,然后可得AC长,再证明△CAE∽△CPA,进而可得,然后可得CE•CP的值.
试题解析:(1)如图,PD是⊙O的切线.
证明如下:
连结OP,∵∠ACP=60°,∴∠AOP=120°,∵OA=OP,∴∠OAP=∠OPA=30°,∵PA=PD,∴∠PAO=∠D=30°,∴∠OPD=90°,∴PD是⊙O的切线.
(2)连结BC,∵AB是⊙O的直径,∴∠ACB=90°,又∵C为弧AB的中点,∴∠CAB=∠ABC=∠APC=45°,∵AB=4,AC=Absin45°=.∵∠C=∠C,∠CAB=∠APC,∴△CAE∽△CPA,∴,∴CP•CE=CA2=()2=1.
考点:相似三角形的判定与性质;圆心角、弧、弦的关系;直线与圆的位置关系;探究型.
24、(1)150,(2)36°,(3)1.
【解析】
(1)根据图中信息列式计算即可;
(2)求得“足球“的人数=150×20%=30人,补全上面的条形统计图即可;
(3)360°×乒乓球”所占的百分比即可得到结论;
(4)根据题意计算即可.
【详解】
(1)m=21÷14%=150,
(2)“足球“的人数=150×20%=30人,
补全上面的条形统计图如图所示;
(3)在图2中,“乒乓球”所对应扇形的圆心角的度数为360°×=36°;
(4)1200×20%=1人,
答:估计该校约有1名学生最喜爱足球活动.
故答案为150,36°,1.
【点睛】
本题考查了条形统计图,观察条形统计图、扇形统计图获得有效信息是解题关键.
[数学]四川省南充市仪陇县2024年中考数学模拟预测模拟预测题: 这是一份[数学]四川省南充市仪陇县2024年中考数学模拟预测模拟预测题,共6页。试卷主要包含了填写答题卡的内容用2B铅笔填写,提前 xx 分钟收取答题卡等内容,欢迎下载使用。
四川省南充市仪陇县2024年中考数学模拟预测模拟预测题: 这是一份四川省南充市仪陇县2024年中考数学模拟预测模拟预测题,共7页。试卷主要包含了选择题每小题都有代号为A,解答题解答应写出必要的文字说明等内容,欢迎下载使用。
06,2023年四川省南充市顺庆区南充职业技术学院附属中学校中考模拟预测数学模拟预测题: 这是一份06,2023年四川省南充市顺庆区南充职业技术学院附属中学校中考模拟预测数学模拟预测题,共30页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。