搜索
    上传资料 赚现金
    英语朗读宝

    2022年上海市廊下中学中考联考数学试卷含解析

    2022年上海市廊下中学中考联考数学试卷含解析第1页
    2022年上海市廊下中学中考联考数学试卷含解析第2页
    2022年上海市廊下中学中考联考数学试卷含解析第3页
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年上海市廊下中学中考联考数学试卷含解析

    展开

    这是一份2022年上海市廊下中学中考联考数学试卷含解析,共22页。试卷主要包含了如图所示,有一条线段是.等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    注意事项:
    1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
    2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
    3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
    4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则EC的长为()

    A. B.8 C. D.
    2.如图,BC平分∠ABE,AB∥CD,E是CD上一点,若∠C=35°,则∠BED的度数为(  )

    A.70° B.65° C.62° D.60°
    3.如图,已知△ABC,按以下步骤作图:①分别以 B,C 为圆心,以大于BC 的长为半径作弧,两弧相交于两点 M,N;②作直线 MN 交 AB 于点 D,连接 CD.若 CD=AC,∠A=50°,则∠ACB 的度数为( )

    A.90° B.95° C.105° D.110°
    4.如图,PA、PB切⊙O于A、B两点,AC是⊙O的直径,∠P=40°,则∠ACB度数是(  )

    A.50° B.60° C.70° D.80°
    5.如图,某计算机中有、、三个按键,以下是这三个按键的功能.
    (1).:将荧幕显示的数变成它的正平方根,例如:荧幕显示的数为49时,按下后会变成1.
    (2).:将荧幕显示的数变成它的倒数,例如:荧幕显示的数为25时,按下后会变成0.2.
    (3).:将荧幕显示的数变成它的平方,例如:荧幕显示的数为6时,按下后会变成3.
    若荧幕显示的数为100时,小刘第一下按,第二下按,第三下按,之后以、、的顺序轮流按,则当他按了第100下后荧幕显示的数是多少(  )

    A.0.01 B.0.1 C.10 D.100
    6.如图所示,有一条线段是()的中线,该线段是( ).

    A.线段GH B.线段AD C.线段AE D.线段AF
    7.下列四个几何体,正视图与其它三个不同的几何体是(  )
    A. B.
    C. D.
    8.甲、乙、丙、丁四名射击运动员进行淘汰赛,在相同条件下,每人射击10次,甲、乙两人的成绩如图所示,丙、丁二人的成绩如表所示.欲淘汰一名运动员,从平均数和方差两个因素分析,应淘汰(  )



    平均数
    8
    8
    方差
    1.2
    1.8

    A.甲 B.乙 C.丙 D.丁
    9.用配方法解方程时,可将方程变形为( )
    A. B. C. D.
    10.《九章算术》是中国古代第一部数学专著,它对我国古代后世的数学家产生了深远的影响,该书中记载了一个问题,大意是:有几个人一起去买一件物品,每人出8元,多3元;每人出7元,少4元,问有多少人?该物品价几何?设有x人,物品价值y元,则所列方程组正确的是( )
    A. B.
    C. D.
    11.一个几何体的三视图如图所示,这个几何体是(  )

    A.棱柱 B.正方形 C.圆柱 D.圆锥
    12.如图是由若干个相同的小正方体搭成的一个几何体的主视图和俯视图,则所需的小正方体的个数最少是(  )

    A. B. C. D.
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.因式分解:a2﹣a=_____.
    14.如图,▱ABCD中,AC⊥CD,以C为圆心,CA为半径作圆弧交BC于E,交CD的延长线于点F,以AC上一点O为圆心OA为半径的圆与BC相切于点M,交AD于点N.若AC=9cm,OA=3cm,则图中阴影部分的面积为_____cm1.

    15.对于实数a,b,定义运算“※”如下:a※b=a2﹣ab,例如,5※3=52﹣5×3=1.若(x+1)※(x﹣2)=6,则x的值为_____.
    16.某航空公司规定,乘客所携带行李的重量x(kg)与运费y(元)满足如图所示的函数图象,那么每位乘客最多可免费携带____kg的行李.

    17.如图,⊙O的外切正六边形ABCDEF的边长为2,则图中阴影部分的面积为_____.

    18.如图,已知在△ABC中,∠A=40°,剪去∠A后成四边形,∠1+∠2=______°.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)解不等式组
    请结合题意填空,完成本题的解答:
    (I)解不等式(1),得   ;
    (II)解不等式(2),得   ;
    (III)把不等式(1)和(2)的解集在数轴上表示出来:
    (IV)原不等式组的解集为   .

    20.(6分)某翻译团为成为2022年冬奥会志愿者做准备,该翻译团一共有五名翻译,其中一名只会翻译西班牙语,三名只会翻译英语,还有一名两种语言都会翻译.求从这五名翻译中随机挑选一名会翻译英语的概率;若从这五名翻译中随机挑选两名组成一组,请用树状图或列表的方法求该纽能够翻译上述两种语言的概率.
    21.(6分)在平面直角坐标系xOy中,对于P,Q两点给出如下定义:若点P到两坐标轴的距离之和等于点Q到两坐标轴的距离之和,则称P,Q两点为同族点.下图中的P,Q两点即为同族点.

    (1)已知点A的坐标为(﹣3,1),①在点R(0,4),S(2,2),T(2,﹣3)中,为点A的同族点的是  ;②若点B在x轴上,且A,B两点为同族点,则点B的坐标为  ;
    (2)直线l:y=x﹣3,与x轴交于点C,与y轴交于点D,
    ①M为线段CD上一点,若在直线x=n上存在点N,使得M,N两点为同族点,求n的取值范围;
    ②M为直线l上的一个动点,若以(m,0)为圆心,为半径的圆上存在点N,使得M,N两点为同族点,直接写出m的取值范围.
    22.(8分)校车安全是近几年社会关注的重大问题,安全隐患主要是超速和超载.某中学数学活动小组设计了如下检测公路上行驶的汽车速度的实验:先在公路旁边选取一点C,再在笔直的车道上确定点D,使CD与垂直,测得CD的长等于21米,在上点D的同侧取点A、B,使∠CAD=30,∠CBD=60.
    (1)求AB的长(精确到0.1米,参考数据:);
    (2)已知本路段对校车限速为40千米/小时,若测得某辆校车从A到B用时2秒,这辆校车是否超速?说明理由.

    23.(8分)已知,关于 x的一元二次方程(k﹣1)x2+x+3=0 有实数根,求k的取值范围.
    24.(10分)如图,已知矩形ABCD中,AB=3,AD=m,动点P从点D出发,在边DA上以每秒1个单位的速度向点A运动,连接CP,作点D关于直线PC的对称点E,设点P的运动时间为t(s).
    (1)若m=5,求当P,E,B三点在同一直线上时对应的t的值.
    (2)已知m满足:在动点P从点D到点A的整个运动过程中,有且只有一个时刻t,使点E到直线BC的距离等于2,求所有这样的m的取值范围.
    25.(10分)甲、乙两名队员的10次射击训练,成绩分别被制成下列两个统计图.

    并整理分析数据如下表:

    平均成绩/环
    中位数/环
    众数/环
    方差


    7
    7
    1.2

    7

    8

    (1)求,,的值;分别运用表中的四个统计量,简要分析这两名队员的射击训练成绩.若选派其中一名参赛,你认为应选哪名队员?
    26.(12分)某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出 4台.商场要想在这种冰箱销售中每天盈利 4800 元,同时又要使百姓得到实惠,每台冰箱应降价多少元?
    27.(12分)如图,在Rt△ABC中,∠C=90°,AC=3,BC=1.若以C为圆心,R为半径所作的圆与斜边AB只有一个公共点,则R的取值范围是多少?




    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、D
    【解析】
    ∵⊙O的半径OD⊥弦AB于点C,AB=8,∴AC=AB=1.
    设⊙O的半径为r,则OC=r-2,
    在Rt△AOC中,∵AC=1,OC=r-2,
    ∴OA2=AC2+OC2,即r2=12+(r﹣2)2,解得r=2.
    ∴AE=2r=3.
    连接BE,

    ∵AE是⊙O的直径,∴∠ABE=90°.
    在Rt△ABE中,∵AE=3,AB=8,∴.
    在Rt△BCE中,∵BE=6,BC=1,∴.故选D.
    2、A
    【解析】
    由AB∥CD,根据两直线平行,内错角相等,即可求得∠ABC的度数,又由BC平分∠ABE,即可求得∠ABE的度数,继而求得答案.
    【详解】
    ∵AB∥CD,∠C=35°,
    ∴∠ABC=∠C=35°,
    ∵BC平分∠ABE,
    ∴∠ABE=2∠ABC=70°,
    ∵AB∥CD,
    ∴∠BED=∠ABE=70°.
    故选:A.
    【点睛】
    本题考查了平行线的性质,解题的关键是掌握平行线的性质进行解答.
    3、C
    【解析】
    根据等腰三角形的性质得到∠CDA=∠A=50°,根据三角形内角和定理可得∠DCA=80°,根据题目中作图步骤可知,MN垂直平分线段BC,根据线段垂直平分线定理可知BD=CD,根据等边对等角得到∠B=∠BCD,根据三角形外角性质可知∠B+∠BCD=∠CDA,进而求得∠BCD=25°,根据图形可知∠ACB=∠ACD+∠BCD,即可解决问题.
    【详解】
    ∵CD=AC,∠A=50°
    ∴∠CDA=∠A=50°
    ∵∠CDA+∠A+∠DCA=180°
    ∴∠DCA=80°
    根据作图步骤可知,MN垂直平分线段BC
    ∴BD=CD
    ∴∠B=∠BCD
    ∵∠B+∠BCD=∠CDA
    ∴2∠BCD=50°
    ∴∠BCD=25°
    ∴∠ACB=∠ACD+∠BCD=80°+25°=105°
    故选C
    【点睛】
    本题考查了等腰三角形的性质、三角形内角和定理、线段垂直平分线定理以及三角形外角性质,熟练掌握各个性质定理是解题关键.
    4、C
    【解析】
    连接BC,根据题意PA,PB是圆的切线以及可得的度数,然后根据,可得的度数,因为是圆的直径,所以,根据三角形内角和即可求出的度数。
    【详解】
    连接BC.
    ∵PA,PB是圆的切线

    在四边形中,




    所以
    ∵是直径


    故答案选C.

    【点睛】
    本题主要考察切线的性质,四边形和三角形的内角和以及圆周角定理。
    5、B
    【解析】
    根据题中的按键顺序确定出显示的数即可.
    【详解】
    解:根据题意得: =40,
    =0.4,
    0.42=0.04,
    =0.4,
    =40,
    402=400,
    400÷6=46…4,
    则第400次为0.4.
    故选B.
    【点睛】
    此题考查了计算器﹣数的平方,弄清按键顺序是解本题的关键.
    6、B
    【解析】
    根据三角形一边的中点与此边所对顶点的连线叫做三角形的中线逐一判断即可得.
    【详解】
    根据三角形中线的定义知:线段AD是△ABC的中线.
    故选B.
    【点睛】
    本题考查了三角形的中线,解题的关键是掌握三角形一边的中点与此边所对顶点的连线叫做三角形的中线.
    7、C
    【解析】
    根据几何体的三视图画法先画出物体的正视图再解答.
    【详解】
    解:A、B、D三个几何体的主视图是由左上一个正方形、下方两个正方形构成的,
    而C选项的几何体是由上方2个正方形、下方2个正方形构成的,
    故选:C.
    【点睛】
    此题重点考查学生对几何体三视图的理解,掌握几何体的主视图是解题的关键.
    8、D
    【解析】
    求出甲、乙的平均数、方差,再结合方差的意义即可判断.
    【详解】
    =(6+10+8+9+8+7+8+9+7+7)=8,
    = [(6-8)2+(10-8)2+(8-8)2+(9-8)2+(8-8)2+(7-8)2+(8-8)2+(9-8)2+(7-8)2+(7-8)2]
    =×13
    =1.3;
    =(7+10+7+7+9+8+7+9+9+7)=8,
    = [(7-8)2+(10-8)2+(7-8)2+(7-8)2+(9-8)2+(8-8)2+(7-8)2+(9-8)2+(9-8)2+(7-8)2]
    =×12
    =1.2;
    丙的平均数为8,方差为1.2,
    丁的平均数为8,方差为1.8,
    故4个人的平均数相同,方差丁最大.
    故应该淘汰丁.
    故选D.
    【点睛】
    本题考查方差、平均数、折线图等知识,解题的关键是记住平均数、方差的公式.
    9、D
    【解析】
    配方法一般步骤:将常数项移到等号右侧,左右两边同时加一次项系数一半的平方,配方即可.
    【详解】
    解:



    故选D.
    【点睛】
    本题考查了配方法解方程的步骤,属于简单题,熟悉步骤是解题关键.
    10、C
    【解析】
    根据题意相等关系:①8×人数-3=物品价值,②7×人数+4=物品价值,可列方程组:,
    故选C.
    点睛:本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系.
    11、C
    【解析】试题解析:根据主视图和左视图为矩形可判断出该几何体是柱体,
    根据俯视图是圆可判断出该几何体为圆柱.
    故选C.
    12、B
    【解析】
    主视图、俯视图是分别从物体正面、上面看,所得到的图形.
    【详解】
    综合主视图和俯视图,底层最少有个小立方体,第二层最少有个小立方体,因此搭成这个几何体的小正方体的个数最少是个.
    故选:B.
    【点睛】
    此题考查由三视图判断几何体,解题关键在于识别图形

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、a(a﹣1)
    【解析】
    直接提取公因式a,进而分解因式得出答案
    【详解】
    a2﹣a=a(a﹣1).
    故答案为a(a﹣1).
    【点睛】
    此题考查公因式,难度不大
    14、11π﹣.
    【解析】
    阴影部分的面积=扇形ECF的面积-△ACD的面积-△OCM的面积-扇形AOM的面积-弓形AN的面积.
    【详解】
    解:连接OM,ON.

    ∴OM=3,OC=6,


    ∴扇形ECF的面积
    △ACD的面积
    扇形AOM的面积
    弓形AN的面积
    △OCM的面积
    ∴阴影部分的面积=扇形ECF的面积−△ACD的面积−△OCM的面积−扇形AOM的面积−弓形AN的面积
    故答案为.
    【点睛】
    考查不规则图形的面积的计算,掌握扇形的面积公式是解题的关键.
    15、2
    【解析】
    根据新定义运算对式子进行变形得到关于x的方程,解方程即可得解.
    【详解】
    由题意得,(x+2)2﹣(x+2)(x﹣2)=6,
    整理得,3x+3=6,
    解得,x=2,
    故答案为2.
    【点睛】
    本题考查了解方程,涉及到完全平方公式、多项式乘法的运算等,根据题意正确得到方程是解题的关键.
    16、2
    【解析】
    设乘客所携带行李的重量x(kg)与运费y(元)之间的函数关系式为y=kx+b,由待定系数法求出其解即可.
    【详解】
    解:设乘客所携带行李的重量x(kg)与运费y(元)之间的函数关系式为y=kx+b,由题意,得 ,
    解得, ,
    则y=30x-1.
    当y=0时,
    30x-1=0,
    解得:x=2.
    故答案为:2.
    【点睛】
    本题考查了运用待定系数法求一次函数的解析式的运用,由函数值求自变量的值的运用,解答时求出函数的解析式是关键.
    17、
    【解析】
    由于六边形ABCDEF是正六边形,所以∠AOB=60°,故△OAB是等边三角形,OA=OB=AB=2,设点G为AB与⊙O的切点,连接OG,则OG⊥AB,OG=OA•sin60°,再根据S阴影=S△OAB-S扇形OMN,进而可得出结论.
    【详解】
    ∵六边形ABCDEF是正六边形,
    ∴∠AOB=60°,
    ∴△OAB是等边三角形,OA=OB=AB=2,
    设点G为AB与⊙O的切点,连接OG,则OG⊥AB,

    ∴S阴影=S△OAB-S扇形OMN=
    故答案为
    【点睛】
    考查不规则图形面积的计算,掌握扇形的面积公式是解题的关键.
    18、220.
    【解析】
    试题分析:△ABC中,∠A=40°,=;如图,剪去∠A后成四边形∠1+∠2+=;∠1+∠2=220°
    考点:内角和定理
    点评:本题考查三角形、四边形的内角和定理,掌握内角和定理是解本题的关键

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、(I)x≥1;(Ⅱ)x>2;(III)见解析;(Ⅳ)x≥1.
    【解析】
    分别求出每一个不等式的解集,将不等式解集表示在数轴上即可得出两不等式解集的公共部分,从而确定不等式组的解集.
    【详解】
    (I)解不等式(1),得x≥1;
    (Ⅱ)解不等式(2),得x>2;
    (Ⅲ)把不等式(1)和(2)解集在数轴上表示出来,如下图所示:

    (Ⅳ)原不等式组的解集为x≥1.
    【点睛】
    此题考查了解一元一次不等式组,以及在数轴上表示不等式的解集,准确求出每个不等式的解集是解本题的关键.
    20、(1);(2).
    【解析】
    (1)直接利用概率公式计算;
    (2)只会翻译西班牙语用A表示,三名只会翻译英语的用B表示,一名两种语言都会翻译用C表示,画树状图展示所有20种等可能的结果数,找出该组能够翻译上述两种语言的结果数,然后根据概率公式求解.
    【详解】
    解:(1)从这五名翻译中随机挑选一名会翻译英语的概率=;
    (2)只会翻译西班牙语用A表示,三名只会翻译英语的用B表示,一名两种语言都会翻译用C表示
    画树状图为:

    共有20种等可能的结果数,其中该组能够翻译上述两种语言的结果数为14,
    所以该纽能够翻译上述两种语言的概率= .
    【点睛】
    本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.
    21、(1)①R,S;②(,0)或(4,0);(2)①;②m≤或m≥1.
    【解析】
    (1)∵点A的坐标为(−2,1),
    ∴2+1=4,
    点R(0,4),S(2,2),T(2,−2)中,
    0+4=4,2+2=4,2+2=5,
    ∴点A的同族点的是R,S;
    故答案为R,S;
    ②∵点B在x轴上,
    ∴点B的纵坐标为0,
    设B(x,0),
    则|x|=4,
    ∴x=±4,
    ∴B(−4,0)或(4,0);
    故答案为(−4,0)或(4,0);
    (2)①由题意,直线与x轴交于C(2,0),与y轴交于D(0,).

    点M在线段CD上,设其坐标为(x,y),则有:
    ,,且.
    点M到x轴的距离为,点M到y轴的距离为,
    则.
    ∴点M的同族点N满足横纵坐标的绝对值之和为2.
    即点N在右图中所示的正方形CDEF上.
    ∵点E的坐标为(,0),点N在直线上,
    ∴.
    ②如图,设P(m,0)为圆心, 为半径的圆与直线y=x−2相切,

    ∴PC=2,
    ∴OP=1,
    观察图形可知,当m≥1时,若以(m,0)为圆心,为半径的圆上存在点N,使得M,N两点为同族点,再根据对称性可知,m≤也满足条件,
    ∴满足条件的m的范围:m≤或m≥1

    22、(1)24.2米(2) 超速,理由见解析
    【解析】
    (1)分别在Rt△ADC与Rt△BDC中,利用正切函数,即可求得AD与BD的长,从而求得AB的长.
    (2)由从A到B用时2秒,即可求得这辆校车的速度,比较与40千米/小时的大小,即可确定这辆校车是否超速.
    【详解】
    解:(1)由題意得,
    在Rt△ADC中,,
    在Rt△BDC中,,
    ∴AB=AD-BD=(米).
    (2)∵汽车从A到B用时2秒,∴速度为24.2÷2=12.1(米/秒),
    ∵12.1米/秒=43.56千米/小时,∴该车速度为43.56千米/小时.
    ∵43.56千米/小时大于40千米/小时,
    ∴此校车在AB路段超速.
    23、0≤k≤且 k≠1.
    【解析】
    根据二次项系数非零、被开方数非负及根的判别式△≥0,即可得出关于 k 的一元一次不等式组,解之即可求出 k 的取值范围.
    【详解】
    解:∵关于 x 的一元二次方程(k﹣1)x2+x+3=0 有实数根,
    ∴2k≥0,k-1≠0,Δ=()2-43(k-1)≥0,
    解得:0≤k≤且 k≠1.
    ∴k 的取值范围为 0≤k≤且 k≠1.
    【点睛】
    本题考查了根的判别式、二次根式以及一元二次方程的定义,根据二次项系数非零、被开方数非负及根的判别式△≥0,列出关于 k 的一元一次不等式组是解题的关键.当∆>0时,一元二次方程有两个不相等的实数根;当∆=0时,一元二次方程有两个相等的实数根;当∆

    相关试卷

    2024年上海市中考数学试卷(含解析):

    这是一份2024年上海市中考数学试卷(含解析),共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023年上海市中考数学试卷(含解析):

    这是一份2023年上海市中考数学试卷(含解析),共24页。试卷主要包含了选择题.,填空题.,解答题.等内容,欢迎下载使用。

    2023年上海市中考数学试卷(含解析):

    这是一份2023年上海市中考数学试卷(含解析),共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map