2022年陕西省渭南市名校中考数学仿真试卷含解析
展开2021-2022中考数学模拟试卷
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.圆锥的底面半径为2,母线长为4,则它的侧面积为( )
A.8π B.16π C.4π D.4π
2.在平面直角坐标系中,将点P(﹣2,1)向右平移3个单位长度,再向上平移4个单位长度得到点P′的坐标是( )
A.(2,4) B.(1,5) C.(1,-3) D.(-5,5)
3.如图,在矩形ABCD中,AB=2,AD=3,点E是BC边上靠近点B的三等分点,动点P从点A出发,沿路径A→D→C→E运动,则△APE的面积y与点P经过的路径长x之间的函数关系用图象表示大致是( )
A. B. C. D.
4.如图,圆弧形拱桥的跨径米,拱高米,则拱桥的半径为( )米
A. B. C. D.
5.方程=的解为( )
A.x=3 B.x=4 C.x=5 D.x=﹣5
6.如图,抛物线y=-x2+mx的对称轴为直线x=2,若关于x的-元二次方程-x2+mx-t=0 (t为实数)在l
A.-5
7.如图,小岛在港口P的北偏西60°方向,距港口56海里的A处,货船从港口P出发,沿北偏东45°方向匀速驶离港口,4小时后货船在小岛的正东方向,则货船的航行速度是( )
A.7海里/时 B.7海里/时 C.7海里/时 D.28海里/时
8.某果园2011年水果产量为100吨,2013年水果产量为144吨,求该果园水果产量的年平均增长率.设该果园水果产量的年平均增长率为x,则根据题意可列方程为( )
A.144(1﹣x)2=100 B.100(1﹣x)2=144 C.144(1+x)2=100 D.100(1+x)2=144
9.如图在△ABC中,AC=BC,过点C作CD⊥AB,垂足为点D,过D作DE∥BC交AC于点E,若BD=6,AE=5,则sin∠EDC的值为( )
A. B. C. D.
10.如图,按照三视图确定该几何体的侧面积是(单位:cm)( )
A.24π cm2 B.48π cm2 C.60π cm2 D.80π cm2
二、填空题(共7小题,每小题3分,满分21分)
11.一副直角三角板叠放如图所示,现将含45°角的三角板固定不动,把含30°角的三角板绕直角顶点沿逆时针方向匀速旋转一周,第一秒旋转5°,第二秒旋转10°,第三秒旋转5°,第四秒旋转10°,…按此规律,当两块三角板的斜边平行时,则三角板旋转运动的时间为_____.
12.分解因式:__________.
13.已知点A(4,y1),B(,y2),C(-2,y3)都在二次函数y=(x-2)2-1的图象上,则y1,y2,y3的大小关系是 .
14.如图,△ABC中,CD⊥AB于D,E是AC的中点.若AD=6,DE=5,则CD的长等于 .
15.经过三边都不相等的三角形的一个顶点的线段把三角形分成两个小三角形,如果其中一个是等腰三角形,另外一个三角形和原三角形相似,那么把这条线段定义为原三角形的“和谐分割线”.如图,线段CD是△ABC的“和谐分割线”,△ACD为等腰三角形,△CBD和△ABC相似,∠A=46°,则∠ACB的度数为_____.
16.方程的解为 .
17.小明和小亮分别从A、B两地同时相向而行,并以各自的速度匀速行驶,途中会经过奶茶店C,小明先到达奶茶店C,并在C地休息了一小时,然后按原速度前往B地,小亮从B地直达A地,结果还是小明先到达目的地,如图是小明和小亮两人之间的距离y(千米)与小亮出发时间x(时)的函数的图象,请问当小明到达B地时,小亮距离A地_____千米.
三、解答题(共7小题,满分69分)
18.(10分)如图所示,点C为线段OB的中点,D为线段OA上一点.连结AC、BD交于点P.
(问题引入)(1)如图1,若点P为AC的中点,求的值.
温馨提示:过点C作CE∥AO交BD于点E.
(探索研究)(2)如图2,点D为OA上的任意一点(不与点A、O重合),求证:.
(问题解决)(3)如图2,若AO=BO,AO⊥BO,,求tan∠BPC的值.
19.(5分)甲、乙两家商场以同样价格出售相同的商品,在同一促销期间两家商场都让利酬宾,让利方式如下:甲商场所有商品都按原价的8.5折出售,乙商场只对一次购物中超过200元后的价格部分按原价的7.5折出售.某顾客打算在促销期间到这两家商场中的一家去购物,设该顾客在一次购物中的购物金额的原价为x(x>0)元,让利后的购物金额为y元.
(1)分别就甲、乙两家商场写出y关于x的函数解析式;
(2)该顾客应如何选择这两家商场去购物会更省钱?并说明理由.
20.(8分)从一幢建筑大楼的两个观察点A,B观察地面的花坛(点C),测得俯角分别为15°和60°,如图,直线AB与地面垂直,AB=50米,试求出点B到点C的距离.(结果保留根号)
21.(10分)甲乙两件服装的进价共500元,商场决定将甲服装按30%的利润定价,乙服装按20%的利润定价,实际出售时,两件服装均按9折出售,商场卖出这两件服装共获利67元.求甲乙两件服装的进价各是多少元;由于乙服装畅销,制衣厂经过两次上调价格后,使乙服装每件的进价达到242元,求每件乙服装进价的平均增长率;若每件乙服装进价按平均增长率再次上调,商场仍按9折出售,定价至少为多少元时,乙服装才可获得利润(定价取整数).
22.(10分)如图,已知:△ABC中,AB=AC,M是BC的中点,D、E分别是AB、AC边上的点,且BD=CE.求证:MD=ME.
23.(12分)如图,在Rt△ABC中,∠C=90°,O、D分别为AB、AC上的点,经过A、D两点的⊙O分别交于AB、AC于点E、F,且BC与⊙O相切于点D.
(1)求证:;
(2)当AC=2,CD=1时,求⊙O的面积.
24.(14分)在大课间活动中,体育老师随机抽取了七年级甲、乙两班部分女学生进行仰卧起坐的测试,并对成绩进行统计分析,绘制了频数分布表和统计图,请你根据图表中的信息完成下列问题:
分 组
频数
频率
第一组(0≤x<15)
3
0.15
第二组(15≤x<30)
6
a
第三组(30≤x<45)
7
0.35
第四组(45≤x<60)
b
0.20
(1)频数分布表中a=_____,b=_____,并将统计图补充完整;如果该校七年级共有女生180人,估计仰卧起坐能够一分钟完成30或30次以上的女学生有多少人?已知第一组中只有一个甲班学生,第四组中只有一个乙班学生,老师随机从这两个组中各选一名学生谈心得体会,则所选两人正好都是甲班学生的概率是多少?
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、A
【解析】
解:底面半径为2,底面周长=4π,侧面积=×4π×4=8π,故选A.
2、B
【解析】
试题分析:由平移规律可得将点P(﹣2,1)向右平移3个单位长度,再向上平移4个单位长度得到点P′的坐标是(1,5),故选B.
考点:点的平移.
3、B
【解析】
由题意可知,
当时,;
当时,
;
当时,.∵时,;时,.∴结合函数解析式,
可知选项B正确.
【点睛】
考点:1.动点问题的函数图象;2.三角形的面积.
4、A
【解析】
试题分析:根据垂径定理的推论,知此圆的圆心在CD所在的直线上,设圆心是O.连接OA.根据垂径定理和勾股定理求解.得AD=6设圆的半径是r, 根据勾股定理, 得r2=36+(r﹣4)2,解得r=6.5
考点:垂径定理的应用.
5、C
【解析】
方程两边同乘(x-1)(x+3),得
x+3-2(x-1)=0,
解得:x=5,
检验:当x=5时,(x-1)(x+3)≠0,
所以x=5是原方程的解,
故选C.
6、B
【解析】
先利用抛物线的对称轴方程求出m得到抛物线解析式为y=-x2+4x,配方得到抛物线的顶点坐标为(2,4),再计算出当x=1或3时,y=3,结合函数图象,利用抛物线y=-x2+4x与直线y=t在1<x<3的范围内有公共点可确定t的范围.
【详解】
∵ 抛物线y=-x2+mx的对称轴为直线x=2,
∴,
解之:m=4,
∴y=-x2+4x,
当x=2时,y=-4+8=4,
∴顶点坐标为(2,4),
∵ 关于x的-元二次方程-x2+mx-t=0 (t为实数)在l
当x=2时,y=-4+8=4,
∴ 3
【点睛】
本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数的性质.
7、A
【解析】
试题解析:设货船的航行速度为海里/时,小时后货船在点处,作于点.
由题意海里,海里,
在中,
所以
在中,
所以
所以
解得:
故选A.
8、D
【解析】
试题分析:2013年的产量=2011年的产量×(1+年平均增长率)2,把相关数值代入即可.
解:2012年的产量为100(1+x),
2013年的产量为100(1+x)(1+x)=100(1+x)2,
即所列的方程为100(1+x)2=144,
故选D.
点评:考查列一元二次方程;得到2013年产量的等量关系是解决本题的关键.
9、A
【解析】
由等腰三角形三线合一的性质得出AD=DB=6,∠BDC=∠ADC=90°,由AE=5,DE∥BC知AC=2AE=10,∠EDC=∠BCD,再根据正弦函数的概念求解可得.
【详解】
∵△ABC中,AC=BC,过点C作CD⊥AB,
∴AD=DB=6,∠BDC=∠ADC=90°,
∵AE=5,DE∥BC,
∴AC=2AE=10,∠EDC=∠BCD,
∴sin∠EDC=sin∠BCD=,
故选:A.
【点睛】
本题主要考查解直角三角形,解题的关键是熟练掌握等腰三角形三线合一的性质和平行线的性质及直角三角形的性质等知识点.
10、A
【解析】
由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状,确定圆锥的母线长和底面半径,从而确定其侧面积.
【详解】
解:由主视图和左视图为三角形判断出是锥体,由俯视图是圆形可判断出这个几何体应该是圆锥;
根据三视图知:该圆锥的母线长为6cm,底面半径为8÷1=4cm,
故侧面积=πrl=π×6×4=14πcm1.
故选:A.
【点睛】
此题考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.
二、填空题(共7小题,每小题3分,满分21分)
11、14s或38s.
【解析】
试题解析:分两种情况进行讨论:
如图:
旋转的度数为:
每两秒旋转
如图:
旋转的度数为:
每两秒旋转
故答案为14s或38s.
12、a(a -4)2
【解析】
首先提取公因式a,进而利用完全平方公式分解因式得出即可.
【详解】
故答案为:
【点睛】
本题主要考查因式分解,熟练掌握提取公因式法和公式法是解题的关键.分解一定要彻底.
13、y3>y1>y2.
【解析】
试题分析:将A,B,C三点坐标分别代入解析式,得:y1=3,y2=5-4,y3=15,∴y3>y1>y2.
考点:二次函数的函数值比较大小.
14、1.
【解析】
由“直角三角形斜边上的中线等于斜边的一半”求得AC=2DE=2;然后在直角△ACD中,利用勾股定理来求线段CD的长度即可.
【详解】
∵△ABC中,CD⊥AB于D,E是AC的中点,DE=5,
∴DE=AC=5,
∴AC=2.
在直角△ACD中,∠ADC=90°,AD=6,AC=2,则根据勾股定理,得
.
故答案是:1.
15、113°或92°
【解析】
解:∵△BCD∽△BAC,∴∠BCD=∠A=46°.∵△ACD是等腰三角形,∠ADC>∠BCD,∴∠ADC>∠A,即AC≠CD.
①当AC=AD时,∠ACD=∠ADC=(180°﹣46°)÷2=67°,∴∠ACB=67°+46°=113°;
②当DA=DC时,∠ACD=∠A=46°,∴∠ACB=46°+46°=92°.
故答案为113°或92°.
16、.
【解析】
试题分析:首先去掉分母,观察可得最简公分母是,方程两边乘最简公分母,可以把分式方程转化为整式方程求解,然后解一元一次方程,最后检验即可求解:
,经检验,是原方程的根.
17、1
【解析】
根据题意设小明的速度为akm/h,小亮的速度为bkm/h,求出a,b的值,再代入方程即可解答.
【详解】
设小明的速度为akm/h,小亮的速度为bkm/h,
,
解得, ,
当小明到达B地时,小亮距离A地的距离是:120×(3.5﹣1)﹣60×3.5=1(千米),
故答案为1.
【点睛】
此题考查一次函数的应用,解题关键在于列出方程组.
三、解答题(共7小题,满分69分)
18、(1);(2) 见解析;(3)
【解析】
(1)过点C作CE∥OA交BD于点E,即可得△BCE∽△BOD,根据相似三角形的性质可得,再证明△ECP≌△DAP,由此即可求得的值;(2)过点D作DF∥BO交AC于点F,即可得,,由点C为OB的中点可得BC=OC,即可证得;(3)由(2)可知=,设AD=t,则BO=AO=4t,OD=3t,根据勾股定理求得BD=5t,即可得PD=t,PB=4t,所以PD=AD,从而得∠A=∠APD=∠BPC,所以tan∠BPC=tan∠A=.
【详解】
(1)如图1,过点C作CE∥OA交BD于点E,
∴△BCE∽△BOD,
∴=,
又BC=BO,∴CE=DO.
∵CE∥OA,∴∠ECP=∠DAP,
又∠EPC=∠DPA,PA=PC,
∴△ECP≌△DAP,
∴AD=CE=DO,
即 =;
(2)如图2,过点D作DF∥BO交AC于点F,
则 =, =.
∵点C为OB的中点,
∴BC=OC,
∴=;
(3)如图2,∵=,
由(2)可知==.
设AD=t,则BO=AO=4t,OD=3t,
∵AO⊥BO,即∠AOB=90°,
∴BD==5t,
∴PD=t,PB=4t,
∴PD=AD,
∴∠A=∠APD=∠BPC,
则tan∠BPC=tan∠A==.
【点睛】
本题考查了相似三角形的判定与性质,准确作出辅助线,构造相似三角形是解决本题的关键,也是求解的难点.
19、(1)y1=0.85x,y2=0.75x+50 (x>200),y2=x (0≤x≤200);(2)x>500时,到乙商场购物会更省钱,x=500时,到两家商场去购物花费一样,当x<500时,到甲商场购物会更省钱.
【解析】
(1)根据单价乘以数量,可得函数解析式;
(2)分类讨论,根据消费的多少,可得不等式,根据解不等式,可得答案.
【详解】
(1)甲商场写出y关于x的函数解析式y1=0.85x,
乙商场写出y关于x的函数解析式y2=200+(x﹣200)×0.75=0.75x+50(x>200),
即y2=x(0≤x≤200);
(2)由y1>y2,得0.85x>0.75x+50,
解得x>500,
即当x>500时,到乙商场购物会更省钱;
由y1=y2得0.85x=0.75x+50,
即x=500时,到两家商场去购物花费一样;
由y1<y2,得0.85x<0.75x+500,
解得x<500,
即当x<500时,到甲商场购物会更省钱;
综上所述:x>500时,到乙商场购物会更省钱,x=500时,到两家商场去购物花费一样,当x<500时,到甲商场购物会更省钱.
【点睛】
本题考查了一次函数的应用,分类讨论是解题关键.
20、
【解析】
试题分析:根据题意构建图形,结合图形,根据直角三角形的性质可求解.
试题解析:作AD⊥BC于点D,∵∠MBC=60°,
∴∠ABC=30°,
∵AB⊥AN,∴∠BAN=90°,∴∠BAC=105°,
则∠ACB=45°,
在Rt△ADB中,AB=1000,则AD=500,BD=,
在Rt△ADC中,AD=500,CD=500, 则BC=.
答:观察点B到花坛C的距离为米.
考点:解直角三角形
21、(1)甲服装的进价为300元、乙服装的进价为1元.(2)每件乙服装进价的平均增长率为10%;(3)乙服装的定价至少为296元.
【解析】
(1)若设甲服装的成本为x元,则乙服装的成本为(500-x)元.根据公式:总利润=总售价-总进价,即可列出方程.
(2)利用乙服装的成本为1元,经过两次上调价格后,使乙服装每件的进价达到242元,利用增长率公式求出即可;
(3)利用每件乙服装进价按平均增长率再次上调,再次上调价格为:242×(1+10%)=266.2(元),进而利用不等式求出即可.
【详解】
(1)设甲服装的成本为x元,则乙服装的成本为(500-x)元,
根据题意得:90%•(1+30%)x+90%•(1+20%)(500-x)-500=67,
解得:x=300,
500-x=1.
答:甲服装的成本为300元、乙服装的成本为1元.
(2)∵乙服装的成本为1元,经过两次上调价格后,使乙服装每件的进价达到242元,
∴设每件乙服装进价的平均增长率为y,
则,
解得:=0.1=10%,=-2.1(不合题意,舍去).
答:每件乙服装进价的平均增长率为10%;
(3)∵每件乙服装进价按平均增长率再次上调
∴再次上调价格为:242×(1+10%)=266.2(元)
∵商场仍按9折出售,设定价为a元时
0.9a-266.2>0
解得:a>
故定价至少为296元时,乙服装才可获得利润.
考点:一元二次方程的应用,不等式的应用,打折销售问题
22、证明见解析.
【解析】
试题分析:根据等腰三角形的性质可证∠DBM=∠ECM,可证△BDM≌△CEM,可得MD=ME,即可解题.
试题解析:证明:△ABC中,∵AB=AC,∴∠DBM=∠ECM.
∵M是BC的中点,∴BM=CM.
在△BDM和△CEM中,∵,
∴△BDM≌△CEM(SAS).∴MD=ME.
考点:1.等腰三角形的性质;2.全等三角形的判定与性质.
23、(1)证明见解析;(2).
【解析】
(1)连接OD,由BC为圆O的切线,得到OD垂直于BC,再由AC垂直于BC,得到OD与AC平行,利用两直线平行得到一对内错角相等,再由OA=OD,利用等边对等角得到一对角相等,等量代换得到AD为角平分线,利用相等的圆周角所对的弧相等即可得证;
(2)连接ED,在直角三角形ACD中,由AC与CD的长,利用勾股定理求出AD的长,由(1)得出的两个圆周角相等,及一对直角相等得到三角形ACD与三角形ADE相似,由相似得比例求出AE的长,进而求出圆的半径,即可求出圆的面积.
【详解】
证明:连接OD,
∵BC为圆O的切线,
∴OD⊥CB,
∵AC⊥CB,
∴OD∥AC,
∴∠CAD=∠ODA,
∵OA=OD,
∴∠OAD=∠ODA,
∴∠CAD=∠OAD,
则 ;
(2)解:连接ED,
在Rt△ACD中,AC=2,CD=1,
根据勾股定理得:AD= ,
∵∠CAD=∠OAD,∠ACD=∠ADE=90°,
∴△ACD∽△ADE,
∴,即AD2=AC•AE,
∴AE=,即圆的半径为 ,
则圆的面积为 .
【点睛】
此题考查了切线的性质,圆周角定理,相似三角形的判定与性质,以及勾股定理,熟练掌握相关性质是解本题的关键.
24、0.3 4
【解析】
(1)由统计图易得a与b的值,继而将统计图补充完整;
(2)利用用样本估计总体的知识求解即可求得答案;
(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与所选两人正好都是甲班学生的情况,再利用概率公式即可求得答案.
【详解】
(1)a=1﹣0.15﹣0.35﹣0.20=0.3;
∵总人数为:3÷0.15=20(人),∴b=20×0.20=4(人);
故答案为0.3,4;
补全统计图得:
(2)估计仰卧起坐能够一分钟完成30或30次以上的女学生有:180×(0.35+0.20)=99(人);
(3)画树状图得:
∵共有12种等可能的结果,所选两人正好都是甲班学生的有3种情况,∴所选两人正好都是甲班学生的概率是:=.
【点睛】
本题考查了列表法或树状图法求概率以及条形统计图的知识.用到的知识点为:概率=所求情况数与总情况数之比.
陕西省渭南市富平县重点名校2022年中考数学五模试卷含解析: 这是一份陕西省渭南市富平县重点名校2022年中考数学五模试卷含解析,共25页。试卷主要包含了考生必须保证答题卡的整洁,运用图形变化的方法研究下列问题,下列计算中正确的是等内容,欢迎下载使用。
陕西省渭南市合阳县市级名校2022年中考数学五模试卷含解析: 这是一份陕西省渭南市合阳县市级名校2022年中考数学五模试卷含解析,共21页。试卷主要包含了计算的值为,已知x=2﹣,则代数式等内容,欢迎下载使用。
2022届陕西省三原县市级名校中考数学仿真试卷含解析: 这是一份2022届陕西省三原县市级名校中考数学仿真试卷含解析,共19页。试卷主要包含了考生要认真填写考场号和座位序号,下列图标中,是中心对称图形的是,下列各数中负数是等内容,欢迎下载使用。