2022年陕西省西安市第二十三中学中考试题猜想数学试卷含解析
展开
这是一份2022年陕西省西安市第二十三中学中考试题猜想数学试卷含解析,共26页。试卷主要包含了答题时请按要求用笔,下列命题是真命题的是等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.从①②③④中选择一块拼图板可与左边图形拼成一个正方形,正确的选择为( )
A.① B.② C.③ D.④
2.如图,▱ABCD对角线AC与BD交于点O,且AD=3,AB=5,在AB延长线上取一点E,使BE=AB,连接OE交BC于F,则BF的长为( )
A. B. C. D.1
3.下列命题正确的是( )
A.内错角相等 B.-1是无理数
C.1的立方根是±1 D.两角及一边对应相等的两个三角形全等
4.的相反数是( )
A.2 B.﹣2 C.4 D.﹣
5.二次函数y=ax2+bx+c的图象在平面直角坐标系中的位置如图所示,则一次函数y=ax+b与反比例函数y=在同一平面直角坐标系中的图象可能是( )
A. B. C. D.
6.如图,数轴上表示的是下列哪个不等式组的解集( )
A. B. C. D.
7.下列对一元二次方程x2+x﹣3=0根的情况的判断,正确的是( )
A.有两个不相等实数根 B.有两个相等实数根
C.有且只有一个实数根 D.没有实数根
8.一个几何体的三视图如图所示,则该几何体的表面积是( )
A.24+2π B.16+4π C.16+8π D.16+12π
9.下列命题是真命题的是( )
A.如果a+b=0,那么a=b=0 B.的平方根是±4
C.有公共顶点的两个角是对顶角 D.等腰三角形两底角相等
10.如图,在矩形纸片ABCD中,已知AB=,BC=1,点E在边CD上移动,连接AE,将多边形ABCE沿直线AE折叠,得到多边形AFGE,点B、C的对应点分别为点F、G.在点E从点C移动到点D的过程中,则点F运动的路径长为( )
A.π B.π C.π D.π
二、填空题(共7小题,每小题3分,满分21分)
11.如图,矩形纸片ABCD,AD=4,AB=3,如果点E在边BC上,将纸片沿AE折叠,使点B落在点F处,联结FC,当△EFC是直角三角形时,那么BE的长为______.
12.若x=﹣1是关于x的一元二次方程x2+3x+m+1=0的一个解,则m的值为______.
13.如图,点A、B、C是圆O上的三点,且四边形ABCO是平行四边形,OF⊥OC交圆O于点F,则∠BAF=__.
14.在△ABC中,∠C=90°,若tanA=,则sinB=______.
15.如图,正方形ABCD边长为1,以AB为直径作半圆,点P是CD 中点,BP与半圆交于点Q,连结DQ.给出如下结论:①DQ=1;②;③S△PDQ=;④cos∠ADQ=.其中正确结论是_________.(填写序号)
16.如图,在四边形纸片ABCD中,AB=BC,AD=CD,∠A=∠C=90°,∠B=150°.将纸片先沿直线BD对折,再将对折后的图形沿从一个顶点出发的直线裁剪,剪开后的图形打开铺平.若铺平后的图形中有一个是面积为2的平行四边形,则CD=_________.
17.如图,点O(0,0),B(0,1)是正方形OBB1C的两个顶点,以对角线OB1为一边作正方形OB1B2C1,再以正方形OB1B2C1的对角线OB2为一边作正方形OB2B3C2,……,依次下去.则点B6的坐标____________.
三、解答题(共7小题,满分69分)
18.(10分)如图所示,点C为线段OB的中点,D为线段OA上一点.连结AC、BD交于点P.
(问题引入)(1)如图1,若点P为AC的中点,求的值.
温馨提示:过点C作CE∥AO交BD于点E.
(探索研究)(2)如图2,点D为OA上的任意一点(不与点A、O重合),求证:.
(问题解决)(3)如图2,若AO=BO,AO⊥BO,,求tan∠BPC的值.
19.(5分)如图,在平面直角坐标系中,已知△AOB是等边三角形,点A的坐标是(0,4),点B在一象限,点P(t,0)是x轴上的一个动点,连接AP,并把△AOP绕着点A按逆时针方向旋转,使边AO与AB重合,连接OD,PD,得△OPD。
(1)当t=时,求DP的长
(2)在点P运动过程中,依照条件所形成的△OPD面积为S
①当t>0时,求S与t之间的函数关系式
②当t≤0时,要使s=,请直接写出所有符合条件的点P的坐标.
20.(8分)抛物线:与轴交于,两点(点在点左侧),抛物线的顶点为.
(1)抛物线的对称轴是直线________;
(2)当时,求抛物线的函数表达式;
(3)在(2)的条件下,直线:经过抛物线的顶点,直线与抛物线有两个公共点,它们的横坐标分别记为,,直线与直线的交点的横坐标记为,若当时,总有,请结合函数的图象,直接写出的取值范围.
21.(10分)2018年春节,西安市政府实施“点亮工程”,开展“西安年·最中国”活动,元宵节晚上,小明一家人到“大唐不夜城”游玩,看美景、品美食。在美食一条街上,小明买了一碗元宵,共5个,其中黑芝麻馅两个,五仁馅两个,桂花馅一个,当元宵端上来的时候,看着五个大小、色泽一模一样的元宵,小明的爸爸问了小明两个问题:
(1)小明吃到第一个元宵是五仁馅的概率是多少?请你帮小明直接写出答案。
(2)小明吃的前两个元宵是同一种馅的元宵概率是多少?请你利用你列表或树状图帮小明求出概率。
22.(10分)如图,在△ABC中,∠C=90°,∠BAC的平分线交BC于点D,点O在AB上,以点O为圆心,OA为半径的圆恰好经过点D,分别交AC、AB于点E. F.试判断直线BC与⊙O的位置关系,并说明理由;若BD=2,BF=2,求⊙O的半径.
23.(12分)如图,直角坐标系中,直线与反比例函数的图象交于A,B两点,已知A点的纵坐标是2.
(1)求反比例函数的解析式.
(2)将直线沿x轴向右平移6个单位后,与反比例函数在第二象限内交于点C.动点P在y轴正半轴上运动,当线段PA与线段PC之差达到最大时,求点P的坐标.
24.(14分)如图,已知点A,C在EF上,AD∥BC,DE∥BF,AE=CF.
(1)求证:四边形ABCD是平行四边形;
(2)直接写出图中所有相等的线段(AE=CF除外).
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、C
【解析】
根据正方形的判定定理即可得到结论.
【详解】
与左边图形拼成一个正方形,
正确的选择为③,
故选C.
【点睛】
本题考查了正方形的判定,是一道几何结论开放题,认真观察,熟练掌握和应用正方形的判定方法是解题的关键.
2、A
【解析】
首先作辅助线:取AB的中点M,连接OM,由平行四边形的性质与三角形中位线的性质,即可求得:△EFB∽△EOM与OM的值,利用相似三角形的对应边成比例即可求得BF的值.
【详解】
取AB的中点M,连接OM,
∵四边形ABCD是平行四边形,
∴AD∥BC,OB=OD,
∴OM∥AD∥BC,OM=AD=×3=,
∴△EFB∽△EOM,
∴,
∵AB=5,BE=AB,
∴BE=2,BM=,
∴EM=+2=,
∴,
∴BF=,
故选A.
【点睛】
此题考查了平行四边形的性质、相似三角形的判定与性质等知识.解此题的关键是准确作出辅助线,合理应用数形结合思想解题.
3、D
【解析】解:A.两直线平行,内错角相等,故A错误;
B.-1是有理数,故B错误;
C.1的立方根是1,故C错误;
D.两角及一边对应相等的两个三角形全等,正确.
故选D.
4、A
【解析】
分析:根据只有符号不同的两个数是互为相反数解答即可.
详解:的相反数是,即2.
故选A.
点睛:本题考查了相反数的定义,解答本题的关键是熟练掌握相反数的定义,正数的相反数是负数,0的相反数是0,负数的相反数是正数.
5、C
【解析】
试题分析:∵二次函数图象开口方向向下,∴a<0,∵对称轴为直线>0,∴b>0,∵与y轴的正半轴相交,∴c>0,∴的图象经过第一、二、四象限,反比例函数图象在第一三象限,只有C选项图象符合.故选C.
考点:1.二次函数的图象;2.一次函数的图象;3.反比例函数的图象.
6、B
【解析】
根据数轴上不等式解集的表示方法得出此不等式组的解集,再对各选项进行逐一判断即可.
【详解】
解:由数轴上不等式解集的表示方法得出此不等式组的解集为:x≥-3,
A、不等式组的解集为x>-3,故A错误;
B、不等式组的解集为x≥-3,故B正确;
C、不等式组的解集为x<-3,故C错误;
D、不等式组的解集为-3<x<5,故D错误.
故选B.
【点睛】
本题考查的是在数轴上表示一元一次不等式组的解集,根据题意得出数轴上不等式组的解集是解答此题的关键.
7、A
【解析】
【分析】根据方程的系数结合根的判别式,即可得出△=13>0,进而即可得出方程x2+x﹣3=0有两个不相等的实数根.
【详解】∵a=1,b=1,c=﹣3,
∴△=b2﹣4ac=12﹣4×(1)×(﹣3)=13>0,
∴方程x2+x﹣3=0有两个不相等的实数根,
故选A.
【点睛】本题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.
8、D
【解析】
根据三视图知该几何体是一个半径为2、高为4的圆柱体的纵向一半,据此求解可得.
【详解】
该几何体的表面积为2וπ•22+4×4+×2π•2×4=12π+16,
故选:D.
【点睛】
本题主要考查由三视图判断几何体,解题的关键是根据三视图得出几何体的形状及圆柱体的有关计算.
9、D
【解析】
解:A、如果a+b=0,那么a=b=0,或a=﹣b,错误,为假命题;
B、=4的平方根是±2,错误,为假命题;
C、有公共顶点且相等的两个角是对顶角,错误,为假命题;
D、等腰三角形两底角相等,正确,为真命题;
故选D.
10、D
【解析】
点F的运动路径的长为弧FF'的长,求出圆心角、半径即可解决问题.
【详解】
如图,点F的运动路径的长为弧FF'的长,
在Rt△ABC中,∵tan∠BAC=,
∴∠BAC=30°,
∵∠CAF=∠BAC=30°,
∴∠BAF=60°,
∴∠FAF′=120°,
∴弧FF'的长=.
故选D.
【点睛】
本题考查了矩形的性质、特殊角的三角函数值、含30°角的直角三角形的性质、弧长公式等知识,解题的关键是判断出点F运动的路径.
二、填空题(共7小题,每小题3分,满分21分)
11、1.5或3
【解析】
根据矩形的性质,利用勾股定理求得AC==5,由题意,可分△EFC是直角三角形的两种情况:
如图1,当∠EFC=90°时,由∠AFE=∠B=90°,∠EFC=90°,可知点F在对角线AC上,且AE是∠BAC的平分线,所以可得BE=EF,然后再根据相似三角形的判定与性质,可知△ABC∽△EFC,即,代入数据可得,解得BE=1.5;
如图2,当∠FEC=90°,可知四边形ABEF是正方形,从而求出BE=AB=3.
故答案为1.5或3.
点睛:此题主要考查了翻折变换的性质,勾股定理,矩形的性质,正方形的判定与性质,利用勾股定理列方程求解是常用的方法,本题难点在于分类讨论,做出图形更形象直观.
12、1
【解析】
试题分析:将x=﹣1代入方程得:1﹣3+m+1=0,解得:m=1.
考点:一元二次方程的解.
13、15°
【解析】
根据平行四边形的性质和圆的半径相等得到△AOB为等边三角形,根据等腰三角形的三线合一得到∠BOF=∠AOF=30°,根据圆周角定理计算即可.
【详解】
解答:
连接OB,
∵四边形ABCO是平行四边形,∴OC=AB,又OA=OB=OC,
∴OA=OB=AB,∴△AOB为等边三角形.
∵OF⊥OC,OC∥AB,∴OF⊥AB,∴∠BOF=∠AOF=30°.
由圆周角定理得 ,
故答案为15°.
14、
【解析】
分析:直接根据题意表示出三角形的各边,进而利用锐角三角函数关系得出答案.
详解:如图所示:
∵∠C=90°,tanA=,
∴设BC=x,则AC=2x,故AB=x,
则sinB=.
故答案为: .
点睛:此题主要考查了锐角三角函数关系,正确表示各边长是解题关键.
15、①②④
【解析】
①连接OQ,OD,如图1.易证四边形DOBP是平行四边形,从而可得DO∥BP.结合OQ=OB,可证到∠AOD=∠QOD,从而证到△AOD≌△QOD,则有DQ=DA=1;
②连接AQ,如图4,根据勾股定理可求出BP.易证Rt△AQB∽Rt△BCP,运用相似三角形的性质可求出BQ,从而求出PQ的值,就可得到的值;
③过点Q作QH⊥DC于H,如图4.易证△PHQ∽△PCB,运用相似三角形的性质可求出QH,从而可求出S△DPQ的值;
④过点Q作QN⊥AD于N,如图3.易得DP∥NQ∥AB,根据平行线分线段成比例可得,把AN=1-DN代入,即可求出DN,然后在Rt△DNQ中运用三角函数的定义,就可求出cos∠ADQ的值.
【详解】
解:①连接OQ,OD,如图1.
易证四边形DOBP是平行四边形,从而可得DO∥BP.
结合OQ=OB,可证到∠AOD=∠QOD,从而证到△AOD≌△QOD,
则有DQ=DA=1.
故①正确;
②连接AQ,如图4.
则有CP=,BP=.
易证Rt△AQB∽Rt△BCP,
运用相似三角形的性质可求得BQ=,
则PQ=,
∴.
故②正确;
③过点Q作QH⊥DC于H,如图4.
易证△PHQ∽△PCB,
运用相似三角形的性质可求得QH=,
∴S△DPQ=DP•QH=××=.
故③错误;
④过点Q作QN⊥AD于N,如图3.
易得DP∥NQ∥AB,
根据平行线分线段成比例可得,
则有,
解得:DN=.
由DQ=1,得cos∠ADQ=.
故④正确.
综上所述:正确结论是①②④.
故答案为:①②④.
【点睛】
本题主要考查了圆周角定理、平行四边形的判定与性质、相似三角形的判定与性质、全等三角形的判定与性质、平行线分线段成比例、等腰三角形的性质、平行线的性质、锐角三角函数的定义、勾股定理等知识,综合性比较强,常用相似三角形的性质、勾股定理、三角函数的定义来建立等量关系,应灵活运用.
16、或
【解析】
根据裁开折叠之后平行四边形的面积可得CD的长度为2+4或2+.
【详解】
如图①,当四边形ABCE为平行四边形时,
作AE∥BC,延长AE交CD于点N,过点B作BT⊥EC于点T.
∵AB=BC,
∴四边形ABCE是菱形.
∵∠BAD=∠BCD=90°,∠ABC=150°,
∴∠ADC=30°,∠BAN=∠BCE=30°,
∴∠NAD=60°,
∴∠AND=90°.
设BT=x,则CN=x,BC=EC=2x.
∵四边形ABCE面积为2,
∴EC·BT=2,即2x×x=2,解得x=1,
∴AE=EC=2,EN= ,
∴AN=AE+EN=2+ ,
∴CD=AD=2AN=4+2.
如图②,当四边形BEDF是平行四边形,
∵BE=BF,
∴平行四边形BEDF是菱形.
∵∠A=∠C=90°,∠ABC=150°,
∴∠ADB=∠BDC=15°.
∵BE=DE,
∴∠EBD=∠ADB=15°,
∴∠AEB=30°.
设AB=y,则DE=BE=2y,AE=y.
∵四边形BEDF的面积为2,
∴AB·DE=2,即2y2=2,解得y=1,
∴AE=,DE=2,
∴AD=AE+DE=2+.
综上所述,CD的值为4+2或2+.
【点睛】
考核知识点:平行四边形的性质,菱形判定和性质.
17、 (-1,0)
【解析】
根据已知条件由图中可以得到B1所在的正方形的对角线长为,B2所在的正方形的对角线长为()2,B3所在的正方形的对角线长为()3;B4所在的正方形的对角线长为()4;B5所在的正方形的对角线长为()5;可推出B6所在的正方形的对角线长为()6=1.又因为B6在x轴负半轴,所以B6(-1,0).
解:如图所示
∵正方形OBB1C,
∴OB1=,B1所在的象限为第一象限;
∴OB2=()2,B2在x轴正半轴;
∴OB3=()3,B3所在的象限为第四象限;
∴OB4=()4,B4在y轴负半轴;
∴OB5=()5,B5所在的象限为第三象限;
∴OB6=()6=1,B6在x轴负半轴.
∴B6(-1,0).
故答案为(-1,0).
三、解答题(共7小题,满分69分)
18、(1);(2) 见解析;(3)
【解析】
(1)过点C作CE∥OA交BD于点E,即可得△BCE∽△BOD,根据相似三角形的性质可得,再证明△ECP≌△DAP,由此即可求得的值;(2)过点D作DF∥BO交AC于点F,即可得,,由点C为OB的中点可得BC=OC,即可证得;(3)由(2)可知=,设AD=t,则BO=AO=4t,OD=3t,根据勾股定理求得BD=5t,即可得PD=t,PB=4t,所以PD=AD,从而得∠A=∠APD=∠BPC,所以tan∠BPC=tan∠A=.
【详解】
(1)如图1,过点C作CE∥OA交BD于点E,
∴△BCE∽△BOD,
∴=,
又BC=BO,∴CE=DO.
∵CE∥OA,∴∠ECP=∠DAP,
又∠EPC=∠DPA,PA=PC,
∴△ECP≌△DAP,
∴AD=CE=DO,
即 =;
(2)如图2,过点D作DF∥BO交AC于点F,
则 =, =.
∵点C为OB的中点,
∴BC=OC,
∴=;
(3)如图2,∵=,
由(2)可知==.
设AD=t,则BO=AO=4t,OD=3t,
∵AO⊥BO,即∠AOB=90°,
∴BD==5t,
∴PD=t,PB=4t,
∴PD=AD,
∴∠A=∠APD=∠BPC,
则tan∠BPC=tan∠A==.
【点睛】
本题考查了相似三角形的判定与性质,准确作出辅助线,构造相似三角形是解决本题的关键,也是求解的难点.
19、(1)DP=;(2)①;②.
【解析】
(1)先判断出△ADP是等边三角形,进而得出DP=AP,即可得出结论;
(2)①先求出GH= 2,进而求出DG,再得出DH,即可得出结论;
②分两种情况,利用三角形的面积建立方程求解即可得出结论.
【详解】
解:(1)∵A(0,4),
∴OA=4,
∵P(t,0),
∴OP=t,
∵△ABD是由△AOP旋转得到,
∴△ABD≌△AOP,
∴AP=AD,∠DAB=∠PAO,
∴∠DAP=∠BAO=60°,
∴△ADP是等边三角形,
∴DP=AP,
∵ ,
∴,
∴;
(2)①当t>0时,如图1,BD=OP=t,
过点B,D分别作x轴的垂线,垂足于F,H,过点B作x轴的平行线,分别交y轴于点E,交DH于点G,
∵△OAB为等边三角形,BE⊥y轴,
∴∠ABP=30°,AP=OP=2,
∵∠ABD=90°,
∴∠DBG=60°,
∴DG=BD•sin60°= ,
∵GH=OE=2,
∴ ,
∴ ;
②当t≤0时,分两种情况:
∵点D在x轴上时,如图2
在Rt△ABD中,,
(1)当 时,如图3,BD=OP=-t,,
∴,
∴,
∴或,
∴ 或,
(2)当 时,如图4,
BD=OP=-t,,
∴,
∴
∴或(舍)
∴ .
【点睛】
此题是几何变换综合题,主要考查了全等三角形的判定和性质,旋转的性质,三角形的面积公式以及解直角三角形,正确作出辅助线是解决本题的关键.
20、(1);(2);(3)
【解析】
(1)根据抛物线的函数表达式,利用二次函数的性质即可找出抛物线的对称轴;(2)根据抛物线的对称轴及即可得出点、的坐标,根据点的坐标,利用待定系数法即可求出抛物线的函数表达式;(3)利用配方法求出抛物线顶点的坐标,依照题意画出图形,观察图形可得出,再利用一次函数图象上点的坐标特征可得出,结合的取值范围即可得出的取值范围.
【详解】
(1)∵抛物线的表达式为,
∴抛物线的对称轴为直线.
故答案为:.
(2)∵抛物线的对称轴为直线,,
∴点的坐标为,点的坐标为.
将代入,得:,
解得:,
∴抛物线的函数表达式为.
(3)∵,
∴点的坐标为.
∵直线y=n与直线的交点的横坐标记为,且当时,总有,
∴x2
相关试卷
这是一份陕西省西安市雁塔区电子科技中学2022年中考试题猜想数学试卷含解析,共21页。试卷主要包含了考生要认真填写考场号和座位序号,下列计算错误的是,﹣2018的相反数是等内容,欢迎下载使用。
这是一份陕西西安市爱知中学2022年中考试题猜想数学试卷含解析,共23页。试卷主要包含了答题时请按要求用笔,计算-5+1的结果为等内容,欢迎下载使用。
这是一份陕西省西安市第二十三中学2021-2022学年中考数学押题试卷含解析,共26页。试卷主要包含了考生要认真填写考场号和座位序号,有个零件如图放置,它的主视图是,不等式组的解在数轴上表示为,下列各式正确的是等内容,欢迎下载使用。