2022年陕西省西安市未央区重点中学毕业升学考试模拟卷数学卷含解析
展开
这是一份2022年陕西省西安市未央区重点中学毕业升学考试模拟卷数学卷含解析,共19页。试卷主要包含了下列计算错误的是,已知x+=3,则x2+=等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(共10小题,每小题3分,共30分)
1.若分式方程无解,则a的值为( )
A.0 B.-1 C.0或-1 D.1或-1
2.如图,将矩形ABCD沿对角线BD折叠,点C落在点E处,BE交AD于点F,已知∠BDC=62°,则∠DFE的度数为( )
A.31° B.28° C.62° D.56°
3.某校八年级两个班,各选派10名学生参加学校举行的“古诗词”大赛,各参赛选手成绩的数据分析如表所示,则以下判断错误的是( )
班级
平均数
中位数
众数
方差
八(1)班
94
93
94
12
八(2)班
95
95.5
93
8.4
A.八(2)班的总分高于八(1)班
B.八(2)班的成绩比八(1)班稳定
C.两个班的最高分在八(2)班
D.八(2)班的成绩集中在中上游
4.若一次函数的图象经过第一、二、四象限,则下列不等式一定成立的是( )
A. B. C. D.
5.如图,直线AB∥CD,∠C=44°,∠E为直角,则∠1等于( )
A.132° B.134° C.136° D.138°
6.小亮家1月至10月的用电量统计如图所示,这组数据的众数和中位数分别是( )
A.30和 20 B.30和25 C.30和22.5 D.30和17.5
7.下列计算错误的是( )
A.a•a=a2 B.2a+a=3a C.(a3)2=a5 D.a3÷a﹣1=a4
8.实数a,b,c,d在数轴上的对应点的位置如图所示,下列结论①a<b;②|b|=|d|;③a+c=a;④ad>0中,正确的有( )
A.4个 B.3个 C.2个 D.1个
9.小明将某圆锥形的冰淇淋纸套沿它的一条母线展开若不考虑接缝,它是一个半径为12cm,圆心角为的扇形,则
A.圆锥形冰淇淋纸套的底面半径为4cm
B.圆锥形冰淇淋纸套的底面半径为6cm
C.圆锥形冰淇淋纸套的高为
D.圆锥形冰淇淋纸套的高为
10.已知x+=3,则x2+=( )
A.7 B.9 C.11 D.8
二、填空题(本大题共6个小题,每小题3分,共18分)
11.关于 x 的方程 ax=x+2(a1) 的解是________.
12.若点与点关于原点对称,则______.
13.分解因式:(x2﹣2x)2﹣(2x﹣x2)=______.
14.已知扇形AOB的半径OA=4,圆心角为90°,则扇形AOB的面积为_________.
15.分解因式:_______
16.在平面直角坐标系中,已知,A(2,0),C(0,﹣1),若P为线段OA上一动点,则CP+AP的最小值为_____.
三、解答题(共8题,共72分)
17.(8分)某商场甲、乙两名业务员10个月的销售额(单位:万元)如下:
甲
7.2 9.69.67.89.3 4 6.58.59.99.6
乙
5.89.79.76.89.96.98.26.78.69.7
根据上面的数据,将下表补充完整:
4.0≤x≤4.9
5.0≤x≤5.9
6.0≤x≤6.9
7.0≤x≤7.9
8.0≤x≤8.9
9.0≤x≤10.0
甲
1
0
1
2
1
5
乙
____
____
_____
______
_____
_______
(说明:月销售额在8.0万元及以上可以获得奖金,7.0~7.9万元为良好,6.0~6.9万元为合格,6.0万元以下为不合格)
两组样本数据的平均数、中位数、众数如表所示:
结论:
人员
平均数(万元)
中位数(万元)
众数(万元)
甲
8.2
8.9
9.6
乙
8.2
8.4
9.7
(1)估计乙业务员能获得奖金的月份有______个;
(2)可以推断出_____业务员的销售业绩好,理由为_______.(至少从两个不同的角度说明推断的合理性)
18.(8分)现有四张分别标有数字1、2、2、3的卡片,他们除数字外完全相同.把卡片背面朝上洗匀,从中随机抽出一张后放回,再背朝上洗匀,从中随机抽出一张,则两次抽出的卡片所标数字不同的概率( )
A. B. C. D.
19.(8分)如图,在Rt△ABC中,∠C=90°,以BC为直径的⊙O交AB于点D,DE交AC于点E,且∠A=∠ADE.
(1)求证:DE是⊙O的切线;
(2)若AD=16,DE=10,求BC的长.
20.(8分)(2017江苏省常州市)为了解某校学生的课余兴趣爱好情况,某调查小组设计了“阅读”、“打球”、“书法”和“其他”四个选项,用随机抽样的方法调查了该校部分学生的课余兴趣爱好情况(每个学生必须选一项且只能选一项),并根据调查结果绘制了如下统计图:
根据统计图所提供的信息,解答下列问题:
(1)本次抽样调查中的样本容量是 ;
(2)补全条形统计图;
(3)该校共有2000名学生,请根据统计结果估计该校课余兴趣爱好为“打球”的学生人数.
21.(8分)已知:如图,梯形ABCD中,AD∥BC,DE∥AB,与对角线交于点,∥,且FG=EF.
(1)求证:四边形是菱形;
(2)联结AE,又知AC⊥ED,求证: .
22.(10分)在平面直角坐标系中,二次函数y=ax2+bx+2的图象与x轴交于A(﹣4,0),B (1,0)两点,与y轴交于点C.
(1)求这个二次函数的解析式;
(2)连接AC、BC,判断△ABC的形状,并证明;
(3)若点P为二次函数对称轴上点,求出使△PBC周长最小时,点P的坐标.
23.(12分)(本题满分8分)如图,四边形ABCD中,,E是边CD的中点,连接BE并延长与AD的延长线相较于点F.
(1)求证:四边形BDFC是平行四边形;
(2)若△BCD是等腰三角形,求四边形BDFC的面积.
24.如图,在平面直角坐标系xOy中,已知正比例函数与一次函数的图像交于点A,
(1)求点A的坐标;
(2)设x轴上一点P(a,0),过点P作x轴的垂线(垂线位于点A的右侧),分别交和的图像于点B、C,连接OC,若BC=OA,求△OBC的面积.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、D
【解析】
试题分析:在方程两边同乘(x+1)得:x-a=a(x+1),
整理得:x(1-a)=2a,
当1-a=0时,即a=1,整式方程无解,
当x+1=0,即x=-1时,分式方程无解,
把x=-1代入x(1-a)=2a得:-(1-a)=2a,
解得:a=-1,
故选D.
点睛:本题考查了分式方程的解,解决本题的关键是熟记分式方程无解的条件.
2、D
【解析】
先利用互余计算出∠FDB=28°,再根据平行线的性质得∠CBD=∠FDB=28°,接着根据折叠的性质得∠FBD=∠CBD=28°,然后利用三角形外角性质计算∠DFE的度数.
【详解】
解:∵四边形ABCD为矩形,
∴AD∥BC,∠ADC=90°,
∵∠FDB=90°-∠BDC=90°-62°=28°,
∵AD∥BC,
∴∠CBD=∠FDB=28°,
∵矩形ABCD沿对角线BD折叠,
∴∠FBD=∠CBD=28°,
∴∠DFE=∠FBD+∠FDB=28°+28°=56°.
故选D.
【点睛】
本题考查了平行线的性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.
3、C
【解析】
直接利用表格中数据,结合方差的定义以及算术平均数、中位数、众数得出答案.
【详解】
A选项:八(2)班的平均分高于八(1)班且人数相同,所以八(2)班的总分高于八(1)班,正确;
B选项:八(2)班的方差比八(1)班小,所以八(2)班的成绩比八(1)班稳定,正确;
C选项:两个班的最高分无法判断出现在哪个班,错误;
D选项:八(2)班的中位数高于八(1)班,所以八(2)班的成绩集中在中上游,正确;
故选C.
【点睛】
考查了方差的定义以及算术平均数、中位数、众数,利用表格获取正确的信息是解题关键.
4、D
【解析】
∵一次函数y=ax+b的图象经过第一、二、四象限,
∴a0,
∴a+b不一定大于0,故A错误,
a−b
相关试卷
这是一份2022年钦州市重点中学毕业升学考试模拟卷数学卷含解析,共23页。试卷主要包含了答题时请按要求用笔,下列计算正确的是等内容,欢迎下载使用。
这是一份2022年那曲市重点中学毕业升学考试模拟卷数学卷含解析,共18页。试卷主要包含了答题时请按要求用笔,若=1,则符合条件的m有等内容,欢迎下载使用。
这是一份2022年福建省厦门重点中学毕业升学考试模拟卷数学卷含解析,共19页。试卷主要包含了答题时请按要求用笔,在同一平面内,下列说法,下列图标中,是中心对称图形的是等内容,欢迎下载使用。