2021-2022学年湖北省襄阳市枣阳市七年级(下)期末数学试卷-普通用卷
展开2021-2022学年湖北省襄阳市枣阳市七年级(下)期末数学试卷
一、选择题(本题共10小题,共30分)
- 如图所示,下列说法中正确的是( )
A. 点的横坐标是 B. 点的横坐标是
C. 点的坐标是 D. 点的坐标是
- 如图中数轴上标有字母的各点与实数对应的是( )
A. 点 B. 点 C. 点 D. 点
- 下列说法正确的是( )
A. 的立方根是 B. 的平方根是
C. 的算术平方根是 D. 是的算术平方根
- 下列说法正确的是( )
A. 若,则 B. 若,则
C. 若,则 D. 若,则
- 已知点在第四象限,则的取值范围在数轴上表示正确的是( )
A. B.
C. D.
- 已知,与,都是方程的解,则与的值分别为( )
A. , B. ,
C. , D. ,
- 下列调查中,调查方式选择合理的是( )
A. 为了调查全国中学生对冬奥会比赛项目的了解程度,选择全面调查
B. 为了了解全班同学每周体育锻炼的时间,选择抽样调查
C. 为了了解神舟十四号飞船的设备及零部件的质量情况,选择全面调查
D. 为了了解一批袋装食品是否含有防腐剂,选择全面调查
- 已知,一块含的直角三角板如图所示放置,,则( )
A. B. C. D.
- 孙子算经中有一道题:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”译文大致是:“用一根绳子去量一根木条,绳子剩余尺;将绳子对折再量木条,木条剩余尺,问木条长多少尺?”如果设木条长尺,绳子长尺,可列方程组为( )
A. B. C. D.
- 如图,在一块长,宽为的长方形草地上,有一条弯曲的小路,小路的左边线向右平移就是它的右边线,则这块草地的绿地面积为( )
A. B. C. D.
二、填空题(本题共10小题,共30分)
- 在实数,,,,,,,,.中,其中______是有理数,______是无理数.
- ______.
- 点在轴上,点在轴上,则______,______.
- 如图,直线,相交于点,,垂足为,::,则______.
- ______时,代数式的值是非负数.
- 如图,平分,请你添加一个条件______,使.
- 商店为了对某种商品促销,将定价为元的商品,以下列方式优惠销售:若购买不超过件,按原价付款:若一次性购买件以上,超过部分打八折.现有元钱,最多可以购买该商品______件.
- 已知点,,点在轴上,且,满足条件的点的坐标______.
- 如图,,,,则______
- 根据市场调查,某种消毒液的大瓶装和小瓶装的销售瓶数的比为:已知每天生产这种消毒液吨,这些消毒液应该分装______大瓶.
三、解答题(本题共9小题,共60分)
- 解方程组:;
解不等式组:. - 某校七年级八个班共有名学生,男女生人数大致相同,调查小组为调查学生的体质健康水平,开展了一次调查研究,请将下面的过程补全:
收集数据
调查小组计划选取名学生的体质健康测试成绩作为样本,下面的抽样方法中,合理的是______填字母;
A.抽取七年级班、班各名学生的体质健康测试成绩组成样本
B.抽取各班体育成绩较好的学生共名学生的体质健康测试成绩组成样本
C.从七年级中按学号随机选取男女生各名学生的体质健康测试成绩组成样本
整理、描述数据抽样方法确定后,调查小组获得了名学生的体质健康测试成绩如下:
整理数据,如表所示:
年七年级部分学生的体质健康测试成绩统计表
体质成绩范围 | 学生人数 | 体质成绩范围 | 学生人数 |
上表中____________.
分析数据、得出结论
调查小组将统计后的数据与年同期七年级学生的体质健康测试成绩如图直方图进行对比;
若规定分以上包括分为合格健康体质,从合格率的角度看,这两年哪年体质测试成绩好?
体育老师计划根据年的统计数据安排分以下的同学参加体质加强训练项目,则全年级约有______名同学参加此项目.
- 推理填空:
如图,,分别交,于,,分别平分,.
求证:.
证明:已知,
____________
,分别平分,,
,______
____________
______
- 如图,内有一点.
根据下列语句画出图形:
过点画交于点,画交于点;
过点画,垂足是点;
在的条件下,若,求的度数.
- 为落实乡村振兴战略的重大决策部署.某驻村工作队为农户甲与农户乙两家都购买了相同形量的种兔.一年后,农户甲养兔数比去年种兔数增加了只,农户乙养兔数比去年种兔数的倍少只,农户甲养兔数不超过农户乙养兔数的一年前,工作队为农户甲与农户乙两家分别至少购买了多少只种兔?
- 在平面直角坐标系中,的三个顶点分别是,,.
在所给的图中,画出这个平面直角坐标系;
点经过平移后对应点为,将作同样的平移得到,点的对应点为点,画出平移后的;
在的条件下,点在直线上,若,直接写出点的坐标.
- 打折前,买件商品和件商品用了元.买件商品和件商品用了元.打折后,买件商品和件商品用了元,比不打折少花了多少钱?
- 某水果经销商,在“枣阳皇桃”上市之即,连续购进不同品种的“枣阳皇桃”进行销售.则销期间,该经销同其中连续两大销售甲、乙两个品种的“枣阳皇桃”情况如下:
第一天甲、乙两个品种桃子的进价和售价如下表,该经销商用元购进甲、乙两个品种“枣阳皇桃”共,当天售完后该经销商一共能赚多少元钱?
| 甲 | 乙 |
进价元 | ||
售价元 |
第二天进价不变,该经销商仍用元购进甲、乙两个品种“枣阳皇桃”共,但在运输中甲品种桃子损坏了,而乙品种桃子没有损坏.仍按昨天的售价销售.要想当天售完后所赚的钱不少于昨天所赚的钱,请你帮该经营户计算,应怎样给甲品种定售价?结果精确到
- 如图,已知,是射线上一动点不与点重合,,分别平分与,分别交射线于点,.
若,求的度数;
在点的运动过程中,与的数量关系是否随之发生变化?若变化,请说明理由;若不变,请求出与的数量关系;
当点运动到使时,探究与的数量关系,并证明你的结论.
答案和解析
1.【答案】
【解析】解:点是在第二象限的点,
其横坐标是负,纵坐标是正,
又点到横轴的距离是个单位长度,到纵轴的距离是个单位长度,
点的坐标是.
故选:.
根据点在第二象限的坐标特点解答即可.
解决本题的关键是掌握好四个象限的点的坐标的特征:第一象限正正,第二象限负正,第三象限负负,第四象限正负.
2.【答案】
【解析】解:,
.
.
故选:.
先估算出的取值范围,进而可得出结论.
本题考查的是实数与数轴,熟知实数与数轴上各点是一一对应关系是解答此题的关键.
3.【答案】
【解析】解:、的立方根是,不符合题意;
B、,的平方根是,不符合题意;
C、的算术平方根是,不符合题意;
D、的算术平方根是,符合题意,
故选:.
利用算术平方根、平方根、立方根定义即可作出判断.
此题考查了立方根,平方根,以及算术平方根,熟练掌握各自的定义是解本题的关键.
4.【答案】
【解析】解:、若,则,故A不符合题意;
B、若,则,故B符合题意;
C、若,则,故C不符合题意;
D、若,则,故D不符合题意;
故选:.
根据不等式的性质,进行计算逐一判断即可解答.
本题考查了不等式的性质,熟练掌握不等式的性质是解题的关键.
5.【答案】
【解析】解:点在第四象限,
,
由得,;
由得,,
在数轴上表示为:
故选:.
根据第四象限内点的坐标特点列出关于的不等式组,求出的取值范围,并在数轴上表示出来即可.
本题考查的是在数轴上表示不等式组的解集,熟知实心圆点与空心圆点的区别是解答此题的关键.
6.【答案】
【解析】解:把,与,代入方程得:
,
解得:;
故选B.
把,与,代入方程得到关于和的方程组,即可求出与的值;
此题考查了二元一次方程的解,属于基础题.
7.【答案】
【解析】解:为了调查全国中学生对冬奥会比赛项目的了解程度,适合抽样调查,故本选项不符合题意;
B.为了了解全班同学每周体育锻炼的时间,适合全面调查,故本选项不符合题意;
C.为了了解神舟十四号飞船的设备及零部件的质量情况,适合全面调查,故本选项符合题意;
D.为了了解一批袋装食品是否含有防腐剂适合全面调查,适合抽样调查,故本选项不符合题意.
故选:.
根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.
本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
8.【答案】
【解析】解:如图,根据对顶角的性质得:,,
是的外角,
,
,
,
,
,
.
故选:.
先根据三角形外角的性质求出的度数,再由平行线的性质得出度数,由直角三角形的性质即可得出结论.
本题考查的是平行线的性质及三角形外角的性质,用到的知识点为:两直线平行,同位角相等.
9.【答案】
【解析】解:根据题意得:
.
故选:.
用一根绳子去量一根木条,绳子剩余尺可知:绳子比木条长尺得:;绳子对折再量木条,木条剩余尺可知:绳子对折后比木条短尺得:;组成方程组即可.
本题考查了由实际问题抽象出二元一次方程组,列方程组时要抓住题目中的一些关键性词语,找出等量关系;因为此类题要列二元一次方程组,因此要注意两句话;同时本题要注意绳子对折,即取绳子的二分之一.
10.【答案】
【解析】解:小路的左边线向右平移就是它的右边线,
路的宽度是米,
绿地的长是米,
绿地的面积是,
故选:.
根据小路的左边线向右平移就是它的右边线,可得路的宽度是米,根据平移,可把路移到左边,再根据矩形的面积公式,可得答案.
本题考查了生活中的平移现象,矩形的面积公式是解题关键.
11.【答案】,,,,. ,,,
【解析】解:,
有理数有:,,,,.;
无理数有:,,,.
故答案为:,,,,.;
,,,.
根据有限小数和无限循环小数是有理数,无限不循环小数是无理数分类即可.
本题考查了实数,掌握有限小数和无限循环小数是有理数,无限不循环小数是无理数是解题的关键.
12.【答案】
【解析】解:
故答案为:.
首先计算乘方、开方,然后计算乘法,最后从左向右依次计算,求出算式的值是多少即可.
此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.
13.【答案】
【解析】解:点在轴上,点在轴上,则,,
故答案为:;.
根据平面直角坐标系中,轴上的点的坐标特征:轴上的点纵坐标为,轴上的点横坐标为,即可解答.
本题考查了点的坐标,熟练掌握平面直角坐标系中,轴上的点的坐标特征是解题的关键.
14.【答案】
【解析】解:,
,
::,
设,,
则,
解得:,
故,
则.
故答案为:.
直接利用垂直的定义得出,进而利用::,得出的度数,进而得出答案.
此题主要考查了垂直的定义以及邻补角,正确得出度数是解题关键.
15.【答案】
【解析】解:,
去分母,得,
解得.
故答案为:.
由的值是非负数可得,求解即可.
本题考查了一元一次不等式,熟练掌握一元一次不等式的解法是解题的关键.
16.【答案】或或等
【解析】解:添加条件:或或等,理由如下;
,
内错角相等,两直线平行;
,
同位角相等,两直线平行;
平分,
,
,
,
内错角相等,两直线平行,
故答案为:或或等.
根据平行线的判定定理求解即可.
此题考查了平行线的判定,熟记平行线的判定定理是解题的关键.
17.【答案】
【解析】解:设可以购买件该商品.
.
解得,
因为是整数,
所以.
即最多可以购买该商品件.
故答案为:.
利用不等关系式:件按原价付款数超过件的总钱数,列出不等式解答即可.
此题考查一元一次不等式的实际运用,找到相应的关系式是解决问题的关键.注意能花的钱数应不大于有的钱数.
18.【答案】或
【解析】解:设点的坐标为,
,,
,
解得:,
即点的坐标是或,
故答案为:或.
设点的坐标为,根据的面积和点、的坐标得出,再求出即可.
本题考查了三角形的面积和坐标与图形性质,能根据三角形的面积得出是解此题的关键.
19.【答案】
【解析】解:,
,
,
,
,
故答案为:.
利用平行线的性质可得,,然后利用角的和差关系进行计算即可解答.
本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.
20.【答案】
【解析】解:设每份为瓶,则大瓶销售了瓶,小瓶销售了瓶,
由题意,得,
解得,
所以大瓶销售了:瓶,
故答案是:.
设每份为瓶,则大瓶销售了瓶,小瓶销售了瓶,根据大小消毒液的总重量为吨克建立方程求出其解即可.
本题考查了运用比例问题的设每份为未知数的方法建立方程求解的运用,一元一次方程的解法的运用,解答时运用设间接未知数降低解题难度是关键.
21.【答案】解:
得:
,
.
把代入,得
,
.
所以这个方程组的解是
解不等式,得:
解不等式,得.
不等式组无解.
【解析】加减消元法消掉求出,把代入方程求出即可.
分别解两个不等式,然后求出解集公共部分即可.
本题考查解二元一次方程组和一元一次不等式组,解题关键是熟知消元法解二元一次方程组以及求不等式组解集公共部分的方法.
22.【答案】
【解析】解:取样方法中,合理的是:从年级中按学号随机选取男女生各名学生学生的体质健康测试成绩组成样本,
故选:;
从所给数据中可以数出,;
故答案为:,.
年的合格率为,
年的合格率为,
年体质测试成绩好.
,
故答案为:.
根据抽样调查的代表性解答可得;
根据所给数据计数即可得;
将、两年的数据比较即可得合理即可;
用总人数乘以年分以下的同学数占被调查人数的比例可得.
本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.
23.【答案】 两直线平行,内错角相等 角平分线定义 等量代换 内错角相等,两直线平行
【解析】证明:已知,
两直线平行,内错角相等.
,分别平分,,
,角平分线定义.
等量代换.
内错角相等,两直线平行.
故答案为:;两直线平行,内错角相等;角平分线定义;:等量代换:内错角相等,两直线平行.
由平行线的性质可得,再由角平分线的定义得,,从而可得,即有.
本题主要考查平行线的判定与性质,解答的关键是熟记平行线的判定条件与性质并灵活运用.
24.【答案】解:图象如图所:
,
.
,
.
.
【解析】根据要求作出图形即可;
求出,再利用三角形内角和定理求解.
本题考查作图复杂作图,垂线,平行线等知识,解题的关键是理解题意,灵活运用所学知识解决问题.
25.【答案】解:设一年前老张买了只种兔.依题意,得:
,
解得:.
答:一年前老张至少买了只种兔.
【解析】首先假设一年前老张买了只种兔,利用老张养兔数比买入种兔数增加了只,老李养兔数比买入种兔数的倍少只,老张养兔数不超过老李养兔数的得出不等式,进而求出即可.
此题主要考查了一元一次不等式的应用,解决本题的关键是读懂题意,找到符合题意的不等关系式.
26.【答案】解:建立如图所示的直角坐标系;
如图,为所作;
设,
,
,
即或,
或,
点的坐标为或.
【解析】利用、、点坐标画出直角坐标系;
利用、两点的坐标关系确定平移的方向与距离,然后利用平移规律写出、点的坐标,再描点即可;
直线为,设,则,然后解绝对值方程求出即可得到点的坐标.
本题考查了作图平移变换:确定平移后图形的基本要素有两个:平移方向、平移距离.作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.
27.【答案】解:设打折前商品的单价为元,商品的单价为元,
依题意得:,
解得:,
元.
答:比不打折少花了元.
【解析】设打折前商品的单价为元,商品的单价为元,根据“打折前,买件商品和件商品用了元.买件商品和件商品用了元”,即可得出关于,的二元一次方程组,解之即可得出,的值,再利用少花的钱数单价数量打折后的总花费,即可求出结论.
本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.
28.【答案】解:设经销商购进甲、乙两个品种的桃子分别为,,
根据题意得:,
解得:,
该经销商一共能赚的钱数为元.
答:当天销售完后该经销商一共能赚元.
设甲品种售价元时,当天售完后所赚的钱不少于昨天所赚的钱,根据题意得:
,
解得:.
答:要想当天售完后所赚的钱不少于昨天所赚的钱,甲品种售价至少为元.
【解析】设经销商购进甲、乙两个品种的桃子分别为,,由题意得出关于,的二元一次方程组,解之即可得出结论;
设甲品种售价元时,当天售完后所赚的钱不少于昨天所赚的钱,根据题意得关于的一元一次不等式,解之即可得出结论.
本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:找准等量关系,正确列出二元一次方程组;根据各数量之间的关系,正确列出一元一次不等式.
29.【答案】解:,
,
,
,
平分,平分,
,,
,
;
在点的运动过程中,与的数量关系不随之发生变化,.
理由如下:
,
,,
又,
,
.
理由如下:
,
,
,
,
即,
.
,
,
当时,则有,
,
.
【解析】由平行线的性质可求得,再根据角平分线的定义和整体思想可求得;
不变.可以证明,;
由平行线的性质可得到,结合条件可得到.
本题主要考查了平行线的性质、角平分线的定义等知识,解题的关键是灵活运用所学知识解决问题.解题时注意:两直线平行,同旁内角互补;两直线平行,内错角相等.
2022-2023学年湖北省襄阳市枣阳市八年级(下)期末数学试卷(含解析): 这是一份2022-2023学年湖北省襄阳市枣阳市八年级(下)期末数学试卷(含解析),共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2022-2023学年湖北省襄阳市枣阳市八年级(下)期末数学试卷(含解析): 这是一份2022-2023学年湖北省襄阳市枣阳市八年级(下)期末数学试卷(含解析),共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2022-2023学年湖北省襄阳市枣阳市六校联考九年级(下)期中数学试卷(含解析): 这是一份2022-2023学年湖北省襄阳市枣阳市六校联考九年级(下)期中数学试卷(含解析),共30页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。