搜索
    上传资料 赚现金
    英语朗读宝

    2022年浙江省衢州市常山县中考四模数学试题含解析

    2022年浙江省衢州市常山县中考四模数学试题含解析第1页
    2022年浙江省衢州市常山县中考四模数学试题含解析第2页
    2022年浙江省衢州市常山县中考四模数学试题含解析第3页
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年浙江省衢州市常山县中考四模数学试题含解析

    展开

    这是一份2022年浙江省衢州市常山县中考四模数学试题含解析,共21页。试卷主要包含了考生要认真填写考场号和座位序号等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    注意事项
    1.考生要认真填写考场号和座位序号。
    2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
    3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。

    一、选择题(共10小题,每小题3分,共30分)
    1.已知一组数据,,,,的平均数是2,方差是,那么另一组数据,,,,,的平均数和方差分别是  .
    A. B. C. D.
    2.已知:如图,在扇形中,,半径,将扇形沿过点的直线折叠,点恰好落在弧上的点处,折痕交于点,则弧的长为( )

    A. B. C. D.
    3.如图,将△ABC沿BC边上的中线AD平移到△A'B'C'的位置,已知△ABC的面积为9,阴影部分三角形的面积为1.若AA'=1,则A'D等于(  )

    A.2 B.3 C. D.
    4.已知两点都在反比例函数图象上,当时, ,则的取值范围是( )
    A. B. C. D.
    5.如图1是2019年4月份的日历,现用一长方形在日历表中任意框出4个数(如图2),下列表示a,b,c,d之间关系的式子中不正确的是( )

    A.a﹣d=b﹣c B.a+c+2=b+d C.a+b+14=c+d D.a+d=b+c
    6.小昱和阿帆均从同一本书的第1页开始,逐页依顺序在每一页上写一个数.小昱在第1页写1,且之后每一页写的数均为他在前一页写的数加2;阿帆在第1页写1,且之后每一页写的数均为他在前一页写的数加1.若小昱在某页写的数为101,则阿帆在该页写的数为何?(  )
    A.350 B.351 C.356 D.358
    7.如图,AB是⊙O的直径,点E为BC的中点,AB=4,∠BED=120°,则图中阴影部分的面积之和为( )

    A.1 B. C. D.
    8.一个多边形的每一个外角都等于72°,这个多边形是( )
    A.正三角形 B.正方形 C.正五边形 D.正六边形
    9.如图,a∥b,点B在直线b上,且AB⊥BC,∠1=40°,那么∠2的度数( )

    A.40° B.50° C.60° D.90°
    10.直线y=x+4与x轴、y轴分别交于点A和点B,点C,D分别为线段AB,OB的中点,点P为OA上一动点,PC+PD值最小时点P的坐标为( )

    A.(-3,0) B.(-6,0) C.(-,0) D.(-,0)
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.因式分解:a2﹣a=_____.
    12.如图,在平面直角坐标系xOy中,四边形ODEF和四边形ABCD都是正方形,点F在x轴的正半轴上,点C在边DE上,反比例函数(k≠0,x>0)的图象过点B,E.若AB=2,则k的值为________.

    13.如图,AB是圆O的直径,弦CD⊥AB,∠BCD=30°,CD=4,则S阴影=_____.

    14.等腰中,是BC边上的高,且,则等腰底角的度数为__________.
    15.如图,在平面直角坐标系xOy中,点A,点B的坐标分别为(0,2),(-1,0),将线段AB沿x轴的正方向平移,若点B的对应点的坐标为B'(2,0),则点A的对应点A'的坐标为___.

    16.当2≤x≤5时,二次函数y=﹣(x﹣1)2+2的最大值为_____.
    三、解答题(共8题,共72分)
    17.(8分)(本题满分8分)如图,四边形ABCD中,,E是边CD的中点,连接BE并延长与AD的延长线相较于点F.

    (1)求证:四边形BDFC是平行四边形;
    (2)若△BCD是等腰三角形,求四边形BDFC的面积.
    18.(8分)如图,抛物线与x轴相交于A、B两点,与y轴的交于点C,其中A点的坐标为(﹣3,0),点C的坐标为(0,﹣3),对称轴为直线x=﹣1.
    (1)求抛物线的解析式;
    (2)若点P在抛物线上,且S△POC=4S△BOC,求点P的坐标;
    (3)设点Q是线段AC上的动点,作QD⊥x轴交抛物线于点D,求线段QD长度的最大值.

    19.(8分)先化简,再求值:,其中a是方程a2+a﹣6=0的解.
    20.(8分)解不等式组,请结合题意填空,完成本题的解答.
    (1)解不等式①,得   ;
    (2)解不等式②,得   ;
    (3)把不等式①和②的解集在数轴上表示出来:

    (4)原不等式的解集为   .
    21.(8分)庞亮和李强相约周六去登山,庞亮从北坡山脚C处出发,以24米/分钟的速度攀登,同时,李强从南坡山脚B处出发.如图,已知小山北坡的坡度,山坡长为240米,南坡的坡角是45°.问李强以什么速度攀登才能和庞亮同时到达山顶A?(将山路AB、AC看成线段,结果保留根号)
    22.(10分)我国古代数学著作《增删算法统宗》记载“官兵分布”问题:“一千官军一千布,一官四疋无零数,四军才分布一疋,请问官军多少数.”其大意为:今有1000官兵分1000匹布,1官分4匹,4兵分1匹.问官和兵各几人?
    23.(12分)随着移动计算技术和无线网络的快速发展,移动学习方式越来越引起人们的关注,某校计划将这种学习方式应用到教育学中,从全校1500名学生中随机抽取了部分学生,对其家庭中拥有的移动设备的情况进行调查,并绘制出如下的统计图①和图②,根据相关信息,解答下列问题:本次接受随机抽样调查的学生人数为   ,图①中m的值为   ;求本次调查获取的样本数据的众数、中位数和平均数;根据样本数据,估计该校1500名学生家庭中拥有3台移动设备的学生人数.

    24.在平面直角坐标系中,已知直线y=﹣x+4和点M(3,2)
    (1)判断点M是否在直线y=﹣x+4上,并说明理由;
    (2)将直线y=﹣x+4沿y轴平移,当它经过M关于坐标轴的对称点时,求平移的距离;
    (3)另一条直线y=kx+b经过点M且与直线y=﹣x+4交点的横坐标为n,当y=kx+b随x的增大而增大时,则n取值范围是_____.




    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、D
    【解析】
    根据数据的变化和其平均数及方差的变化规律求得新数据的平均数及方差即可.
    【详解】
    解:∵数据x1,x2,x3,x4,x5的平均数是2,
    ∴数据3x1-2,3x2-2,3x3-2,3x4-2,3x5-2的平均数是3×2-2=4;
    ∵数据x1,x2,x3,x4,x5的方差为,
    ∴数据3x1,3x2,3x3,3x4,3x5的方差是×32=3,
    ∴数据3x1-2,3x2-2,3x3-2,3x4-2,3x5-2的方差是3,
    故选D.
    【点睛】
    本题考查了方差的知识,说明了当数据都加上一个数(或减去一个数)时,平均数也加或减这个数,方差不变,即数据的波动情况不变;当数据都乘以一个数(或除以一个数)时,平均数也乘以或除以这个数,方差变为这个数的平方倍.
    2、D
    【解析】
    如图,连接OD.根据折叠的性质、圆的性质推知△ODB是等边三角形,则易求∠AOD=110°-∠DOB=50°;然后由弧长公式弧长的公式 来求 的长
    【详解】
    解:如图,连接OD.
    解:如图,连接OD.

    根据折叠的性质知,OB=DB.
    又∵OD=OB,
    ∴OD=OB=DB,即△ODB是等边三角形,
    ∴∠DOB=60°.
    ∵∠AOB=110°,
    ∴∠AOD=∠AOB-∠DOB=50°,
    ∴的长为 =5π.
    故选D.
    【点睛】
    本题考查了弧长的计算,翻折变换(折叠问题).折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.所以由折叠的性质推知△ODB是等边三角形是解答此题的关键之处.
    3、A
    【解析】
    分析:由S△ABC=9、S△A′EF=1且AD为BC边的中线知S△A′DE=S△A′EF=2,S△ABD=S△ABC=,根据△DA′E∽△DAB知,据此求解可得.
    详解:如图,

    ∵S△ABC=9、S△A′EF=1,且AD为BC边的中线,
    ∴S△A′DE=S△A′EF=2,S△ABD=S△ABC=,
    ∵将△ABC沿BC边上的中线AD平移得到△A'B'C',
    ∴A′E∥AB,
    ∴△DA′E∽△DAB,
    则,即,
    解得A′D=2或A′D=-(舍),
    故选A.
    点睛:本题主要平移的性质,解题的关键是熟练掌握平移变换的性质与三角形中线的性质、相似三角形的判定与性质等知识点.
    4、B
    【解析】
    根据反比例函数的性质判断即可.
    【详解】
    解:∵当x1<x2<0时,y1<y2,
    ∴在每个象限y随x的增大而增大,
    ∴k<0,
    故选:B.
    【点睛】
    本题考查了反比例函数的性质,解题的关键是熟练掌握反比例函数的性质.
    5、A
    【解析】
    观察日历中的数据,用含a的代数式表示出b,c,d的值,再将其逐一代入四个选项中,即可得出结论.
    【详解】
    解:依题意,得:b=a+1,c=a+7,d=a+1.
    A、∵a﹣d=a﹣(a+1)=﹣1,b﹣c=a+1﹣(a+7)=﹣6,
    ∴a﹣d≠b﹣c,选项A符合题意;
    B、∵a+c+2=a+(a+7)+2=2a+9,b+d=a+1+(a+1)=2a+9,
    ∴a+c+2=b+d,选项B不符合题意;
    C、∵a+b+14=a+(a+1)+14=2a+15,c+d=a+7+(a+1)=2a+15,
    ∴a+b+14=c+d,选项C不符合题意;
    D、∵a+d=a+(a+1)=2a+1,b+c=a+1+(a+7)=2a+1,
    ∴a+d=b+c,选项D不符合题意.
    故选:A.
    【点睛】
    考查了列代数式,利用含a的代数式表示出b,c,d是解题的关键.
    6、B
    【解析】
    根据题意确定出小昱和阿帆所写的数字,设小昱所写的第n个数为101,根据规律确定出n的值,即可确定出阿帆在该页写的数.
    【详解】
    解:小昱所写的数为 1,3,5,1,…,101,…;阿帆所写的数为 1,8,15,22,…,
    设小昱所写的第n个数为101,
    根据题意得:101=1+(n-1)×2,
    整理得:2(n-1)=100,即n-1=50,
    解得:n=51,
    则阿帆所写的第51个数为1+(51-1)×1=1+50×1=1+350=2.
    故选B.
    【点睛】
    此题考查了有理数的混合运算,弄清题中的规律是解本题的关键.
    7、C
    【解析】
    连接AE,OD,OE.

    ∵AB是直径, ∴∠AEB=90°.
    又∵∠BED=120°,∴∠AED=30°.∴∠AOD=2∠AED=60°.
    ∵OA=OD.∴△AOD是等边三角形.∴∠A=60°.
    又∵点E为BC的中点,∠AED=90°,∴AB=AC.
    ∴△ABC是等边三角形,
    ∴△EDC是等边三角形,且边长是△ABC边长的一半2,高是.
    ∴∠BOE=∠EOD=60°,∴和弦BE围成的部分的面积=和弦DE围成的部分的面积.
    ∴阴影部分的面积=.故选C.
    8、C
    【解析】
    任何多边形的外角和是360°,用360°除以一个外角度数即可求得多边形的边数.
    【详解】
    360°÷72°=1,则多边形的边数是1.
    故选C.
    【点睛】
    本题主要考查了多边形的外角和定理,已知外角求边数的这种方法是需要熟记的内容.
    9、B
    【解析】
    分析:
    根据“平行线的性质、平角的定义和垂直的定义”进行分析计算即可.
    详解:
    ∵AB⊥BC,
    ∴∠ABC=90°,
    ∵点B在直线b上,
    ∴∠1+∠ABC+∠3=180°,
    ∴∠3=180°-∠1-90°=50°,
    ∵a∥b,
    ∴∠2=∠3=50°.
    故选B.

    点睛:熟悉“平行线的性质、平角的定义和垂直的定义”是正确解答本题的关键.
    10、C
    【解析】
    作点D关于x轴的对称点D′,连接CD′交x轴于点P,此时PC+PD值最小,如图所示.

    直线y=x+4与x轴、y轴的交点坐标为A(﹣6,0)和点B(0,4),
    因点C、D分别为线段AB、OB的中点,可得点C(﹣3,1),点D(0,1).
    再由点D′和点D关于x轴对称,可知点D′的坐标为(0,﹣1).
    设直线CD′的解析式为y=kx+b,直线CD′过点C(﹣3,1),D′(0,﹣1),
    所以,解得:,
    即可得直线CD′的解析式为y=﹣x﹣1.
    令y=﹣x﹣1中y=0,则0=﹣x﹣1,解得:x=﹣,
    所以点P的坐标为(﹣,0).故答案选C.
    考点:一次函数图象上点的坐标特征;轴对称-最短路线问题.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、a(a﹣1)
    【解析】
    直接提取公因式a,进而分解因式得出答案
    【详解】
    a2﹣a=a(a﹣1).
    故答案为a(a﹣1).
    【点睛】
    此题考查公因式,难度不大
    12、
    【解析】
    解:设E(x,x),
    ∴B(2,x+2),
    ∵反比例函数 (k≠0,x>0)的图象过点B. E.
    ∴x2=2(x+2),
    ,(舍去),

    故答案为
    13、
    【解析】
    根据垂径定理求得 然后由圆周角定理知∠DOE=60°,然后通过解直角三角形求得线段OD、OE的长度,最后将相关线段的长度代入S阴影=S扇形ODB-S△DOE+S△BEC.
    【详解】
    如图,假设线段CD、AB交于点E,
    ∵AB是O的直径,弦CD⊥AB,

    又∵


    ∴S阴影=S扇形ODB−S△DOE+S△BEC
    故答案为:.
    【点睛】
    考查圆周角定理,垂径定理,扇形面积的计算,熟练掌握扇形的面积公式是解题的关键.
    14、,,
    【解析】
    分三种情况:①点A是顶角顶点时,②点A是底角顶点,且AD在△ABC外部时,③点A是底角顶点,且AD在△ABC内部时,再结合直角三角形中,30°的角所对的直角边等于斜边的一半即可求解.
    【详解】
    ①如图,若点A是顶角顶点时,

    ∵AB=AC,AD⊥BC,
    ∴BD=CD,∵,
    ∴AD=BD=CD,
    在Rt△ABD中,∠B=∠BAD=

    ②如图,若点A是底角顶点,且AD在△ABC外部时,

    ∵,AC=BC,
    ∴,
    ∴∠ACD=30°,
    ∴∠BAC=∠ABC=×30°=15°;
    ③如图,若点A是底角顶点,且AD在△ABC内部时,

    ∵,AC=BC,
    ∴,
    ∴∠C=30°,
    ∴∠BAC=∠ABC=(180°-30°)=75°;
    综上所述,△ABC底角的度数为45°或15°或75°;
    故答案为,,.
    【点睛】
    本题考查了等腰三角形的性质和直角三角形中30°的角所对的直角边等于斜边的一半的性质,解题的关键是要分情况讨论.
    15、(3,2)
    【解析】
    根据平移的性质即可得到结论.
    【详解】
    ∵将线段AB沿x轴的正方向平移,若点B的对应点B′的坐标为(2,0),
    ∵-1+3=2,
    ∴0+3=3
    ∴A′(3,2),
    故答案为:(3,2)
    【点睛】
    本题考查了坐标与图形变化-平移.解决本题的关键是正确理解题目,按题目的叙述一定要把各点的大致位置确定,正确地作出图形.
    16、1.
    【解析】
    先根据二次函数的图象和性质判断出2≤x≤5时的增减性,然后再找最大值即可.
    【详解】
    对称轴为
    ∵a=﹣1<0,
    ∴当x>1时,y随x的增大而减小,
    ∴当x=2时,二次函数y=﹣(x﹣1)2+2的最大值为1,
    故答案为:1.
    【点睛】
    本题主要考查二次函数在一定范围内的最大值,掌握二次函数的图象和性质是解题的关键.

    三、解答题(共8题,共72分)
    17、(1)见解析;(2)6或
    【解析】
    试题分析:(1)根据平行线的性质和中点的性质证明三角形全等,然后根据对角线互相平分的四边形是平行四边形完成证明;
    (2)由等腰三角形的性质,分三种情况:①BD=BC,②BD=CD,③BC=CD,分别求四边形的面积.
    试题解析:(1)证明:∵∠A=∠ABC=90°
    ∴AF∥BC
    ∴∠CBE=∠DFE,∠BCE=∠FDE
    ∵E是边CD的中点
    ∴CE=DE
    ∴△BCE≌△FDE(AAS)
    ∴BE=EF
    ∴四边形BDFC是平行四边形
    (2)若△BCD是等腰三角形
    ①若BD=DC
    在Rt△ABD中,AB=
    ∴四边形BDFC的面积为S=×3=6;
    ②若BD=DC
    过D作BC的垂线,则垂足为BC得中点,不可能;
    ③若BC=DC
    过D作DG⊥BC,垂足为G
    在Rt△CDG中,DG=
    ∴四边形BDFC的面积为S=.
    考点:三角形全等,平行四边形的判定,勾股定理,四边形的面积
    18、(1)y=x2+2x﹣3;(2)点P的坐标为(2,21)或(﹣2,5);(3).
    【解析】
    (1)先根据点A坐标及对称轴得出点B坐标,再利用待定系数法求解可得;
    (2)利用(1)得到的解析式,可设点P的坐标为(a,a2+2a﹣3),则点P到OC的距离为|a|.然后依据S△POC=2S△BOC列出关于a的方程,从而可求得a的值,于是可求得点P的坐标;
    (3)先求得直线AC的解析式,设点D的坐标为(x,x2+2x﹣3),则点Q的坐标为(x,﹣x﹣3),然后可得到QD与x的函数的关系,最后利用配方法求得QD的最大值即可.
    【详解】
    解:(1)∵抛物线与x轴的交点A(﹣3,0),对称轴为直线x=﹣1,
    ∴抛物线与x轴的交点B的坐标为(1,0),
    设抛物线解析式为y=a(x+3)(x﹣1),
    将点C(0,﹣3)代入,得:﹣3a=﹣3,
    解得a=1,
    则抛物线解析式为y=(x+3)(x﹣1)=x2+2x﹣3;
    (2)设点P的坐标为(a,a2+2a﹣3),则点P到OC的距离为|a|.
    ∵S△POC=2S△BOC,
    ∴•OC•|a|=2×OC•OB,即×3×|a|=2××3×1,解得a=±2.
    当a=2时,点P的坐标为(2,21);
    当a=﹣2时,点P的坐标为(﹣2,5).
    ∴点P的坐标为(2,21)或(﹣2,5).
    (3)如图所示:

    设AC的解析式为y=kx﹣3,将点A的坐标代入得:﹣3k﹣3=0,解得k=﹣1,
    ∴直线AC的解析式为y=﹣x﹣3.
    设点D的坐标为(x,x2+2x﹣3),则点Q的坐标为(x,﹣x﹣3).
    ∴QD=﹣x﹣3﹣( x2+2x﹣3)=﹣x﹣3﹣x2﹣2x+3=﹣x2﹣3x=﹣(x2+3x+﹣)=﹣(x+)2+,
    ∴当x=﹣时,QD有最大值,QD的最大值为.
    【点睛】
    本题主要考查了二次函数综合题,解题的关键是熟练掌握二次函数的性质和应用.
    19、.
    【解析】
    先计算括号里面的,再利用除法化简原式,
    【详解】

    = ,
    = ,
    =,
    =,
    由a2+a﹣6=0,得a=﹣3或a=2,
    ∵a﹣2≠0,
    ∴a≠2,
    ∴a=﹣3,
    当a=﹣3时,原式=.
    【点睛】
    本题考查了分式的化简求值及一元二次方程的解,解题的关键是熟练掌握分式的混合运算.
    20、(1)x≤1;(1)x≥﹣1;(3)见解析;(4)﹣1≤x≤1.
    【解析】
    先求出不等式的解集,再求出不等式组的解集即可.
    【详解】
    解:(1)解不等式①,得x≤1,
    (1)解不等式②,得x≥﹣1,
    (3)把不等式①和②的解集在数轴上表示出来:

    (4)原不等式组的解集为﹣1≤x≤1,
    故答案为x≤1,x≥﹣1,﹣1≤x≤1.
    【点睛】
    本题考查了解一元一次不等式组,能根据不等式的解集找出不等式组的解集是解此题的关键.
    21、李强以12米/分钟的速度攀登才能和庞亮同时到达山顶A
    【解析】
    过点A作AD⊥BC于点D,

    在Rt△ADC中,
    由得tanC=∴∠C=30°∴AD=AC=×240=120(米)
    在Rt△ABD中,∠B=45°∴AB=AD=120(米)
    120÷(240÷24)=120÷10=12(米/分钟)
    答:李强以12米/分钟的速度攀登才能和庞亮同时到达山顶A
    22、官有200人,兵有800人
    【解析】
    设官有x人,兵有y人,根据1000官兵正好分1000匹布,即可得出关于x,y的二元一次方程组,解之即可得出结论.
    【详解】
    解:设官有x人,兵有y人,
    依题意,得:

    解得: .
    答:官有200人,兵有800人.
    【点睛】
    本题主要考查二元一次方程组的应用,根据题意列出二元一次方程组是解题的关键.
    23、(Ⅰ)50、31;(Ⅱ)4;3;3.1;(Ⅲ)410人.
    【解析】
    (Ⅰ)利用家庭中拥有1台移动设备的人数除以其所占百分比即可得调查的学生人数,将拥有4台移动设备的人数除以总人数即可求得m的值;(Ⅱ)根据众数、中位数、加权平均数的定义计算即可;(Ⅲ)将样本中拥有3台移动设备的学生人数所占比例乘以总人数1500即可求解.
    【详解】
    解:(Ⅰ)本次接受随机抽样调查的学生人数为: =50(人),
    ∵×100=31%,
    ∴图①中m的值为31.
    故答案为50、31;
    (Ⅱ)∵这组样本数据中,4出现了16次,出现次数最多,
    ∴这组数据的众数为4;
    ∵将这组数据从小到大排列,其中处于中间的两个数均为3,有=3,
    ∴这组数据的中位数是3;
    由条形统计图可得=3.1,
    ∴这组数据的平均数是3.1.
    (Ⅲ)1500×18%=410(人).
    答:估计该校学生家庭中;拥有3台移动设备的学生人数约为410人.
    【点睛】
    本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
    24、(1)点M(1,2)不在直线y=﹣x+4上,理由见解析;(2)平移的距离为1或2;(1)2<n<1.
    【解析】
    (1)将x=1代入y=-x+4,求出y=-1+4=1≠2,即可判断点M(1,2)不在直线y=-x+4上;
    (2)设直线y=-x+4沿y轴平移后的解析式为y=-x+4+b.分两种情况进行讨论:①点M(1,2)关于x轴的对称点为点M1(1,-2);②点M(1,2)关于y轴的对称点为点M2(-1,2).分别求出b的值,得到平移的距离;
    (1)由直线y=kx+b经过点M(1,2),得到b=2-1k.由直线y=kx+b与直线y=-x+4交点的横坐标为n,得出y=kn+b=-n+4,k=.根据y=kx+b随x的增大而增大,得到k>0,即>0,那么①,或②,分别解不等式组即可求出n的取值范围.
    【详解】
    (1)点M不在直线y=﹣x+4上,理由如下:
    ∵当x=1时,y=﹣1+4=1≠2,
    ∴点M(1,2)不在直线y=﹣x+4上;
    (2)设直线y=﹣x+4沿y轴平移后的解析式为y=﹣x+4+b.
    ①点M(1,2)关于x轴的对称点为点M1(1,﹣2),
    ∵点M1(1,﹣2)在直线y=﹣x+4+b上,
    ∴﹣2=﹣1+4+b,
    ∴b=﹣1,
    即平移的距离为1;
    ②点M(1,2)关于y轴的对称点为点M2(﹣1,2),
    ∵点M2(﹣1,2)在直线y=﹣x+4+b上,
    ∴2=1+4+b,
    ∴b=﹣2,
    即平移的距离为2.
    综上所述,平移的距离为1或2;
    (1)∵直线y=kx+b经过点M(1,2),
    ∴2=1k+b,b=2﹣1k.
    ∵直线y=kx+b与直线y=﹣x+4交点的横坐标为n,
    ∴y=kn+b=﹣n+4,
    ∴kn+2﹣1k=﹣n+4,
    ∴k=.
    ∵y=kx+b随x的增大而增大,
    ∴k>0,即>0,
    ∴①,或②,
    不等式组①无解,不等式组②的解集为2<n<1.
    ∴n的取值范围是2<n<1.
    故答案为2<n<1.
    【点睛】
    本题考查了一次函数图象与几何变换,一次函数图象上点的坐标特征,一次函数的性质,解一元一次不等式组,都是基础知识,需熟练掌握.

    相关试卷

    浙江省衢州市常山县2022-2023学年数学九上期末考试试题含解析:

    这是一份浙江省衢州市常山县2022-2023学年数学九上期末考试试题含解析,共22页。试卷主要包含了等于等内容,欢迎下载使用。

    2022-2023学年浙江省衢州市常山县等四地七年级(下)期末数学试卷(含解析):

    这是一份2022-2023学年浙江省衢州市常山县等四地七年级(下)期末数学试卷(含解析),共17页。

    2023浙江省衢州市常山县初中数学中考模拟练习卷(含答案):

    这是一份2023浙江省衢州市常山县初中数学中考模拟练习卷(含答案),共24页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map