|试卷下载
搜索
    上传资料 赚现金
    安徽安庆重点达标名校2021-2022学年中考数学猜题卷含解析
    立即下载
    加入资料篮
    安徽安庆重点达标名校2021-2022学年中考数学猜题卷含解析01
    安徽安庆重点达标名校2021-2022学年中考数学猜题卷含解析02
    安徽安庆重点达标名校2021-2022学年中考数学猜题卷含解析03
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    安徽安庆重点达标名校2021-2022学年中考数学猜题卷含解析

    展开
    这是一份安徽安庆重点达标名校2021-2022学年中考数学猜题卷含解析,共24页。试卷主要包含了答题时请按要求用笔,已知二次函数y=,在一组数据等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项:
    1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
    2.答题时请按要求用笔。
    3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
    4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
    5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.《九章算术》是中国古代第一部数学专著,它对我国古代后世的数学家产生了深远的影响,该书中记载了一个问题,大意是:有几个人一起去买一件物品,每人出8元,多3元;每人出7元,少4元,问有多少人?该物品价几何?设有x人,物品价值y元,则所列方程组正确的是( )
    A. B.
    C. D.
    2.已知函数的图象与x轴有交点.则的取值范围是( )
    A.k<4 B.k≤4 C.k<4且k≠3 D.k≤4且k≠3
    3.2017年牡丹区政府工作报告指出:2012年以来牡丹区经济社会发展取得显著成就,综合实力明显提升,地区生产总值由156.3亿元增加到338亿元,年均可比增长11.4%,338亿用科学记数法表示为(  )
    A.3.38×107 B.33.8×109 C.0.338×109 D.3.38×1010
    4.如图显示了用计算机模拟随机投掷一枚图钉的某次实验的结果.

    下面有三个推断:
    ①当投掷次数是500时,计算机记录“钉尖向上”的次数是308,所以“钉尖向上”的概率是0.616;
    ②随着试验次数的增加,“钉尖向上”的频率总在0.618附近摆动,显示出一定的稳定性,可以估计“钉尖向上”的概率是0.618;
    ③若再次用计算机模拟此实验,则当投掷次数为1000时,“钉尖向上”的频率一定是0.1.
    其中合理的是(  )
    A.① B.② C.①② D.①③
    5.已知,代数式的值为( )
    A.-11 B.-1 C.1 D.11
    6.点A(x1,y1)、B(x2,y2)、C(x3,y3)都在反比例函数的图象上,且x1<x2<0<x3,则y1、y2、y3的大小关系是( )
    A.y3<y1<y2 B.y1<y2<y3 C.y3<y2<y1 D.y2<y1<y3
    7.已知二次函数y=(x+a)(x﹣a﹣1),点P(x0,m),点Q(1,n)都在该函数图象上,若m<n,则x0的取值范围是(  )
    A.0≤x0≤1 B.0<x0<1且x0≠
    C.x0<0或x0>1 D.0<x0<1
    8.在一组数据:1,2,4,5中加入一个新数3之后,新数据与原数据相比,下列说法正确的是(  )
    A.中位数不变,方差不变 B.中位数变大,方差不变
    C.中位数变小,方差变小 D.中位数不变,方差变小
    9.如图,△ABC内接于⊙O,AD为⊙O的直径,交BC于点E,若DE=2,OE=3,则tan∠ACB·tan∠ABC=( )

    A.2 B.3 C.4 D.5
    10.如图,某厂生产一种扇形折扇,OB=10cm,AB=20cm,其中裱花的部分是用纸糊的,若扇子完全打开摊平时纸面面积为π cm2,则扇形圆心角的度数为(  )

    A.120° B.140° C.150° D.160°
    11.用半径为8的半圆围成一个圆锥的侧面,则圆锥的底面半径等于(  )
    A.4 B.6 C.16π D.8
    12.下列各式中计算正确的是
    A. B. C. D.
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.如图,AB=AC,AD∥BC,若∠BAC=80°,则∠DAC=__________.

    14.如图,在矩形ABCD中,E是AD上一点,把△ABE沿直线BE翻折,点A正好落在BC边上的点F处,如果四边形CDEF和矩形ABCD相似,那么四边形CDEF和矩形ABCD面积比是__.

    15.现有八个大小相同的矩形,可拼成如图1、2所示的图形,在拼图2时,中间留下了一个边长为2的小正方形,则每个小矩形的面积是_____.

    16.8的立方根为_______.
    17.已知函数y=|x2﹣x﹣2|,直线y=kx+4恰好与y=|x2﹣x﹣2|的图象只有三个交点,则k的值为_____.
    18.三人中有两人性别相同的概率是_____________.
    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)反比例函数y=(k≠0)与一次函数y=mx+b(m≠0)交于点A(1,2k﹣1).求反比例函数的解析式;若一次函数与x轴交于点B,且△AOB的面积为3,求一次函数的解析式.
    20.(6分)如图1,一枚质地均匀的正六面体骰子的六个面分别标有数字,,,,,,如图2,正方形的顶点处各有一个圈,跳圈游戏的规则为:游戏者每掷一次骰子,骰子朝上的那面上的数字是几,就沿正方形的边按顺时针方向连续跳几个边长。如:若从圈起跳,第一次掷得,就顺时针连续跳个边长,落在圈;若第二次掷得,就从圈开始顺时针连续跳个边长,落得圈;…设游戏者从圈起跳.
    小贤随机掷一次骰子,求落回到圈的概率.小南随机掷两次骰子,用列表法求最后落回到圈的概率,并指出他与小贤落回到圈的可能性一样吗?
    21.(6分)如图,抛物线(a≠0)交x轴于A、B两点,A点坐标为(3,0),与y轴交于点C(0,4),以OC、OA为边作矩形OADC交抛物线于点G.
    求抛物线的解析式;抛物线的对称轴l在边OA(不包括O、A两点)上平行移动,分别交x轴于点E,交CD于点F,交AC于点M,交抛物线于点P,若点M的横坐标为m,请用含m的代数式表示PM的长;在(2)的条件下,连结PC,则在CD上方的抛物线部分是否存在这样的点P,使得以P、C、F为顶点的三角形和△AEM相似?若存在,求出此时m的值,并直接判断△PCM的形状;若不存在,请说明理由.
    22.(8分)如图,AB为⊙O的直径,AC、DC为弦,∠ACD=60°,P为AB延长线上的点,∠APD=30°.
    求证:DP是⊙O的切线;若⊙O的半径为3cm,求图中阴影部分的面积.
    23.(8分)已知抛物线y=ax2+bx+c.
    (Ⅰ)若抛物线的顶点为A(﹣2,﹣4),抛物线经过点B(﹣4,0)
    ①求该抛物线的解析式;
    ②连接AB,把AB所在直线沿y轴向上平移,使它经过原点O,得到直线l,点P是直线l上一动点.
    设以点A,B,O,P为顶点的四边形的面积为S,点P的横坐标为x,当4+6≤S≤6+8时,求x的取值范围;
    (Ⅱ)若a>0,c>1,当x=c时,y=0,当0<x<c时,y>0,试比较ac与l的大小,并说明理由.
    24.(10分)如图,在△ABC中,AD、AE分别为△ABC的中线和角平分线.过点C作CH⊥AE于点H,并延长交AB于点F,连接DH,求证:DH=BF.

    25.(10分)一个不透明的口袋中装有2个红球、1个白球、1个黑球,这些球除颜色外都相同,将球摇匀.先从中任意摸出1个球,再从余下的3个球中任意摸出1个球,请用列举法(画树状图或列表)求两次都摸到红球的概率.
    26.(12分)在等腰Rt△ABC中,∠ACB=90°,AC=BC,点D是边BC上任意一点,连接AD,过点C作CE⊥AD于点E.
    (1)如图1,若∠BAD=15°,且CE=1,求线段BD的长;
    (2)如图2,过点C作CF⊥CE,且CF=CE,连接FE并延长交AB于点M,连接BF,求证:AM=BM.

    27.(12分)为了提高学生书写汉字的能力,增强保护汉子的意识,某校举办了首届“汉字听写大赛”,学生经选拔后进入决赛,测试同时听写100个汉字,每正确听写出一个汉字得1分,本次决赛,学生成绩为(分),且,将其按分数段分为五组,绘制出以下不完整表格:
    组别

    成绩(分)

    频数(人数)

    频率





    2

    0.04





    10

    0.2





    14

    b





    a

    0.32





    8

    0.16

    请根据表格提供的信息,解答以下问题:本次决赛共有 名学生参加;直接写出表中a= ,b= ;请补全下面相应的频数分布直方图;
    若决赛成绩不低于80分为优秀,则本次大赛的优秀率为 .



    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、C
    【解析】
    根据题意相等关系:①8×人数-3=物品价值,②7×人数+4=物品价值,可列方程组:,
    故选C.
    点睛:本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系.
    2、B
    【解析】
    试题分析:若此函数与x轴有交点,则,Δ≥0,即4-4(k-3)≥0,解得:k≤4,当k=3时,此函数为一次函数,题目要求仍然成立,故本题选B.
    考点:函数图像与x轴交点的特点.
    3、D
    【解析】
    根据科学记数法的定义可得到答案.
    【详解】
    338亿=33800000000=,
    故选D.
    【点睛】
    把一个大于10或者小于1的数表示为的形式,其中1≤|a|<10,这种记数法叫做科学记数法.
    4、B
    【解析】
    ①当频数增大时,频率逐渐稳定的值即为概率,500次的实验次数偏低,而频率稳定在了0.618,错误;②由图可知频数稳定在了0.618,所以估计频率为0.618,正确;③.这个实验是一个随机试验,当投掷次数为1000时,钉尖向上”的概率不一定是0.1.错误,
    故选B.
    【点睛】本题考查了利用频率估计概率,能正确理解相关概念是解题的关键.
    5、D
    【解析】
    根据整式的运算法则,先利用已知求出a的值,再将a的值带入所要求解的代数式中即可得到此题答案.
    【详解】
    解:由题意可知:,
    原式



    故选:D.
    【点睛】
    此题考查整式的混合运算,解题的关键在于利用整式的运算法则进行化简求得代数式的值
    6、A
    【解析】
    作出反比例函数的图象(如图),即可作出判断:

    ∵-3<1,
    ∴反比例函数的图象在二、四象限,y随x的增大而增大,且当x<1时,y>1;当x>1时,y<1.
    ∴当x1<x2<1<x3时,y3<y1<y2.故选A.
    7、D
    【解析】
    分析:先求出二次函数的对称轴,然后再分两种情况讨论,即可解答.
    详解:二次函数y=(x+a)(x﹣a﹣1),当y=0时,x1=﹣a,x2=a+1,∴对称轴为:x==
    当P在对称轴的左侧(含顶点)时,y随x的增大而减小,由m<n,得:0<x0≤;
    当P在对称轴的右侧时,y随x的增大而增大,由m<n,得:<x0<1.
    综上所述:m<n,所求x0的取值范围0<x0<1.
    故选D.
    点睛:本题考查了二次函数图象上点的坐标特征,解决本题的关键是利用二次函数的性质,要分类讨论,以防遗漏.
    8、D
    【解析】
    根据中位数和方差的定义分别计算出原数据和新数据的中位数和方差,从而做出判断.
    【详解】
    ∵原数据的中位数是=3,平均数为=3,
    ∴方差为×[(1-3)2+(2-3)2+(4-3)2+(5-3)2]=;
    ∵新数据的中位数为3,平均数为=3,
    ∴方差为×[(1-3)2+(2-3)2+(3-3)2+(4-3)2+(5-3)2]=2;
    所以新数据与原数据相比中位数不变,方差变小,
    故选:D.
    【点睛】
    本题考查了中位数和方差,解题的关键是掌握中位数和方差的定义.
    9、C
    【解析】
    如图(见解析),连接BD、CD,根据圆周角定理可得,再根据相似三角形的判定定理可得,然后由相似三角形的性质可得,同理可得;又根据圆周角定理可得,再根据正切的定义可得,然后求两个正切值之积即可得出答案.
    【详解】
    如图,连接BD、CD

    在和中,





    同理可得:
    ,即
    为⊙O的直径



    故选:C.

    【点睛】
    本题考查了圆周角定理、相似三角形的判定定理与性质、正切函数值等知识点,通过作辅助线,结合圆周角定理得出相似三角形是解题关键.
    10、C
    【解析】
    根据扇形的面积公式列方程即可得到结论.
    【详解】
    ∵OB=10cm,AB=20cm,
    ∴OA=OB+AB=30cm,
    设扇形圆心角的度数为α,
    ∵纸面面积为π cm2,
    ∴,
    ∴α=150°,
    故选:C.
    【点睛】
    本题考了扇形面积的计算的应用,解题的关键是熟练掌握扇形面积计算公式:扇形的面积= .
    11、A
    【解析】
    由于半圆的弧长=圆锥的底面周长,那么圆锥的底面周长为8π,底面半径=8π÷2π.
    【详解】
    解:由题意知:底面周长=8π,
    ∴底面半径=8π÷2π=1.
    故选A.
    【点睛】
    此题主要考查了圆锥侧面展开扇形与底面圆之间的关系,圆锥的侧面展开图是一个扇形,此扇形的弧长等于圆锥底面周长,扇形的半径等于圆锥的母线长,解决本题的关键是应用半圆的弧长=圆锥的底面周长.
    12、B
    【解析】
    根据完全平方公式对A进行判断;根据幂的乘方与积的乘方对B、C进行判断;根据合并同类项对D进行判断.
    【详解】
    A. ,故错误.
    B. ,正确.
    C. ,故错误.
    D. , 故错误.
    故选B.
    【点睛】
    考查完全平方公式,合并同类项,幂的乘方与积的乘方,熟练掌握它们的运算法则是解题的关键.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、50°
    【解析】
    根据等腰三角形顶角度数,可求出每个底角,然后根据两直线平行,内错角相等解答.
    【详解】
    解:∵AB=AC,∠BAC=80°,
    ∴∠B=∠C=(180°﹣80°)÷2=50°;
    ∵AD∥BC,
    ∴∠DAC=∠C=50°,
    故答案为50°.
    【点睛】
    本题考查了等腰三角形的性质以及平行线性质的应用,注意:两直线平行,内错角相等.
    14、
    【解析】
    由题意易得四边形ABFE是正方形,
    设AB=1,CF=x,则有BC=x+1,CD=1,
    ∵四边形CDEF和矩形ABCD相似,
    ∴CD:BC=FC:CD,
    即1:(x+1)=x:1,
    ∴x=或x=(舍去),
    ∴ =,
    故答案为.

    【点睛】本题考查了折叠的性质,相似多边形的性质等,熟练掌握相似多边形的面积比等于相似比的平方是解题的关键.
    15、1.
    【解析】
    设小矩形的长为x,宽为y,则由图1可得5y=3x;由图2可知2y-x=2.
    【详解】
    解:设小矩形的长为x,宽为y,则可列出方程组,
    ,解得,
    则小矩形的面积为6×10=1.
    【点睛】
    本题考查了二元一次方程组的应用.
    16、2.
    【解析】
    根据立方根的定义可得8的立方根为2.
    【点睛】
    本题考查了立方根.
    17、1﹣1或﹣1
    【解析】
    直线y=kx+4与抛物线y=-x1+x+1(-1≤x≤1)相切时,直线y=kx+4与y=|x1-x-1|的图象恰好有三个公共点,即-x1+x+1=kx+4有相等的实数解,利用根的判别式的意义可求出此时k的值,另外当y=kx+4过(1,0)时,也满足条件.
    【详解】
    解:当y=0时,x1-x-1=0,解得x1=-1,x1=1,
    则抛物线y=x1-x-1与x轴的交点为(-1,0),(1,0),
    把抛物线y=x1-x-1图象x轴下方的部分沿x轴翻折到x轴上方,
    则翻折部分的抛物线解析式为y=-x1+x+1(-1≤x≤1),
    当直线y=kx+4与抛物线y=-x1+x+1(-1≤x≤1)相切时,
    直线y=kx+4与函数y=|x1-x-1|的图象恰好有三个公共点,
    即-x1+x+1=kx+4有相等的实数解,整理得x1+(k-1)x+1=0,△=(k-1)1-8=0,
    解得k=1±1 ,
    所以k的值为1+1或1-1.
    当k=1+1时,经检验,切点横坐标为x=-<-1不符合题意,舍去.
    当y=kx+4过(1,0)时,k=-1,也满足条件,
    故答案为1-1或-1.
    【点睛】
    本题考查了二次函数与几何变换:翻折变化不改变图形的大小,故|a|不变,利用顶点式即可求得翻折后的二次函数解析式;也可利用绝对值的意义,直接写出自变量在-1≤x≤1上时的解析式。
    18、1
    【解析】分析:
    由题意和生活实际可知:“三个人中,至少有两个人的性别是相同的”即可得到所求概率为1.
    详解:
    ∵三人的性别存在以下可能:(1)三人都是“男性”;(2)三人都是“女性”;(3)三人的性别是“2男1女”;(4)三人的性别是“2女1男”,
    ∴三人中至少有两个人的性别是相同的,
    ∴P(三人中有二人性别相同)=1.
    点睛:列出本题中所有的等可能结果是解题的关键.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、(1)y=;(2)y=﹣或y=
    【解析】
    试题分析:(1)把A(1,2k-1)代入y=即可求得结果;
    (2)根据三角形的面积等于3,求得点B的坐标,代入一次函数y=mx+b即可得到结果.
    试题解析:
    (1)把A(1,2k﹣1)代入y=得,
    2k﹣1=k,
    ∴k=1,
    ∴反比例函数的解析式为:y=;
    (2)由(1)得k=1,
    ∴A(1,1),
    设B(a,0),
    ∴S△AOB=•|a|×1=3,
    ∴a=±6,
    ∴B(﹣6,0)或(6,0),
    把A(1,1),B(﹣6,0)代入y=mx+b得:

    ∴ ,
    ∴一次函数的解析式为:y=x+,
    把A(1,1),B(6,0)代入y=mx+b得:

    ∴,
    ∴一次函数的解析式为:y=﹣.
    所以符合条件的一次函数解析式为:y=﹣或y=x+.
    20、(1)落回到圈的概率;(2)可能性不一样.
    【解析】
    (1)由共有6种等可能的结果,落回到圈A的只有1种情况,直接利用概率公式求解即可求得答案;
    (2)首先根据题意列出表格,然后由表格求得所有等可能的结果与最后落回到圈A的情况,再利用概率公式求解即可求得答案.
    【详解】
    (1)掷一次骰子有种等可能的结果,只有掷的时,才会落回到圈,
    落回到圈的概率;
    (2)列表得:

    1
    2
    3
    4
    5
    6
    1






    2






    3






    4






    5






    6






    共有种等可能的结果,当两次掷得的数字之和为的倍数,即时,才可能落回到圈,这种情况共有种,
    ∴,
    ∵,
    可能性不一样
    【点睛】
    本题考查了用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;用到的知识点为:概率=所求情况数与总情况数之比.
    21、(1)抛物线的解析式为;(2)PM=(0<m<3);(3)存在这样的点P使△PFC与△AEM相似.此时m的值为或1,△PCM为直角三角形或等腰三角形.
    【解析】
    (1)将A(3,0),C(0,4)代入,运用待定系数法即可求出抛物线的解析式.
    (2)先根据A、C的坐标,用待定系数法求出直线AC的解析式,从而根据抛物线和直线AC的解析式分别表示出点P、点M的坐标,即可得到PM的长.
    (3)由于∠PFC和∠AEM都是直角,F和E对应,则若以P、C、F为顶点的三角形和△AEM相似时,分两种情况进行讨论:①△PFC∽△AEM,②△CFP∽△AEM;可分别用含m的代数式表示出AE、EM、CF、PF的长,根据相似三角形对应边的比相等列出比例式,求出m的值,再根据相似三角形的性质,直角三角形、等腰三角形的判定判断出△PCM的形状.
    【详解】
    解:(1)∵抛物线(a≠0)经过点A(3,0),点C(0,4),
    ∴,解得.
    ∴抛物线的解析式为.
    (2)设直线AC的解析式为y=kx+b,
    ∵A(3,0),点C(0,4),
    ∴,解得.
    ∴直线AC的解析式为.
    ∵点M的横坐标为m,点M在AC上,
    ∴M点的坐标为(m,).
    ∵点P的横坐标为m,点P在抛物线上,
    ∴点P的坐标为(m,).
    ∴PM=PE-ME=()-()=.
    ∴PM=(0<m<3).
    (3)在(2)的条件下,连接PC,在CD上方的抛物线部分存在这样的点P,使得以P、C、F为顶点的三角形和△AEM相似.理由如下:
    由题意,可得AE=3﹣m,EM=,CF=m,PF==,
    若以P、C、F为顶点的三角形和△AEM相似,分两种情况:
    ①若△PFC∽△AEM,则PF:AE=FC:EM,即():(3-m)=m:(),
    ∵m≠0且m≠3,∴m=.
    ∵△PFC∽△AEM,∴∠PCF=∠AME.
    ∵∠AME=∠CMF,∴∠PCF=∠CMF.
    在直角△CMF中,∵∠CMF+∠MCF=90°,∴∠PCF+∠MCF=90°,即∠PCM=90°.
    ∴△PCM为直角三角形.
    ②若△CFP∽△AEM,则CF:AE=PF:EM,即m:(3-m)=():(),
    ∵m≠0且m≠3,∴m=1.
    ∵△CFP∽△AEM,∴∠CPF=∠AME.
    ∵∠AME=∠CMF,∴∠CPF=∠CMF.∴CP=CM.
    ∴△PCM为等腰三角形.
    综上所述,存在这样的点P使△PFC与△AEM相似.此时m的值为或1,△PCM为直角三角形或等腰三角形.
    22、(1)证明见解析;(2).
    【解析】
    (1)连接OD,求出∠AOD,求出∠DOB,求出∠ODP,根据切线判定推出即可.
    (2)求出OP、DP长,分别求出扇形DOB和△ODP面积,即可求出答案.
    【详解】
    解:(1)证明:连接OD,

    ∵∠ACD=60°,
    ∴由圆周角定理得:∠AOD=2∠ACD=120°.
    ∴∠DOP=180°﹣120°=60°.
    ∵∠APD=30°,
    ∴∠ODP=180°﹣30°﹣60°=90°.
    ∴OD⊥DP.
    ∵OD为半径,
    ∴DP是⊙O切线.
    (2)∵∠ODP=90°,∠P=30°,OD=3cm,
    ∴OP=6cm,由勾股定理得:DP=3cm.
    ∴图中阴影部分的面积
    23、(Ⅰ)①y=x2+3x②当3+6≤S≤6+2时,x的取值范围为是≤x≤或≤x≤(Ⅱ)ac≤1
    【解析】
    (I)①由抛物线的顶点为A(-2,-3),可设抛物线的解析式为y=a(x+2)2-3,代入点B的坐标即可求出a值,此问得解,②根据点A、B的坐标利用待定系数法可求出直线AB的解析式,进而可求出直线l的解析式,分点P在第二象限及点P在第四象限两种情况考虑:当点P在第二象限时,x<0,通过分割图形求面积法结合3+6≤S≤6+2,即可求出x的取值范围,当点P在第四象限时,x>0,通过分割图形求面积法结合3+6≤S≤6+2,即可求出x的取值范围,综上即可得出结论,(2)由当x=c时y=0,可得出b=-ac-1,由当0<x<c时y>0,可得出抛物线的对称轴x=≥c,进而可得出b≤-2ac,结合b=-ac-1即可得出ac≤1.
    【详解】
    (I)①设抛物线的解析式为y=a(x+2)2﹣3,
    ∵抛物线经过点B(﹣3,0),
    ∴0=a(﹣3+2)2﹣3,
    解得:a=1,
    ∴该抛物线的解析式为y=(x+2)2﹣3=x2+3x.
    ②设直线AB的解析式为y=kx+m(k≠0),
    将A(﹣2,﹣3)、B(﹣3,0)代入y=kx+m,
    得:,解得:,
    ∴直线AB的解析式为y=﹣2x﹣2.
    ∵直线l与AB平行,且过原点,
    ∴直线l的解析式为y=﹣2x.
    当点P在第二象限时,x<0,如图所示.
    S△POB=×3×(﹣2x)=﹣3x,S△AOB=×3×3=2,
    ∴S=S△POB+S△AOB=﹣3x+2(x<0).
    ∵3+6≤S≤6+2,
    ∴,即,
    解得:≤x≤,
    ∴x的取值范围是≤x≤.
    当点P′在第四象限时,x>0,
    过点A作AE⊥x轴,垂足为点E,过点P′作P′F⊥x轴,垂足为点F,则
    S四边形AEOP′=S梯形AEFP′﹣S△OFP′=•(x+2)﹣•x•(2x)=3x+3.
    ∵S△ABE=×2×3=3,
    ∴S=S四边形AEOP′+S△ABE=3x+2(x>0).
    ∵3+6≤S≤6+2,
    ∴,即,
    解得:≤x≤,
    ∴x的取值范围为≤x≤.
    综上所述:当3+6≤S≤6+2时,x的取值范围为是≤x≤或≤x≤.
    (II)ac≤1,理由如下:
    ∵当x=c时,y=0,
    ∴ac2+bc+c=0,
    ∵c>1,
    ∴ac+b+1=0,b=﹣ac﹣1.
    由x=c时,y=0,可知抛物线与x轴的一个交点为(c,0).
    把x=0代入y=ax2+bx+c,得y=c,
    ∴抛物线与y轴的交点为(0,c).
    ∵a>0,
    ∴抛物线开口向上.
    ∵当0<x<c时,y>0,
    ∴抛物线的对称轴x=﹣≥c,
    ∴b≤﹣2ac.
    ∵b=﹣ac﹣1,
    ∴﹣ac﹣1≤﹣2ac,
    ∴ac≤1.

    【点睛】
    本题主要考查了待定系数法求二次(一次)函数解析式、三角形的面积、梯形的面积、解一元一次不等式组、二次函数图象上点的坐标特征以及二次函数的性质,解题的关键是:(1)①巧设顶点式,代入点B的坐标求出a值,②分点P在第二象限及点P在第四象限两种情况找出x的取值范围,(2)根据二次函数图象上点的坐标特征结合二次函数的性质,找出b=-ac-1及b≤-2ac.
    24、见解析.
    【解析】
    先证明△AFC为等腰三角形,根据等腰三角形三线合一证明H为FC的中点,又D为BC的中点,根据中位线的性质即可证明.
    【详解】
    ∵AE为△ABC的角平分线,CH⊥AE,
    ∴△ACF是等腰三角形,
    ∴AF=AC,HF=CH,
    ∵AD为△ABC的中线,
    ∴DH是△BCF的中位线,
    ∴DH=BF.
    【点睛】
    本题考查三角形中位线定理,等腰三角形的判定与性质.解决本题的关键是证明H点为FC的中点,然后利用中位线的性质解决问题.本题中要证明DH=BF,一般三角形中出现这种2倍或关系时,常用中位线的性质解决.
    25、
    【解析】
    分析:列表得出所有等可能的情况数,找出两次都摸到红球的情况数,即可求出所求的概率.
    详解:列表如下:






    ﹣﹣﹣
    (红,红)
    (白,红)
    (黑,红)

    (红,红)
    ﹣﹣﹣
    (白,红)
    (黑,红)

    (红,白)
    (红,白)
    ﹣﹣﹣
    (黑,白)

    (红,黑)
    (红,黑)
    (白,黑)
    ﹣﹣﹣
    所有等可能的情况有12种,其中两次都摸到红球有2种可能,
    则P(两次摸到红球)==.
    点睛:此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.
    26、 (1) 2﹣ ;(2)见解析
    【解析】
    分析:(1)先求得:∠CAE=45°-15°=30°,根据直角三角形30°角的性质可得AC=2CE=2,再得∠ECD=90°-60°=30°,设ED=x,则CD=2x,利用勾股定理得:x=1,求得x的值,可得BD的长;
    (2)如图2,连接CM,先证明△ACE≌△BCF,则∠BFC=∠AEC=90°,证明C、M、B、F四点共圆,则∠BCM=∠MFB=45°,由等腰三角形三线合一的性质可得AM=BM.
    详解:(1)∵∠ACB=90°,AC=BC,
    ∴∠CAB=45°,
    ∵∠BAD=15°,
    ∴∠CAE=45°﹣15°=30°,
    Rt△ACE中,CE=1,
    ∴AC=2CE=2,
    Rt△CED中,∠ECD=90°﹣60°=30°,
    ∴CD=2ED,
    设ED=x,则CD=2x,
    ∴CE=x,
    ∴x=1,
    x=,
    ∴CD=2x=,
    ∴BD=BC﹣CD=AC﹣CD=2﹣;
    (2)如图2,连接CM,
    ∵∠ACB=∠ECF=90°,
    ∴∠ACE=∠BCF,
    ∵AC=BC,CE=CF,
    ∴△ACE≌△BCF,
    ∴∠BFC=∠AEC=90°,
    ∵∠CFE=45°,
    ∴∠MFB=45°,
    ∵∠CFM=∠CBA=45°,
    ∴C、M、B、F四点共圆,
    ∴∠BCM=∠MFB=45°,
    ∴∠ACM=∠BCM=45°,
    ∵AC=BC,
    ∴AM=BM.

    点睛:本题考查了三角形全等的性质和判定、等腰直角三角形的性质和判定、等腰三角形三线合一的性质、直角三角形30°角的性质和勾股定理,第二问有难度,构建辅助线,证明△ACE≌△BCF是关键.
    27、(1)50;(2)a=16,b=0.28;(3)答案见解析;(4)48%.
    【解析】
    试题分析:(1)根据第一组别的人数和百分比得出样本容量;(2)根据样本容量以及频数、频率之间的关系得出a和b的值,(3)根据a的值将图形补全;(4)根据图示可得:优秀的人为第四和第五组的人,将两组的频数相加乘以100%得出答案.
    试题解析:(1)2÷0.04=50
    (2)50×0.32=16 14÷50=0.28
    (3)
    (4)(0.32+0.16)×100%=48%
    考点:频数分布直方图

    相关试卷

    贵州省施秉县重点达标名校2021-2022学年中考数学猜题卷含解析: 这是一份贵州省施秉县重点达标名校2021-2022学年中考数学猜题卷含解析,共18页。试卷主要包含了考生必须保证答题卡的整洁,二次函数y=ax2+bx﹣2,如果,那么代数式的值是,下列运算正确的是等内容,欢迎下载使用。

    2021-2022学年贵州省黔东南州重点达标名校中考数学猜题卷含解析: 这是一份2021-2022学年贵州省黔东南州重点达标名校中考数学猜题卷含解析,共20页。试卷主要包含了点A等内容,欢迎下载使用。

    2021-2022学年安庆市重点达标名校中考数学模拟预测题含解析: 这是一份2021-2022学年安庆市重点达标名校中考数学模拟预测题含解析,共22页。试卷主要包含了﹣2×,下列算式中,结果等于x6的是,下列运算正确的是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map