安徽省合肥蜀山区七校联考2022年中考数学押题试卷含解析
展开
这是一份安徽省合肥蜀山区七校联考2022年中考数学押题试卷含解析,共24页。试卷主要包含了答题时请按要求用笔,有下列四个命题,如图,,则的度数为等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(共10小题,每小题3分,共30分)
1.如图,在中, ,以边的中点为圆心,作半圆与相切,点分别是边和半圆上的动点,连接,则长的最大值与最小值的和是( )
A. B. C. D.
2.已知等腰三角形的两边长分别为5和6,则这个等腰三角形的周长为( )
A.11 B.16 C.17 D.16或17
3.如图,直线a∥b,直线c与直线a、b分别交于点A、点B,AC⊥AB于点A,交直线b于点C.如果∠1=34°,那么∠2的度数为( )
A.34° B.56° C.66° D.146°
4.在如图所示的数轴上,点B与点C关于点A对称,A、B两点对应的实数分别是和﹣1,则点C所对应的实数是( )
A.1+ B.2+ C.2﹣1 D.2+1
5.下列式子中,与互为有理化因式的是( )
A. B. C. D.
6.有下列四个命题:①相等的角是对顶角;②两条直线被第三条直线所截,同位角相等;③同一种正五边形一定能进行平面镶嵌;④垂直于同一条直线的两条直线互相垂直.其中假命题的个数有( )
A.1个 B.2个 C.3个 D.4个
7.如图,要使□ABCD成为矩形,需添加的条件是()
A.AB=BC B.∠ABC=90° C.AC⊥BD D.∠1=∠2
8.如图,,则的度数为( )
A.115° B.110° C.105° D.65°
9.苹果的单价为a元/千克,香蕉的单价为b元/千克,买2千克苹果和3千克香蕉共需( )
A.(a+b)元 B.(3a+2b)元 C.(2a+3b)元 D.5(a+b)元
10.某品牌的饮水机接通电源就进入自动程序:开机加热到水温100℃,停止加热,水温开始下降,此时水温(℃)与开机后用时(min)成反比例关系,直至水温降至30℃,饮水机关机.饮水机关机后即刻自动开机,重复上述自动程序.若在水温为30℃时,接通电源后,水温y(℃)和时间x(min)的关系如图所示,水温从100℃降到35℃所用的时间是( )
A.27分钟 B.20分钟 C.13分钟 D.7分钟
二、填空题(本大题共6个小题,每小题3分,共18分)
11.九(5)班有男生27人,女生23人,班主任发放准考证时,任意抽取一张准考证,恰好是女生的准考证的概率是________________.
12.⊙O的半径为10cm,AB,CD是⊙O的两条弦,且AB∥CD,AB=16cm,CD=12cm.则AB与CD之间的距离是 cm.
13.如图,在△ABC中,∠ACB=90°,AB=8,AB的垂直平分线MN交AC于D,连接DB,若tan∠CBD=,则BD=_____.
14.若一次函数y=﹣2(x+1)+4的值是正数,则x的取值范围是_______.
15.已知 a、b 是方程 x2﹣2x﹣1=0 的两个根,则 a2﹣a+b 的值是_______.
16.如图,在△ABC 中,AB=AC,BC=8. 是△ABC的外接圆,其半径为5. 若点A在优弧BC上,则的值为_____________.
三、解答题(共8题,共72分)
17.(8分)已知:如图所示,抛物线y=﹣x2+bx+c与x轴的两个交点分别为A(1,0),B(3,0)
(1)求抛物线的表达式;
(2)设点P在该抛物线上滑动,且满足条件S△PAB=1的点P有几个?并求出所有点P的坐标.
18.(8分)如图所示,点C为线段OB的中点,D为线段OA上一点.连结AC、BD交于点P.
(问题引入)(1)如图1,若点P为AC的中点,求的值.
温馨提示:过点C作CE∥AO交BD于点E.
(探索研究)(2)如图2,点D为OA上的任意一点(不与点A、O重合),求证:.
(问题解决)(3)如图2,若AO=BO,AO⊥BO,,求tan∠BPC的值.
19.(8分)如图,抛物线y=ax2﹣2ax+c(a≠0)与y轴交于点C(0,4),与x轴交于点A、B,点A坐标为(4,0).
(1)求该抛物线的解析式;
(2)抛物线的顶点为N,在x轴上找一点K,使CK+KN最小,并求出点K的坐标;
(3)点Q是线段AB上的动点,过点Q作QE∥AC,交BC于点E,连接CQ.当△CQE的面积最大时,求点Q的坐标;
(4)若平行于x轴的动直线l与该抛物线交于点P,与直线AC交于点F,点D的坐标为(2,0).问:是否存在这样的直线l,使得△ODF是等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由.
20.(8分)在甲、乙两个不透明的布袋里,都装有3个大小、材质完全相同的小球,其中甲袋中的小球上分别标有数字1,1,2;乙袋中的小球上分别标有数字﹣1,﹣2,1.现从甲袋中任意摸出一个小球,记其标有的数字为x,再从乙袋中任意摸出一个小球,记其标有的数字为y,以此确定点M的坐标(x,y).请你用画树状图或列表的方法,写出点M所有可能的坐标;求点M(x,y)在函数y=﹣的图象上的概率.
21.(8分)第二十四届冬季奧林匹克运动会将于2022年2月4日至2月20日在北京举行,北京将成为历史上第一座既举办过夏奥会又举办过冬奥会的城市.某区举办了一次冬奥知识网上答题竞赛,甲、乙两校各有名学生参加活动,为了解这两所学校的成绩情况,进行了抽样调查,过程如下,请补充完整.
[收集数据]
从甲、乙两校各随机抽取名学生,在这次竞赛中他们的成绩如下:
甲:
乙:
[整理、描述数据]按如下分数段整理、描述这两组样本数据:
学校
人数
成绩
甲
乙
(说明:优秀成绩为,良好成绩为合格成绩为.)
[分析数据]两组样本数据的平均分、中位数、众数如下表所示:
学校
平均分
中位数
众数
甲
乙
其中 .
[得出结论]
(1)小明同学说:“这次竞赛我得了分,在我们学校排名属中游略偏上!”由表中数据可知小明是 _校的学生;(填“甲”或“乙”)
(2)张老师从乙校随机抽取--名学生的竞赛成绩,试估计这名学生的竞赛成绩为优秀的概率为_ ;
(3)根据以上数据推断一所你认为竞赛成绩较好的学校,并说明理由: ;
(至少从两个不同的角度说明推断的合理性)
22.(10分)先化简,再求值:(﹣)÷,其中x的值从不等式组的整数解中选取.
23.(12分)如图,在△ABC中,BD平分∠ABC,AE⊥BD于点O,交BC于点E,AD∥BC,连接CD.
(1)求证:AO=EO;
(2)若AE是△ABC的中线,则四边形AECD是什么特殊四边形?证明你的结论.
24.如图,二次函数y=ax2+2x+c的图象与x轴交于点A(﹣1,0)和点B,与y轴交于点C(0,3).
(1)求该二次函数的表达式;
(2)过点A的直线AD∥BC且交抛物线于另一点D,求直线AD的函数表达式;
(3)在(2)的条件下,请解答下列问题:
①在x轴上是否存在一点P,使得以B、C、P为顶点的三角形与△ABD相似?若存在,求出点P的坐标;若不存在,请说明理由;
②动点M以每秒1个单位的速度沿线段AD从点A向点D运动,同时,动点N以每秒个单位的速度沿线段DB从点D向点B运动,问:在运动过程中,当运动时间t为何值时,△DMN的面积最大,并求出这个最大值.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、C
【解析】
如图,设⊙O与AC相切于点E,连接OE,作OP1⊥BC垂足为P1交⊙O于Q1,此时垂线段OP1最短,P1Q1最小值为OP1-OQ1,求出OP1,如图当Q2在AB边上时,P2与B重合时,P2Q2最大值=5+3=8,由此不难解决问题.
【详解】
解:如图,设⊙O与AC相切于点E,连接OE,作OP1⊥BC垂足为P1交⊙O于Q1,
此时垂线段OP1最短,P1Q1最小值为OP1-OQ1,
∵AB=10,AC=8,BC=6,
∴AB2=AC2+BC2,
∴∠C=10°,
∵∠OP1B=10°,
∴OP1∥AC
∵AO=OB,\
∴P1C=P1B,
∴OP1=AC=4,
∴P1Q1最小值为OP1-OQ1=1,
如图,当Q2在AB边上时,P2与B重合时,P2Q2经过圆心,经过圆心的弦最长,
P2Q2最大值=5+3=8,
∴PQ长的最大值与最小值的和是1.
故选:C.
【点睛】
本题考查切线的性质、三角形中位线定理等知识,解题的关键是正确找到点PQ取得最大值、最小值时的位置,属于中考常考题型.
2、D
【解析】
试题分析:由等腰三角形的两边长分别是5和6,可以分情况讨论其边长为5,5,6或者5,6,6,均满足三角形两边之和大于第三边,两边之差小于第三边的条件,所以此等腰三角形的周长为5+5+6=16或5+6+6=17.
故选项D正确.
考点:三角形三边关系;分情况讨论的数学思想
3、B
【解析】
分析:先根据平行线的性质得出∠2+∠BAD=180°,再根据垂直的定义求出∠2的度数.
详解:∵直线a∥b,∴∠2+∠BAD=180°.
∵AC⊥AB于点A,∠1=34°,∴∠2=180°﹣90°﹣34°=56°.
故选B.
点睛:本题主要考查了平行线的性质,解题的关键是掌握两直线平行,同旁内角互补,此题难度不大.
4、D
【解析】
设点C所对应的实数是x.根据中心对称的性质,对称点到对称中心的距离相等,则有
,解得.
故选D.
5、B
【解析】
直接利用有理化因式的定义分析得出答案.
【详解】
∵()(,)
=12﹣2,
=10,
∴与互为有理化因式的是:,
故选B.
【点睛】
本题考查了有理化因式,如果两个含有二次根式的非零代数式相乘,它们的积不含有二次根式,就说这两个非零代数式互为有理化因式. 单项二次根式的有理化因式是它本身或者本身的相反数;其他代数式的有理化因式可用平方差公式来进行分步确定.
6、D
【解析】
根据对顶角的定义,平行线的性质以及正五边形的内角及镶嵌的知识,逐一判断.
【详解】
解:①对顶角有位置及大小关系的要求,相等的角不一定是对顶角,故为假命题;
②只有当两条平行直线被第三条直线所截,同位角相等,故为假命题;
③正五边形的内角和为540°,则其内角为108°,而360°并不是108°的整数倍,不能进行平面镶嵌,故为假命题;
④在同一平面内,垂直于同一条直线的两条直线平行,故为假命题.
故选:D.
【点睛】
本题考查了命题与证明.对顶角,垂线,同位角,镶嵌的相关概念.关键是熟悉这些概念,正确判断.
7、B
【解析】
根据一个角是90度的平行四边形是矩形进行选择即可.
【详解】
解:A、是邻边相等,可判定平行四边形ABCD是菱形;
B、是一内角等于90°,可判断平行四边形ABCD成为矩形;
C、是对角线互相垂直,可判定平行四边形ABCD是菱形;
D、是对角线平分对角,可判断平行四边形ABCD成为菱形;
故选:B.
【点睛】
本题主要应用的知识点为:矩形的判定. ①对角线相等且相互平分的四边形为矩形.②一个角是90度的平行四边形是矩形.
8、A
【解析】
根据对顶角相等求出∠CFB=65°,然后根据CD∥EB,判断出∠B=115°.
【详解】
∵∠AFD=65°,
∴∠CFB=65°,
∵CD∥EB,
∴∠B=180°−65°=115°,
故选:A.
【点睛】
本题考查了平行线的性质,知道“两直线平行,同旁内角互补”是解题的关键.
9、C
【解析】
用单价乘数量得出买2千克苹果和3千克香蕉的总价,再进一步相加即可.
【详解】
买单价为a元的苹果2千克用去2a元,买单价为b元的香蕉3千克用去3b元,
共用去:(2a+3b)元.
故选C.
【点睛】
本题主要考查列代数式,总价=单价乘数量.
10、C
【解析】
先利用待定系数法求函数解析式,然后将y=35代入,从而求解.
【详解】
解:设反比例函数关系式为:,将(7,100)代入,得k=700,
∴,
将y=35代入,
解得;
∴水温从100℃降到35℃所用的时间是:20-7=13,
故选C.
【点睛】
本题考查反比例函数的应用,利用数形结合思想解题是关键.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、
【解析】
用女生人数除以总人数即可.
【详解】
由题意得,恰好是女生的准考证的概率是.
故答案为:.
【点睛】
此题考查了概率公式,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.
12、2或14
【解析】
分两种情况进行讨论:①弦AB和CD在圆心同侧;②弦AB和CD在圆心异侧;作出半径和弦心距,利用勾股定理和垂径定理求解即可.
【详解】
①当弦AB和CD在圆心同侧时,如图,
∵AB=16cm,CD=12cm,
∴AE=8cm,CF=6cm,
∵OA=OC=10cm,
∴EO=6cm,OF=8cm,
∴EF=OF−OE=2cm;
②当弦AB和CD在圆心异侧时,如图,
∵AB=16cm,CD=12cm,
∴AF=8cm,CE=6cm,
∵OA=OC=10cm,
∴OF=6cm,OE=8cm,
∴EF=OF+OE=14cm.
∴AB与CD之间的距离为14cm或2cm.
故答案为:2或14.
13、2.
【解析】
由tan∠CBD== 设CD=3a、BC=4a,据此得出BD=AD=5a、AC=AD+CD=8a,由勾股定理可得(8a)2+(4a)2=82,解之求得a的值可得答案.
【详解】
解:在Rt△BCD中,∵tan∠CBD==,
∴设CD=3a、BC=4a,
则BD=AD=5a,
∴AC=AD+CD=5a+3a=8a,
在Rt△ABC中,由勾股定理可得(8a)2+(4a)2=82,
解得:a= 或a=-(舍),
则BD=5a=2,
故答案为2.
【点睛】
本题考查线段垂直平分线上的点到线段两端点的距离相等的性质,勾股定理的应用,解题关键是熟记性质与定理并准确识图.
14、x<1
【解析】
根据一次函数的性质得出不等式解答即可.
【详解】
因为一次函数y=﹣2(x+1)+4的值是正数,
可得:﹣2(x+1)+4>0,
解得:x<1,
故答案为x<1.
【点睛】
本题考查了一次函数与一元一次不等式,根据题意正确列出不等式是解题的关键.
15、1
【解析】
根据一元二次方程的解及根与系数的关系,可得出a2-2a=1、a+b=2,将其代入a2-a+b中即可求出结论.
【详解】
∵a、b是方程x2-2x-1=0的两个根,
∴a2-2a=1,a+b=2,
∴a2-a+b=a2-2a+(a+b)=1+2=1.
故答案为1.
【点睛】
本题考查根与系数的关系以及一元二次方程的解,牢记两根之和等于-、两根之积等于是解题的关键.
16、2
【解析】
【分析】作高线AD,由等腰三角形的性质可知D为BC的中点,即AD为BC的垂直平分线,根据垂径定理,AD过圆心O,由BC的长可得出BD的长,根据勾股定理求出半径,继而可得AD的长,在直角三角形ABD中根据正切的定义求解即可.
试题解析:如图,作AD⊥BC,垂足为D,连接OB,
∵AB=AC,∴BD=CD=BC=×8=4,
∴AD垂直平分BC,
∴AD过圆心O,
在Rt△OBD中,OD==3,
∴AD=AO+OD=8,
在Rt△ABD中,tan∠ABC==2,
故答案为2.
【点睛】本题考查了垂径定理、等腰三角形的性质、正切的定义等知识,综合性较强,正确添加辅助线构造直角三角形进行解题是关键.
三、解答题(共8题,共72分)
17、 (1)y=﹣x2+4x﹣3;(2)满足条件的P点坐标有3个,它们是(2,1)或(2+,﹣1)或(2﹣,﹣1).
【解析】
(1)由于已知抛物线与x轴的交点坐标,则可利用交点式求出抛物线解析式;
(2)根据二次函数图象上点的坐标特征,可设P(t,-t2+4t-3),根据三角形面积公式得到 •2•|-t2+4t-3|=1,然后去绝对值得到两个一元二次方程,再解方程求出t即可得到P点坐标.
【详解】
解:(1)抛物线解析式为y=﹣(x﹣1)(x﹣3)=﹣x2+4x﹣3;
(2)设P(t,﹣t2+4t﹣3),
因为S△PAB=1,AB=3﹣1=2,
所以•2•|﹣t2+4t﹣3|=1,
当﹣t2+4t﹣3=1时,t1=t2=2,此时P点坐标为(2,1);
当﹣t2+4t﹣3=﹣1时,t1=2+,t2=2﹣,此时P点坐标为(2+,﹣1)或(2﹣,﹣1),
所以满足条件的P点坐标有3个,它们是(2,1)或(2+,﹣1)或(2﹣,﹣1).
【点睛】
本题考查了待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解.
18、(1);(2) 见解析;(3)
【解析】
(1)过点C作CE∥OA交BD于点E,即可得△BCE∽△BOD,根据相似三角形的性质可得,再证明△ECP≌△DAP,由此即可求得的值;(2)过点D作DF∥BO交AC于点F,即可得,,由点C为OB的中点可得BC=OC,即可证得;(3)由(2)可知=,设AD=t,则BO=AO=4t,OD=3t,根据勾股定理求得BD=5t,即可得PD=t,PB=4t,所以PD=AD,从而得∠A=∠APD=∠BPC,所以tan∠BPC=tan∠A=.
【详解】
(1)如图1,过点C作CE∥OA交BD于点E,
∴△BCE∽△BOD,
∴=,
又BC=BO,∴CE=DO.
∵CE∥OA,∴∠ECP=∠DAP,
又∠EPC=∠DPA,PA=PC,
∴△ECP≌△DAP,
∴AD=CE=DO,
即 =;
(2)如图2,过点D作DF∥BO交AC于点F,
则 =, =.
∵点C为OB的中点,
∴BC=OC,
∴=;
(3)如图2,∵=,
由(2)可知==.
设AD=t,则BO=AO=4t,OD=3t,
∵AO⊥BO,即∠AOB=90°,
∴BD==5t,
∴PD=t,PB=4t,
∴PD=AD,
∴∠A=∠APD=∠BPC,
则tan∠BPC=tan∠A==.
【点睛】
本题考查了相似三角形的判定与性质,准确作出辅助线,构造相似三角形是解决本题的关键,也是求解的难点.
19、(1)y=﹣;(1)点K的坐标为(,0);(2)点P的坐标为:(1+,1)或(1﹣,1)或(1+,2)或(1﹣,2).
【解析】
试题分析:(1)把A、C两点坐标代入抛物线解析式可求得a、c的值,可求得抛物线解析;
(1)可求得点C关于x轴的对称点C′的坐标,连接C′N交x轴于点K,再求得直线C′K的解析式,可求得K点坐标;
(2)过点E作EG⊥x轴于点G,设Q(m,0),可表示出AB、BQ,再证明△BQE≌△BAC,可表示出EG,可得出△CQE关于m的解析式,再根据二次函数的性质可求得Q点的坐标;
(4)分DO=DF、FO=FD和OD=OF三种情况,分别根据等腰三角形的性质求得F点的坐标,进一步求得P点坐标即可.
试题解析:(1)∵抛物线经过点C(0,4),A(4,0),
∴,解得 ,
∴抛物线解析式为y=﹣ x1+x+4;
(1)由(1)可求得抛物线顶点为N(1, ),
如图1,作点C关于x轴的对称点C′(0,﹣4),连接C′N交x轴于点K,则K点即为所求,
设直线C′N的解析式为y=kx+b,把C′、N点坐标代入可得 ,解得 ,
∴直线C′N的解析式为y=x-4 ,
令y=0,解得x= ,
∴点K的坐标为(,0);
(2)设点Q(m,0),过点E作EG⊥x轴于点G,如图1,
由﹣ x1+x+4=0,得x1=﹣1,x1=4,
∴点B的坐标为(﹣1,0),AB=6,BQ=m+1,
又∵QE∥AC,∴△BQE≌△BAC,
∴ ,即 ,解得EG= ;
∴S△CQE=S△CBQ﹣S△EBQ=(CO-EG)·BQ=(m+1)(4-)
= =-(m-1)1+2 .
又∵﹣1≤m≤4,
∴当m=1时,S△CQE有最大值2,此时Q(1,0);
(4)存在.在△ODF中,
(ⅰ)若DO=DF,∵A(4,0),D(1,0),
∴AD=OD=DF=1.
又在Rt△AOC中,OA=OC=4,
∴∠OAC=45°.
∴∠DFA=∠OAC=45°.
∴∠ADF=90°.
此时,点F的坐标为(1,1).
由﹣ x1+x+4=1,得x1=1+ ,x1=1﹣.
此时,点P的坐标为:P1(1+,1)或P1(1﹣,1);
(ⅱ)若FO=FD,过点F作FM⊥x轴于点M.
由等腰三角形的性质得:OM=OD=1,
∴AM=2.
∴在等腰直角△AMF中,MF=AM=2.
∴F(1,2).
由﹣ x1+x+4=2,得x1=1+,x1=1﹣.
此时,点P的坐标为:P2(1+,2)或P4(1﹣,2);
(ⅲ)若OD=OF,
∵OA=OC=4,且∠AOC=90°.
∴AC=4.
∴点O到AC的距离为1.
而OF=OD=1<1,与OF≥1矛盾.
∴在AC上不存在点使得OF=OD=1.
此时,不存在这样的直线l,使得△ODF是等腰三角形.
综上所述,存在这样的直线l,使得△ODF是等腰三角形.所求点P的坐标为:(1+,1)或(1﹣,1)或(1+,2)或(1﹣,2).
点睛:本题是二次函数综合题,主要考查待定系数法、三角形全等的判定与性质、等腰三角形的性质等,能正确地利用数形结合思想、分类讨论思想等进行解题是关键.
20、(1)树状图见解析,则点M所有可能的坐标为:(1,﹣1),(1,﹣2),(1,1),(1,﹣1),(1,﹣2),(1,1),(2,﹣1),(2,﹣2),(2,1);(2).
【解析】
试题分析:(1)画出树状图,可求得所有等可能的结果;(2)由点M(x,y)在函数y=﹣的图象上的有:(1,﹣2),(2,﹣1),直接利用概率公式求解即可求得答案.
试题解析:(1)树状图如下图:
则点M所有可能的坐标为:(1,﹣1),(1,﹣2),(1,1),(1,﹣1),(1,﹣2),(1,1),(2,﹣1),(2,﹣2),(2,1);(2)∵点M(x,y)在函数y=﹣的图象上的有:(1,﹣2),(2,﹣1),
∴点M(x,y)在函数y=﹣的图象上的概率为:.
考点:列表法或树状图法求概率.
21、80;(1)甲;(2);(3)乙学校竞赛成绩较好,理由见解析
【解析】
首先根据乙校的成绩结合众数的定义即可得出a的值;
(1)根据两个学校成绩的中位数进一步判断即可;
(2)根据概率的定义,结合乙校优秀成绩的概率进一步求解即可;
(3)根据题意,从平均数以及中位数两方面加以比较分析即可.
【详解】
由乙校成绩可知,其中80出现的次数最多,故80为该组数据的众数,∴a=80,
故答案为:80;
(1)由表格可知,甲校成绩的中位数为60,乙校成绩的中位数为75,
∵小明这次竞赛得了分,在他们学校排名属中游略偏上,
∴小明为甲校学生,
故答案为:甲;
(2)乙校随便抽取一名学生的成绩,该学生成绩为优秀的概率为:,
故答案为:;
(3)乙校竞赛成绩较好,理由如下:
因为乙校的平均分高于甲校的平均分说明平均水平高,乙校的中位数75高于甲校的中位数65,说明乙校分数不低于70分的学生比甲校多,综上所述,乙校竞赛成绩较好.
【点睛】
本题主要考查了众数、中位数、平均数的定义与简单概率的计算的综合运用,熟练掌握相关概念是解题关键.
22、-
【解析】
先化简,再解不等式组确定x的值,最后代入求值即可.
【详解】
(﹣)÷,
=÷
=
解不等式组,
可得:﹣2<x≤2,
∴x=﹣1,0,1,2,
∵x=﹣1,0,1时,分式无意义,
∴x=2,
∴原式==﹣.
23、(1)详见解析;(2)平行四边形.
【解析】
(1)由“三线合一”定理即可得到结论;
(2)由AD∥BC,BD平分∠ABC,得到∠ADB=∠ABD,由等腰三角形的判定得到AD=AB,根据垂直平分线的性质有AB=BE,于是AD=BE,进而得到AD=EC,根据平行四边形的判定即可得到结论.
【详解】
证明:(1)∵BD平分∠ABC,AE⊥BD,
∴AO=EO;
(2)平行四边形,
证明:∵AD∥BC,
∴∠ADB=∠ABD,
∴AD=AB,
∵OA=OE,OB⊥AE,
∴AB=BE,
∴AD=BE,
∵BE=CE,
∴AD=EC,
∴四边形AECD是平行四边形.
【点睛】
考查等腰直角三角形的性质以及平行四边形的判定,掌握平行四边形的判定方法是解题的关键.
24、(1)y=﹣x2+2x+3;(2)y=﹣x﹣1;(3)P()或P(﹣4.5,0);当t=时,S△MDN的最大值为.
【解析】
(1)把A(-1,0),C(0,3)代入y=ax2+2x+c即可得到结果;
(2)在y=-x2+2x+3中,令y=0,则-x2+2x+3=0,得到B(3,0),由已知条件得直线BC的解析式为y=-x+3,由于AD∥BC,设直线AD的解析式为y=-x+b,即可得到结论;
(3)①由BC∥AD,得到∠DAB=∠CBA,全等只要当或时,△PBC∽△ABD,解方程组得D(4,−5),求得
设P的坐标为(x,0),代入比例式解得或x=−4.5,即可得到或P(−4.5,0);
②过点B作BF⊥AD于F,过点N作NE⊥AD于E,在Rt△AFB中,∠BAF=45°,于是得到sin∠BAF 求得求得 由于于是得到即可得到结果.
【详解】
(1)由题意知:
解得
∴二次函数的表达式为
(2)在 中,令y=0,则
解得:
∴B(3,0),
由已知条件得直线BC的解析式为y=−x+3,
∵AD∥BC,
∴设直线AD的解析式为y=−x+b,
∴0=1+b,
∴b=−1,
∴直线AD的解析式为y=−x−1;
(3)①∵BC∥AD,
∴∠DAB=∠CBA,
∴只要当:或时,△PBC∽△ABD,
解得D(4,−5),
∴
设P的坐标为(x,0),
即或
解得或x=−4.5,
∴或P(−4.5,0),
②过点B作BF⊥AD于F,过点N作NE⊥AD于E,
在Rt△AFB中,
∴sin∠BAF
∴
∴
∵
又∵
∴
∴当时,的最大值为
【点睛】
属于二次函数的综合题,考查待定系数法求二次函数解析式,锐角三角形函数,相似三角形的判定与性质,二次函数的最值等,综合性比较强,难度较大.
相关试卷
这是一份2022年安徽省合肥市名校联考中考数学押题卷含解析,共24页。试卷主要包含了考生必须保证答题卡的整洁,如图,点P等内容,欢迎下载使用。
这是一份2022年安徽省合肥二中学内地西藏班(校)中考数学押题试卷含解析,共22页。
这是一份2022年安徽省合肥市蜀山区中考数学仿真试卷含解析,共23页。试卷主要包含了定义运算“※”为,如图,点A所表示的数的绝对值是等内容,欢迎下载使用。