安徽省怀远县2022年十校联考最后数学试题含解析
展开2021-2022中考数学模拟试卷
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(共10小题,每小题3分,共30分)
1.这个数是( )
A.整数 B.分数 C.有理数 D.无理数
2.已知圆锥的侧面积为10πcm2,侧面展开图的圆心角为36°,则该圆锥的母线长为( )
A.100cm B.cm C.10cm D.cm
3.在中国集邮总公司设计的2017年纪特邮票首日纪念截图案中,可以看作中心对称图形的是( )
A.千里江山图
B.京津冀协同发展
C.内蒙古自治区成立七十周年
D.河北雄安新区建立纪念
4.甲、乙两人沿相同的路线由A地到B地匀速前进,A、B两地间的路程为40km.他们前进的路程为s(km),甲出发后的时间为t(h),甲、乙前进的路程与时间的函数图象如图所示.根据图象信息,下列说法不正确的是( )
A.甲的速度是10km/h B.乙的速度是20km/h
C.乙出发h后与甲相遇 D.甲比乙晚到B地2h
5.如图,过点A(4,5)分别作x轴、y轴的平行线,交直线y=﹣x+6于B、C两点,若函数y=(x>0)的图象△ABC的边有公共点,则k的取值范围是( )
A.5≤k≤20 B.8≤k≤20 C.5≤k≤8 D.9≤k≤20
6.如图,在四边形ABCD中,如果∠ADC=∠BAC,那么下列条件中不能判定△ADC和△BAC相似的是( )
A.∠DAC=∠ABC B.AC是∠BCD的平分线 C.AC2=BC•CD D.
7.如图,在矩形 ABCD 中,AB=2a,AD=a,矩形边上一动点 P 沿 A→B→C→D 的路径移动.设点 P 经过的路径长为 x,PD2=y,则下列能大致反映 y 与 x 的函数关系的图象是( )
A. B.
C. D.
8.如图,点P(x,y)(x>0)是反比例函数y=(k>0)的图象上的一个动点,以点P为圆心,OP为半径的圆与x轴的正半轴交于点A,若△OPA的面积为S,则当x增大时,S的变化情况是( )
A.S的值增大 B.S的值减小
C.S的值先增大,后减小 D.S的值不变
9.一个多边形的每一个外角都等于72°,这个多边形是( )
A.正三角形 B.正方形 C.正五边形 D.正六边形
10.将抛物线y=x2﹣x+1先向左平移2个单位长度,再向上平移3个单位长度,则所得抛物线的表达式为( )
A.y=x2+3x+6 B.y=x2+3x C.y=x2﹣5x+10 D.y=x2﹣5x+4
二、填空题(本大题共6个小题,每小题3分,共18分)
11.已知关于x的一元二次方程kx2+3x﹣4k+6=0有两个相等的实数根,则该实数根是_____.
12.如图,已知P是正方形ABCD对角线BD上一点,且BP=BC,则∠ACP度数是_____度.
13.2018年5月18日,益阳新建西流湾大桥竣工通车,如图,从沅江A地到资阳B地有两条路线可走,从资阳B地到益阳火车站可经会龙山大桥或西流湾大桥或龙洲大桥到达,现让你随机选择一条从沅江A地出发经过资阳B地到达益阳火车站的行走路线,那么恰好选到经过西流湾大桥的路线的概率是_____.
14.有一组数据:2,3,5,5,x,它们的平均数是10,则这组数据的众数是 .
15.如图,每一幅图中有若干个大小不同的菱形,第1幅图中有1个,第2幅图中有3个,第3幅图中有5个,则第4幅图中有_____个,第n幅图中共有_____个.
16.已知梯形ABCD,AD∥BC,BC=2AD,如果,,那么=_____(用、 表示).
三、解答题(共8题,共72分)
17.(8分)某经销商经销的冰箱二月份的售价比一月份每台降价500元,已知卖出相同数量的冰箱一月份的销售额为9万元,二月份的销售额只有8万元.
(1)二月份冰箱每台售价为多少元?
(2)为了提高利润,该经销商计划三月份再购进洗衣机进行销售,已知洗衣机每台进价为4000元,冰箱每台进价为3500元,预计用不多于7.6万元的资金购进这两种家电共20台,设冰箱为y台(y≤12),请问有几种进货方案?
(3)三月份为了促销,该经销商决定在二月份售价的基础上,每售出一台冰箱再返还顾客现金a元,而洗衣机按每台4400元销售,这种情况下,若(2)中各方案获得的利润相同,则a应取何值?
18.(8分)观察下列等式:
第1个等式:a1=-1,
第2个等式:a2=,
第3个等式:a3==2-,
第4个等式:a4=-2,
…
按上述规律,回答以下问题:请写出第n个等式:an=__________.a1+a2+a3+…+an=_________.
19.(8分)如图,以AD为直径的⊙O交AB于C点,BD的延长线交⊙O于E点,连CE交AD于F点,若AC=BC.
(1)求证:;
(2)若,求tan∠CED的值.
20.(8分)已知关于x的一元二次方程3x2﹣6x+1﹣k=0有实数根,k为负整数.求k的值;如果这个方程有两个整数根,求出它的根.
21.(8分)如图1,在正方形ABCD中,E是边BC的中点,F是CD上一点,已知∠AEF=90°.
(1)求证:;
(2)平行四边形ABCD中,E是边BC上一点,F是边CD上一点,∠AFE=∠ADC,∠AEF=90°.
①如图2,若∠AFE=45°,求的值;
②如图3,若AB=BC,EC=3CF,直接写出cos∠AFE的值.
22.(10分)如图,AB是⊙O的直径,点C是弧AB的中点,点D是⊙O外一点,AD=AB,AD交⊙O于F,BD交⊙O于E,连接CE交AB于G.
(1)证明:∠C=∠D;
(2)若∠BEF=140°,求∠C的度数;
(3)若EF=2,tanB=3,求CE•CG的值.
23.(12分)某校对学生就“食品安全知识”进行了抽样调查(每人选填一类),绘制了如图所示的两幅统计图(不完整)。请根据图中信息,解答下列问题:
(1)根据图中数据,求出扇形统计图中的值,并补全条形统计图。
(2)该校共有学生900人,估计该校学生对“食品安全知识”非常了解的人数.
24.如图,AB为⊙O的直径,C为⊙O上一点,AD和过点C的切线互相垂直,垂足为D,AB,DC的延长线交于点E.
(1)求证:AC平分∠DAB;
(2)若BE=3,CE=3,求图中阴影部分的面积.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、D
【解析】
由于圆周率π是一个无限不循环的小数,由此即可求解.
【详解】
解:实数π是一个无限不循环的小数.所以是无理数.
故选D.
【点睛】
本题主要考查无理数的概念,π是常见的一种无理数的形式,比较简单.
2、C
【解析】
圆锥的侧面展开图是扇形,利用扇形的面积公式可求得圆锥的母线长.
【详解】
设母线长为R,则
圆锥的侧面积==10π,
∴R=10cm,
故选C.
【点睛】
本题考查了圆锥的计算,熟练掌握扇形面积是解题的关键.
3、C
【解析】
根据中心对称图形的概念求解.
【详解】
解:A选项是轴对称图形,不是中心对称图形,故本选项错误;
B选项不是中心对称图形,故本选项错误;
C选项为中心对称图形,故本选项正确;
D选项不是中心对称图形,故本选项错误.
故选C.
【点睛】
本题主要考查了中心对称图形的概念:关键是找到相关图形的对称中心,旋转180度后与原图重合.
4、B
【解析】
由图可知,甲用4小时走完全程40km,可得速度为10km/h;
乙比甲晚出发一小时,用1小时走完全程,可得速度为40km/h.
故选B
5、A
【解析】
若反比例函数与三角形交于A(4,5),则k=20;
若反比例函数与三角形交于C(4,2),则k=8;若反比例函数与三角形交于B(1,5),则k=5.故.
故选A.
6、C
【解析】
结合图形,逐项进行分析即可.
【详解】
在△ADC和△BAC中,∠ADC=∠BAC,
如果△ADC∽△BAC,需满足的条件有:①∠DAC=∠ABC或AC是∠BCD的平分线;
②,
故选C.
【点睛】
本题考查了相似三角形的条件,熟练掌握相似三角形的判定方法是解题的关键.
7、D
【解析】
解:(1)当0≤t≤2a时,∵,AP=x,∴;
(2)当2a<t≤3a时,CP=2a+a﹣x=3a﹣x,∵,∴=;
(3)当3a<t≤5a时,PD=2a+a+2a﹣x=5a﹣x,∵=y,∴=;
综上,可得,∴能大致反映y与x的函数关系的图象是选项D中的图象.故选D.
8、D
【解析】
作PB⊥OA于B,如图,根据垂径定理得到OB=AB,则S△POB=S△PAB,再根据反比例函数k的几何意义得到S△POB=|k|,所以S=2k,为定值.
【详解】
作PB⊥OA于B,如图,则OB=AB,∴S△POB=S△PAB.
∵S△POB=|k|,∴S=2k,∴S的值为定值.
故选D.
【点睛】
本题考查了反比例函数系数k的几何意义:在反比例函数y=图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.
9、C
【解析】
任何多边形的外角和是360°,用360°除以一个外角度数即可求得多边形的边数.
【详解】
360°÷72°=1,则多边形的边数是1.
故选C.
【点睛】
本题主要考查了多边形的外角和定理,已知外角求边数的这种方法是需要熟记的内容.
10、A
【解析】
先将抛物线解析式化为顶点式,左加右减的原则即可.
【详解】
,
当向左平移2个单位长度,再向上平移3个单位长度,得
.
故选A.
【点睛】
本题考查二次函数的平移;掌握平移的法则“左加右减”,二次函数的平移一定要将解析式化为顶点式进行;
二、填空题(本大题共6个小题,每小题3分,共18分)
11、﹣1
【解析】
根据二次项系数非零结合根的判别式△=0,即可得出关于k的一元一次不等式及一元二次方程,解之即可得出k值,将其代入原方程中解之即可得出原方程的解.
【详解】
解:∵关于x的一元二次方程kx1+3x-4k+6=0有两个相等的实数根,
∴,
解得:k=,
∴原方程为x1+4x+4=0,即(x+1)1=0,
解得:x=-1.
故答案为:-1.
【点睛】
本题考查根的判别式、一元二次方程的定义以及配方法解一元二次方程,牢记“当△=0时,方程有两个相等的实数根”是解题的关键.
12、22.5
【解析】
∵ABCD是正方形,
∴∠DBC=∠BCA=45°,
∵BP=BC,
∴∠BCP=∠BPC=(180°-45°)=67.5°,
∴∠ACP度数是67.5°-45°=22.5°
13、.
【解析】
由题意可知一共有6种可能,经过西流湾大桥的路线有2种可能,根据概率公式计算即可.
【详解】
解:由题意可知一共有6种可能,经过西流湾大桥的路线有2种可能,
所以恰好选到经过西流湾大桥的路线的概率=.
故答案为.
【点睛】
本题考查的是用列表法或画树状图法求概率.注意列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.
14、1
【解析】
根据平均数为10求出x的值,再由众数的定义可得出答案.
解:由题意得,(2+3+1+1+x)=10,
解得:x=31,
这组数据中1出现的次数最多,则这组数据的众数为1.
故答案为1.
15、7 2n﹣1
【解析】
根据题意分析可得:第1幅图中有1个,第2幅图中有2×2-1=3个,第3幅图中有2×3-1=5个,…,可以发现,每个图形都比前一个图形多2个,继而即可得出答案.
【详解】
解:根据题意分析可得:第1幅图中有1个.
第2幅图中有2×2-1=3个.
第3幅图中有2×3-1=5个.
第4幅图中有2×4-1=7个.
….
可以发现,每个图形都比前一个图形多2个.
故第n幅图中共有(2n-1)个.
故答案为7;2n-1.
点睛:考查规律型中的图形变化问题,难度适中,要求学生通过观察,分析、归纳并发现其中的规律.
16、
【解析】
根据向量的三角形法则表示出,再根据BC、AD的关系解答.
【详解】
如图,
∵,,
∴=-=-,
∵AD∥BC,BC=2AD,
∴==(-)=-.
故答案为-.
【点睛】
本题考查了平面向量,梯形,向量的问题,熟练掌握三角形法则和平行四边形法则是解题的关键.
三、解答题(共8题,共72分)
17、(1)二月份冰箱每台售价为4000元;(2)有五种购货方案;(3)a的值为1.
【解析】
(1)设二月份冰箱每台售价为x元,则一月份冰箱每台售价为(x+500)元,根据数量=总价÷单价结合卖出相同数量的冰箱一月份的销售额为9万元而二月份的销售额只有3万元,即可得出关于x的分式方程,解之经检验后即可得出结论;
(2)根据总价=单价×数量结合预计用不多于7.6万元的资金购进这两种家电共20台,即可得出关于y的一元一次不等式,解之即可得出y的取值范围,结合y≤2及y为正整数,即可得出各进货方案;
(3)设总获利为w,购进冰箱为m台,洗衣机为(20﹣m)台,根据总利润=单台利润×购进数量,即可得出w关于m的函数关系式,由w为定值即可求出a的值.
【详解】
(1)设二月份冰箱每台售价为x元,则一月份冰箱每台售价为(x+500)元,
根据题意,得: =,
解得:x=4000,
经检验,x=4000是原方程的根.
答:二月份冰箱每台售价为4000元.
(2)根据题意,得:3500y+4000(20﹣y)≤76000,
解得:y≥3,
∵y≤2且y为整数,
∴y=3,9,10,11,2.
∴洗衣机的台数为:2,11,10,9,3.
∴有五种购货方案.
(3)设总获利为w,购进冰箱为m台,洗衣机为(20﹣m)台,
根据题意,得:w=(4000﹣3500﹣a)m+(4400﹣4000)(20﹣m)=(1﹣a)m+3000,
∵(2)中的各方案利润相同,
∴1﹣a=0,
∴a=1.
答:a的值为1.
【点睛】
本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量间的关系,正确列出一元一次不等式;(3)利用总利润=单台利润×购进数量,找出w关于m的函数关系式.
18、(1)=; (2).
【解析】
(1)根据题意可知,,,,
,…由此得出第n个等式:an=;
(2)将每一个等式化简即可求得答案.
【详解】
解:(1)∵第1个等式:,
第2个等式:,
第3个等式:,
第4个等式:,
∴第n个等式:an=;
(2)a1+a2+a3+…+an
=(
=.
故答案为;.
【点睛】
此题考查数字的变化规律以及分母有理化,要求学生首先分析题意,找到规律,并进行推导得出答案.
19、(1)见解析;(2)tan∠CED=
【解析】
(1)欲证明,只要证明即可;
(2)由,可得,设FO=2a,OC=3a,则DF=a,DE=1.5a,AD=DB=6a,由,可得BD•BE=BC•BA,设AC=BC=x,则有,由此求出AC、CD即可解决问题.
【详解】
(1)证明:如下图,连接AE,
∵AD是直径,
∴,
∴DC⊥AB,
∵AC=CB,
∴DA=DB,
∴∠CDA=∠CDB,
∵,,
∴∠BDC=∠EAC,
∵∠AEC=∠ADC,
∴∠EAC=∠AEC,
∴;
(2)解:如下图,连接OC,
∵AO=OD,AC=CB,
∴OC∥BD,
∴,
∴,
设FO=2a,OC=3a,则DF=a,DE=1.5a,AD=DB=6a,
∵∠BAD=∠BEC,∠B=∠B,
∴,
∴BD•BE=BC•BA,设AC=BC=x,
则有,
∴,
∴,
∴,
∴.
【点睛】
本题属于圆的综合题,涉及到三角形的相似,解直角三角形等相关考点,熟练掌握三角形相似的判定及解直角三角形等相关内容是解决本题的关键.
20、(2)k=﹣2,﹣2.(2)方程的根为x2=x2=2.
【解析】
(2)根据方程有实数根,得到根的判别式的值大于等于0列出关于k的不等式,求出不等式的解集即可得到k的值;
(2)将k的值代入原方程,求出方程的根,经检验即可得到满足题意的k的值.
【详解】
解:(2)根据题意,得△=(﹣6)2﹣4×3(2﹣k)≥0,
解得 k≥﹣2.
∵k为负整数,
∴k=﹣2,﹣2.
(2)当k=﹣2时,不符合题意,舍去;
当k=﹣2时,符合题意,此时方程的根为x2=x2=2.
【点睛】
本题考查了根的判别式,一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:(2)△>0时,方程有两个不相等的实数根;(2)△=0时,方程有两个相等的实数根;(3)△<0时,方程没有实数根.也考查了一元二次方程的解法.
21、(1)见解析;(2)①;②cos∠AFE=
【解析】
(1)用特殊值法,设,则,证,可求出CF,DF的长,即可求出结论;
(2)①如图2,过F作交AD于点G,证和是等腰直角三角形,证,求出的值,即可写出的值;②如图3,作交AD于点T,作于H,证,设CF=2,则CE=6,可设AT=x,则TF=3x,,,分别用含x的代数式表示出∠AFE和∠D的余弦值,列出方程,求出x的值,即可求出结论.
【详解】
(1)设BE=EC=2,则AB=BC=4,
∵,
∴,
∵,
∴∠FEC=∠EAB,
又∴,
∴,
∴,
即,
∴CF=1,
则,
∴;
(2)①如图2,过F作交AD于点G,
∵,
∴和是等腰直角三角形,
∴,,
∴∠AGF=∠C,
又∵,
∴∠GAF=∠CFE,
∴,
∴,
又∵GF=DF,
∴;
②如图3,作交AD于点T,作于H,
则,
∴,
∴∠ATF=∠C,
又∵,且∠D=∠AFE,
∴∠TAF=∠CFE,
∴,
∴,
设CF=2,则CE=6,可设AT=x,则TF=3x,,
∴,且,
由,得,
解得x=5,
∴.
【点睛】
本题主要考查了三角形相似的判定及性质的综合应用,熟练掌握三角形相似的判定及性质是解决本题的关键.
22、(1)见解析;(2)70°;(3)1.
【解析】
(1)先根据等边对等角得出∠B=∠D,即可得出结论;
(2)先判断出∠DFE=∠B,进而得出∠D=∠DFE,即可求出∠D=70°,即可得出结论;
(3)先求出BE=EF=2,进而求AE=6,即可得出AB,进而求出AC,再判断出△ACG∽△ECA,即可得出结论.
【详解】
(1)∵AB=AD,
∴∠B=∠D,
∵∠B=∠C,
∴∠C=∠D;
(2)∵四边形ABEF是圆内接四边形,
∴∠DFE=∠B,
由(1)知,∠B=∠D,
∴∠D=∠DFE,
∵∠BEF=140°=∠D+∠DFE=2∠D,
∴∠D=70°,
由(1)知,∠C=∠D,
∴∠C=70°;
(3)如图,由(2)知,∠D=∠DFE,
∴EF=DE,
连接AE,OC,
∵AB是⊙O的直径,
∴∠AEB=90°,
∴BE=DE,
∴BE=EF=2,
在Rt△ABE中,tanB==3,
∴AE=3BE=6,根据勾股定理得,AB=,
∴OA=OC=AB=,
∵点C是 的中点,
∴ ,
∴∠AOC=90°,
∴AC=OA=2,
∵,
∴∠CAG=∠CEA,
∵∠ACG=∠ECA,
∴△ACG∽△ECA,
∴,
∴CE•CG=AC2=1.
【点睛】
本题是几何综合题,涉及了圆的性质,圆周角定理,勾股定理,锐角三角函数,相似三角形的判定和性质,圆内接四边形的性质,等腰三角形的性质等,综合性较强,有一定的难度,熟练掌握和灵活运用相关知识是解题的关键.本题中求出BE=2也是解题的关键.
23、(1),补全条形统计图见解析;(2)该校学生对“食品安全知识”非常了解的人数为135人。
【解析】
试题分析:
(1)由统计图中的信息可知,B组学生有32人,占总数的40%,由此可得被抽查学生总人数为:32÷40%=80(人),结合C组学生有28人可得:m%=28÷80×100%=35%,由此可得m=35;由80-32-28-8=12(人)可知A组由12人,由此即可补全条形统计图了;
(2)由(1)中计算可知,A组有12名学生,占总数的12÷80×100%=15%,结合全校总人数为900可得900×15%=135(人),即全校“非常了解”“食品安全知识”的有135人.
试题解析:
(1)由已知条件可得:被抽查学生总数为32÷40%=80(人),
∴m%=28÷80×100%=35%,
∴m=35,
A组人数为:80-32-28-8=12(人),
将图形统计图补充完整如下图所示:
(2)由题意可得:900×(12÷80×100%)=900×15%=135(人).
答:全校学生对“食品安全知识”非常了解的人数为135人.
24、(1)证明见解析;(2)
【解析】
(1)连接OC,如图,利用切线的性质得CO⊥CD,则AD∥CO,所以∠DAC=∠ACO,加上∠ACO=∠CAO,从而得到∠DAC=∠CAO;
(2)设⊙O半径为r,利用勾股定理得到r2+27=(r+3)2,解得r=3,再利用锐角三角函数的定义计算出∠COE=60°,然后根据扇形的面积公式,利用S阴影=S△COE﹣S扇形COB进行计算即可.
【详解】
解:(1)连接OC,如图,
∵CD与⊙O相切于点E,
∴CO⊥CD,
∵AD⊥CD,
∴AD∥CO,
∴∠DAC=∠ACO,
∵OA=OC,
∴∠ACO=∠CAO,
∴∠DAC=∠CAO,
即AC平分∠DAB;
(2)设⊙O半径为r,
在Rt△OEC中,∵OE2+EC2=OC2,
∴r2+27=(r+3)2,解得r=3,
∴OC=3,OE=6,
∴cos∠COE=,
∴∠COE=60°,
∴S阴影=S△COE﹣S扇形COB=•3•3﹣.
【点睛】
本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.简记作:见切点,连半径,见垂直.也考查了圆周角定理和扇形的面积公式.
安徽省阜阳市颍州区2022年十校联考最后数学试题含解析: 这是一份安徽省阜阳市颍州区2022年十校联考最后数学试题含解析,共24页。试卷主要包含了的一个有理化因式是,下列运算正确的是等内容,欢迎下载使用。
安徽省当涂县四校2021-2022学年十校联考最后数学试题含解析: 这是一份安徽省当涂县四校2021-2022学年十校联考最后数学试题含解析,共17页。试卷主要包含了考生要认真填写考场号和座位序号等内容,欢迎下载使用。
安徽省部分地区2022年十校联考最后数学试题含解析: 这是一份安徽省部分地区2022年十校联考最后数学试题含解析,共21页。试卷主要包含了已知抛物线y=ax2+bx+c等内容,欢迎下载使用。