开学活动
搜索
    上传资料 赚现金

    安徽省安庆宿松县联考2022年中考数学全真模拟试题含解析

    安徽省安庆宿松县联考2022年中考数学全真模拟试题含解析第1页
    安徽省安庆宿松县联考2022年中考数学全真模拟试题含解析第2页
    安徽省安庆宿松县联考2022年中考数学全真模拟试题含解析第3页
    还剩16页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    安徽省安庆宿松县联考2022年中考数学全真模拟试题含解析

    展开

    这是一份安徽省安庆宿松县联考2022年中考数学全真模拟试题含解析,共19页。试卷主要包含了若a与5互为倒数,则a=等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    考生须知:
    1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
    2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
    3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。

    一、选择题(共10小题,每小题3分,共30分)
    1.若是关于x的方程的一个根,则方程的另一个根是( )
    A.9 B.4 C.4 D.3
    2.如图,已知直线AD是⊙O的切线,点A为切点,OD交⊙O于点B,点C在⊙O上,且∠ODA=36°,则∠ACB的度数为(  )

    A.54° B.36° C.30° D.27°
    3.已知:如图,在扇形中,,半径,将扇形沿过点的直线折叠,点恰好落在弧上的点处,折痕交于点,则弧的长为( )

    A. B. C. D.
    4.从1、2、3、4、5、6这六个数中随机取出一个数,取出的数是3的倍数的概率是(  )
    A. B. C. D.
    5.在半径等于5 cm的圆内有长为cm的弦,则此弦所对的圆周角为
    A.60° B.120° C.60°或120° D.30°或120°
    6.菱形ABCD中,对角线AC、BD相交于点O,H为AD边中点,菱形ABCD的周长为28,则OH的长等于(  )
    A.3.5 B.4 C.7 D.14
    7.如图,已知AB∥DE,∠ABC=80°,∠CDE=140°,则∠C=(  )

    A.50° B.40° C.30° D.20°
    8.若a与5互为倒数,则a=( )
    A. B.5 C.-5 D.
    9.已知空气的单位体积质量是0.001239g/cm3,则用科学记数法表示该数为( )
    A.1.239×10﹣3g/cm3 B.1.239×10﹣2g/cm3
    C.0.1239×10﹣2g/cm3 D.12.39×10﹣4g/cm3
    10.如图,在4×4的正方形网格中,每个小正方形的边长都为1,△AOB的三个顶点都在格点上,现将△AOB绕点O逆时针旋转90°后得到对应的△COD,则点A经过的路径弧AC的长为(  )

    A. B.π C.2π D.3π
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.空气质量指数,简称AQI,如果AQI在0~50空气质量类别为优,在51~100空气质量类别为良,在101~150空气质量类别为轻度污染,按照某市最近一段时间的AQI画出的频数分布直方图如图所示.已知每天的AQI都是整数,那么空气质量类别为优和良的天数共占总天数的百分比为______%.

    12.分解因式:x2y﹣xy2=_____.
    13.已知x+y=,xy=,则x2y+xy2的值为____.
    14.某种商品因换季准备打折出售,如果按定价的七五折出售将赔25元,而按定价的九折出售将赚20元,则商品的定价是______元
    15.2018年贵州省公务员、人民警察、基层培养项目和选调生报名人数约40.2万人,40.2万人用科学记数法表示为_____人.
    16.已知(x+y)2=25,(x﹣y)2=9,则x2+y2=_____.
    三、解答题(共8题,共72分)
    17.(8分)如图,AB是⊙O的直径,AC是⊙O的切线,BC与⊙O相交于点D,点E在⊙O上,且DE=DA,AE与BC交于点F.
    (1)求证:FD=CD;
    (2)若AE=8,tan∠E=,求⊙O的半径.

    18.(8分)已知:如图,在△OAB中,OA=OB,⊙O经过AB的中点C,与OB交于点D,且与BO的延长线交于点E,连接EC,CD.
    (1)试判断AB与⊙O的位置关系,并加以证明;
    (2)若tanE=,⊙O的半径为3,求OA的长.

    19.(8分)为响应市政府“创建国家森林城市”的号召,某小区计划购进A、B两种树苗共17棵,已知A种树苗每棵80元,B种树苗每棵60元.若购进A、B两种树苗刚好用去1220元,问购进A、B两种树苗各多少棵?若购买B种树苗的数量少于A种树苗的数量,请你给出一种费用最省的方案,并求出该方案所需费用.
    20.(8分)已知:如图,在矩形纸片ABCD中,,,翻折矩形纸片,使点A落在对角线DB上的点F处,折痕为DE,打开矩形纸片,并连接EF.
    的长为多少;
    求AE的长;
    在BE上是否存在点P,使得的值最小?若存在,请你画出点P的位置,并求出这个最小值;若不存在,请说明理由.

    21.(8分)为落实“垃圾分类”,环卫部门要求垃圾要按A,B,C三类分别装袋,投放,其中A类指废电池,过期药品等有毒垃圾,B类指剩余食品等厨余垃圾,C类指塑料,废纸等可回收垃圾.甲投放了一袋垃圾,乙投放了两袋垃圾,这两袋垃圾不同类.直接写出甲投放的垃圾恰好是A类的概率;求乙投放的垃圾恰有一袋与甲投放的垃圾是同类的概率.
    22.(10分)如图,已知A,B两点在数轴上,点A表示的数为-10,OB=3OA,点M以每秒3个单位长度的速度从点A向右运动.点N以每秒2个单位长度的速度从点O向右运动(点M、点N同时出发)数轴上点B对应的数是______.经过几秒,点M、点N分别到原点O的距离相等?

    23.(12分)在Rt△ABC中,∠BAC=,D是BC的中点,E是AD的中点.过点A作AF∥BC交BE的延长线于点F.
    求证:△AEF≌△DEB;证明四边形ADCF是菱形;若AC=4,AB=5,求菱形ADCFD 的面积.
    24.如图,一次函数y=kx+b的图象与反比例函数y=(x>0)的图象交于点P(n,2),与x轴交于点A(-4,0),与y轴交于点C,PB⊥x轴于点B,点A与点B关于y轴对称.
    (1)求一次函数,反比例函数的表达式;
    (2)求证:点C为线段AP的中点;
    (3)反比例函数图象上是否存在点D,使四边形BCPD为菱形?如果存在,说明理由并求出点D的坐标;如果不存在,说明理由.




    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、D
    【解析】
    解:设方程的另一个根为a,由一元二次方程根与系数的故选可得,
    解得a=,
    故选D.
    2、D
    【解析】解:∵AD为圆O的切线,∴AD⊥OA,即∠OAD=90°,∵∠ODA=36°,∴∠AOD=54°,∵∠AOD与∠ACB都对,∴∠ACB=∠AOD=27°.故选D.
    3、D
    【解析】
    如图,连接OD.根据折叠的性质、圆的性质推知△ODB是等边三角形,则易求∠AOD=110°-∠DOB=50°;然后由弧长公式弧长的公式 来求 的长
    【详解】
    解:如图,连接OD.
    解:如图,连接OD.

    根据折叠的性质知,OB=DB.
    又∵OD=OB,
    ∴OD=OB=DB,即△ODB是等边三角形,
    ∴∠DOB=60°.
    ∵∠AOB=110°,
    ∴∠AOD=∠AOB-∠DOB=50°,
    ∴的长为 =5π.
    故选D.
    【点睛】
    本题考查了弧长的计算,翻折变换(折叠问题).折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.所以由折叠的性质推知△ODB是等边三角形是解答此题的关键之处.
    4、B
    【解析】
    考点:概率公式.
    专题:计算题.
    分析:根据概率的求法,找准两点:
    ①全部情况的总数;
    ②符合条件的情况数目;二者的比值就是其发生的概率.解答:解:从1、2、3、4、5、6这六个数中随机取出一个数,共有6种情况,取出的数是3的倍数的可能有3和6两种,
    故概率为2/ 6 ="1/" 3 .
    故选B.
    点评:此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)="m" /n .
    5、C
    【解析】
    根据题意画出相应的图形,由OD⊥AB,利用垂径定理得到D为AB的中点,由AB的长求出AD与BD的长,且得出OD为角平分线,在Rt△AOD中,利用锐角三角函数定义及特殊角的三角函数值求出∠AOD的度数,进而确定出∠AOB的度数,利用同弧所对的圆心角等于所对圆周角的2倍,即可求出弦AB所对圆周角的度数.
    【详解】
    如图所示,

    ∵OD⊥AB,
    ∴D为AB的中点,即AD=BD=,
    在Rt△AOD中,OA=5,AD=,
    ∴sin∠AOD=,
    又∵∠AOD为锐角,
    ∴∠AOD=60°,
    ∴∠AOB=120°,
    ∴∠ACB=∠AOB=60°,
    又∵圆内接四边形AEBC对角互补,
    ∴∠AEB=120°,
    则此弦所对的圆周角为60°或120°.
    故选C.
    【点睛】
    此题考查了垂径定理,圆周角定理,特殊角的三角函数值,以及锐角三角函数定义,熟练掌握垂径定理是解本题的关键.
    6、A
    【解析】
    根据菱形的四条边都相等求出AB,菱形的对角线互相平分可得OB=OD,然后判断出OH是△ABD的中位线,再根据三角形的中位线平行于第三边并且等于第三边的一半可得OHAB.
    【详解】
    ∵菱形ABCD的周长为28,∴AB=28÷4=7,OB=OD.
    ∵H为AD边中点,∴OH是△ABD的中位线,∴OHAB7=3.1.

    故选A.
    【点睛】
    本题考查了菱形的对角线互相平分的性质,三角形的中位线平行于第三边并且等于第三边的一半,熟记性质与定理是解题的关键.
    7、B
    【解析】
    试题解析:延长ED交BC于F,

    ∵AB∥DE,


    在△CDF中,

    故选B.
    8、A
    【解析】
    分析:当两数的积为1时,则这两个数互为倒数,根据定义即可得出答案.
    详解:根据题意可得:5a=1,解得:a=, 故选A.
    点睛:本题主要考查的是倒数的定义,属于基础题型.理解倒数的定义是解题的关键.
    9、A
    【解析】
    试题分析:0.001219=1.219×10﹣1.故选A.
    考点:科学记数法—表示较小的数.
    10、A
    【解析】
    根据旋转的性质和弧长公式解答即可.
    【详解】
    解:∵将△AOB绕点O逆时针旋转90°后得到对应的△COD,
    ∴∠AOC=90°,
    ∵OC=3,
    ∴点A经过的路径弧AC的长== ,
    故选:A.
    【点睛】
    此题考查弧长计算,关键是根据旋转的性质和弧长公式解答.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、80
    【解析】
    【分析】先求出AQI在0~50的频数,再根据%,求出百分比.
    【详解】由图可知AQI在0~50的频数为10,
    所以,空气质量类别为优和良的天数共占总天数的百分比为:%=80%..
    故答案为80
    【点睛】本题考核知识点:数据的分析.解题关键点:从统计图获取信息,熟记百分比计算方法.
    12、xy(x﹣y)
    【解析】
    原式=xy(x﹣y).
    故答案为xy(x﹣y).
    13、3
    【解析】
    分析:因式分解,把已知整体代入求解.
    详解:x2y+xy2=xy(x+y)=3.
    点睛:因式分解的方法:(1)提取公因式法.ma+mb+mc=m(a+b+c).
    (2)公式法:完全平方公式,平方差公式.
    (3)十字相乘法.
    因式分解的时候,要注意整体换元法的灵活应用,训练将一个式子看做一个整体,利用上述方法因式分解的能力.
    14、300
    【解析】
    设成本为x元,标价为y元,根据已知条件可列二元一次方程组即可解出定价.
    【详解】
    设成本为x元,标价为y元,依题意得,解得
    故定价为300元.
    【点睛】
    此题主要考查二元一次方程组的应用,解题的关键是根据题意列出方程再求解.
    15、4.02×1.
    【解析】
    科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
    【详解】
    解:40.2万=4.02×1,
    故答案为:4.02×1.
    【点睛】
    此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
    16、17
    【解析】
    先利用完全平方公式展开,然后再求和.
    【详解】
    根据(x+y)2=25,x2+y2+2xy=25;(x﹣y)2=9, x2+y2-2xy=9,所以x2+y2=17.
    【点睛】
    (1)完全平方公式:.
    (2)平方差公式:(a+b)(a-b)=.
    (3)常用等价变形:
    ,
    ,
    .

    三、解答题(共8题,共72分)
    17、(1)证明见解析;(2);
    【解析】
    (1)先利用切线的性质得出∠CAD+∠BAD=90°,再利用直径所对的圆周角是直角得出∠B+∠BAD=90°,从而可证明∠B=∠EAD,进而得出∠EAD=∠CAD,进而判断出△ADF≌△ADC,即可得出结论;(2)过点D作DG⊥AE,垂足为G.依据等腰三角形的性质可得到EG=AG=1,然后在Rt△GEG中,依据锐角三角函数的定义可得到DG的长,然后依据勾股定理可得到AD=ED=2,然后在Rt△ABD中,依据锐角三角函数的定义可求得AB的长,从而可求得⊙O的半径的长.
    【详解】
    (1)∵AC 是⊙O 的切线,
    ∴BA⊥AC,
    ∴∠CAD+∠BAD=90°,
    ∵AB 是⊙O 的直径,
    ∴∠ADB=90°,
    ∴∠B+∠BAD=90°,
    ∴∠CAD=∠B,
    ∵DA=DE,
    ∴∠EAD=∠E,
    又∵∠B=∠E,
    ∴∠B=∠EAD,
    ∴∠EAD=∠CAD,
    在△ADF和△ADC中,∠ADF=∠ADC=90°,AD=AD,∠FAD=∠CAD,
    ∴△ADF≌△ADC,
    ∴FD=CD.
    (2)如下图所示:过点D作DG⊥AE,垂足为G.

    ∵DE=AE,DG⊥AE,
    ∴EG=AG=AE=1.
    ∵tan∠E=,
    ∴=,即=,解得DG=1.
    ∴ED==2.
    ∵∠B=∠E,tan∠E=,
    ∴sin∠B=,即,解得AB=.
    ∴⊙O的半径为.
    【点睛】
    本题考查了切线的性质,圆周角定理,圆的性质,全等三角形的判定和性质,利用等式的性质 和同角的余角相等判断角相等是解本题的关键.
    18、(1)AB与⊙O的位置关系是相切,证明见解析;(2)OA=1.
    【解析】
    (1)先判断AB与⊙O的位置关系,然后根据等腰三角形的性质即可解答本题;
    (2)根据题三角形的相似可以求得BD的长,从而可以得到OA的长.
    【详解】
    解:(1)AB与⊙O的位置关系是相切,
    证明:如图,连接OC.
    ∵OA=OB,C为AB的中点,
    ∴OC⊥AB.
    ∴AB是⊙O的切线;
    (2)∵ED是直径,
    ∴∠ECD=90°.
    ∴∠E+∠ODC=90°.
    又∵∠BCD+∠OCD=90°,∠OCD=∠ODC,
    ∴∠BCD=∠E.
    又∵∠CBD=∠EBC,
    ∴△BCD∽△BEC.
    ∴.
    ∴BC2=BD•BE.
    ∵,
    ∴.
    ∴.
    设BD=x,则BC=2x.
    又BC2=BD•BE,
    ∴(2x)2=x(x+6).
    解得x1=0,x2=2.
    ∵BD=x>0,
    ∴BD=2.
    ∴OA=OB=BD+OD=2+3=1.

    【点睛】
    本题考查直线和圆的位置关系、等腰三角形的性质、三角形的相似,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.
    19、(1)购进A种树苗1棵,B种树苗2棵(2)购进A种树苗9棵,B种树苗8棵,这时所需费用为1200元
    【解析】
    (1)设购进A种树苗x棵,则购进B种树苗(12﹣x)棵,利用购进A、B两种树苗刚好用去1220元,结合单价,得出等式方程求出即可;
    (2)结合(1)的解和购买B种树苗的数量少于A种树苗的数量,可找出方案.
    【详解】
    解:(1)设购进A种树苗x棵,则购进B种树苗(12﹣x)棵,根据题意得:
    80x+60(12﹣x )=1220,解得:x=1.∴12﹣x=2.
    答:购进A种树苗1棵,B种树苗2棵.
    (2)设购进A种树苗x棵,则购进B种树苗(12﹣x)棵,根据题意得:
    12﹣x<x,解得:x>8.3.
    ∵购进A、B两种树苗所需费用为80x+60(12﹣x)=20x+120,是x的增函数,
    ∴费用最省需x取最小整数9,此时12﹣x=8,所需费用为20×9+120=1200(元).
    答:费用最省方案为:购进A种树苗9棵,B种树苗8棵,这时所需费用为1200元.
    20、(1);(2)的长为;(1)存在,画出点P的位置如图1见解析,的最小值为 .
    【解析】
    (1)根据勾股定理解答即可;
    (2)设AE=x,根据全等三角形的性质和勾股定理解答即可;
    (1)延长CB到点G,使BG=BC,连接FG,交BE于点P,连接PC,利用相似三角形的判定和性质解答即可.
    【详解】
    (1)∵矩形ABCD,∴∠DAB=90°,AD=BC=1.在Rt△ADB中,DB.
    故答案为5;

    (2)设AE=x.
    ∵AB=4,∴BE=4﹣x,在矩形ABCD中,根据折叠的性质知:
    Rt△FDE≌Rt△ADE,∴FE=AE=x,FD=AD=BC=1,∴BF=BD﹣FD=5﹣1=2.在Rt△BEF中,根据勾股定理,得FE2+BF2=BE2,即x2+4=(4﹣x)2,解得:x,∴AE的长为;
    (1)存在,如图1,延长CB到点G,使BG=BC,连接FG,交BE于点P,连接PC,则点P即为所求,此时有:PC=PG,∴PF+PC=GF.
    过点F作FH⊥BC,交BC于点H,则有FH∥DC,∴△BFH∽△BDC,∴,即,∴,∴GH=BG+BH.在Rt△GFH中,根据勾股定理,得:GF,即PF+PC的最小值为.
    【点睛】
    本题考查了四边形的综合题,涉及了折叠的性质、勾股定理的应用、相似三角形的判定和性质等知识,知识点较多,难度较大,解答本题的关键是掌握设未知数列方程的思想.
    21、(1)(2).
    【解析】
    (1)根据总共三种,A只有一种可直接求概率;
    (2)列出其树状图,然后求出能出现的所有可能,及符合条件的可能,根据概率公式求解即可.
    【详解】
    解: (1)甲投放的垃圾恰好是A类的概率是.
    (2)列出树状图如图所示:

    由图可知,共有18种等可能结果,其中乙投放的垃圾恰有一袋与甲投放的垃圾是同类的结果有12种.
    所以, (乙投放的垃圾恰有一袋与甲投放的垃圾是同类).
    即,乙投放的垃圾恰有一袋与甲投放的垃圾是同类的概率是.
    22、(1)1;(2)经过2秒或2秒,点M、点N分别到原点O的距离相等
    【解析】
    试题分析:(1)根据OB=3OA,结合点B的位置即可得出点B对应的数;
    (2)设经过x秒,点M、点N分别到原点O的距离相等,找出点M、N对应的数,再分点M、点N在点O两侧和点M、点N重合两种情况考虑,根据M、N的关系列出关于x的一元一次方程,解之即可得出结论.
    试题解析:(1)∵OB=3OA=1,
    ∴B对应的数是1.
    (2)设经过x秒,点M、点N分别到原点O的距离相等,
    此时点M对应的数为3x-2,点N对应的数为2x.
    ①点M、点N在点O两侧,则
    2-3x=2x,
    解得x=2;
    ②点M、点N重合,则,
    3x-2=2x,
    解得x=2.
    所以经过2秒或2秒,点M、点N分别到原点O的距离相等.
    23、(1)证明详见解析;(2)证明详见解析;(3)1.
    【解析】
    (1)利用平行线的性质及中点的定义,可利用AAS证得结论;
    (2)由(1)可得AF=BD,结合条件可求得AF=DC,则可证明四边形ADCF为平行四边形,再利用直角三角形的性质可证得AD=CD,可证得四边形ADCF为菱形;
    (3)连接DF,可证得四边形ABDF为平行四边形,则可求得DF的长,利用菱形的面积公式可求得答案.
    【详解】
    (1)证明:∵AF∥BC,
    ∴∠AFE=∠DBE,
    ∵E是AD的中点,
    ∴AE=DE,
    在△AFE和△DBE中,

    ∴△AFE≌△DBE(AAS);
    (2)证明:由(1)知,△AFE≌△DBE,则AF=DB.
    ∵AD为BC边上的中线
    ∴DB=DC,
    ∴AF=CD.
    ∵AF∥BC,
    ∴四边形ADCF是平行四边形,
    ∵∠BAC=90°,D是BC的中点,E是AD的中点,
    ∴AD=DC=BC,
    ∴四边形ADCF是菱形;
    (3)连接DF,

    ∵AF∥BD,AF=BD,
    ∴四边形ABDF是平行四边形,
    ∴DF=AB=5,
    ∵四边形ADCF是菱形,
    ∴S菱形ADCF=AC▪DF=×4×5=1.
    【点睛】
    本题主要考查菱形的性质及判定,利用全等三角形的性质证得AF=CD是解题的关键,注意菱形面积公式的应用.
    24、(1)y=x+1. (2)点C为线段AP的中点. (3)存在点D,使四边形BCPD为菱形,点D(8,1)即为所求.
    【解析】
    试题分析:(1)由点A与点B关于y轴对称,可得AO=BO,再由A的坐标求得B点的坐标,从而求得点P的坐标,将P坐标代入反比例解析式求出m的值,即可确定出反比例解析式,将A与P坐标代入一次函数解析式求出k与b的值,确定出一次函数解析式;(2)由AO=BO,PB∥CO,即可证得结论 ;(3)假设存在这样的D点,使四边形BCPD为菱形,过点C作CD平行于x轴,交PB于点E,交反比例函数y= 的图象于点D,分别连结PD、BD,如图所示,即可得点D(8,1), BP⊥CD,易证PB与CD互相垂直平分,即可得四边形BCPD为菱形,从而得点D的坐标.
    试题解析:
    (1)∵点A与点B关于y轴对称,
    ∴AO=BO,
    ∵A(-4,0),
    ∴B(4,0),
    ∴P(4,2),
    把P(4,2)代入y=得m=8,
    ∴反比例函数的解析式:y=
    把A(-4,0),P(4,2)代入y=kx+b
    得:,解得:,
    所以一次函数的解析式:y=x+1.
    (2)∵点A与点B关于y轴对称,
    ∴OA=OB
    ∵PB丄x轴于点B,
    ∴∠PBA=90°,
    ∵∠COA=90°,
    ∴PB∥CO,
    ∴点C为线段AP的中点.
    (3)存在点D,使四边形BCPD为菱形
    ∵点C为线段AP的中点,
    ∴BC=,
    ∴BC和PC是菱形的两条边
    由y=x+1,可得点C(0,1),
    过点C作CD平行于x轴,交PB于点E,交反比例函数y=的图象于点D,
    分别连结PD、BD,

    ∴点D(8,1), BP⊥CD
    ∴PE=BE=1,
    ∴CE=DE=4,
    ∴PB与CD互相垂直平分,
    ∴四边形BCPD为菱形.
    ∴点D(8,1)即为所求.

    相关试卷

    2023-2024学年安徽省安庆宿松县联考数学九上期末教学质量检测模拟试题含答案:

    这是一份2023-2024学年安徽省安庆宿松县联考数学九上期末教学质量检测模拟试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,二次函数与坐标轴的交点个数是等内容,欢迎下载使用。

    2023年安徽省安庆市名校联考中考数学模拟试卷(含解析):

    这是一份2023年安徽省安庆市名校联考中考数学模拟试卷(含解析),共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    安徽省安庆市区二十三校2022年中考数学全真模拟试题含解析:

    这是一份安徽省安庆市区二十三校2022年中考数学全真模拟试题含解析,共25页。试卷主要包含了考生要认真填写考场号和座位序号等内容,欢迎下载使用。

    英语朗读宝
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map