终身会员
搜索
    上传资料 赚现金
    安徽省亳州市涡阳县2022年中考试题猜想数学试卷含解析
    立即下载
    加入资料篮
    安徽省亳州市涡阳县2022年中考试题猜想数学试卷含解析01
    安徽省亳州市涡阳县2022年中考试题猜想数学试卷含解析02
    安徽省亳州市涡阳县2022年中考试题猜想数学试卷含解析03
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    安徽省亳州市涡阳县2022年中考试题猜想数学试卷含解析

    展开
    这是一份安徽省亳州市涡阳县2022年中考试题猜想数学试卷含解析,共21页。试卷主要包含了下列计算正确的是等内容,欢迎下载使用。

    1.考试结束后,请将本试卷和答题卡一并交回.
    2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
    3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
    4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
    5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
    一、选择题(共10小题,每小题3分,共30分)
    1.2017年,全国参加汉语考试的人数约为6500000,将6500000用科学记数法表示为( )
    A.6.5×105 B.6.5×106 C.6.5×107 D.65×105
    2.不等式组的解集在数轴上可表示为( )
    A.B.C.D.
    3.长城、故宫等是我国第一批成功入选世界遗产的文化古迹,长城总长约6 700 000米,将6 700 000用科学记数法表示应为( )
    A.6.7×106 B.6.7×10﹣6 C.6.7×105 D.0.67×107
    4.如图,⊙O是△ABC的外接圆,∠B=60°,⊙O的半径为4,则AC的长等于( )
    A.4B.6C.2D.8
    5.方程(m–2)x2+3mx+1=0是关于x的一元二次方程,则( )
    A.m≠±2B.m=2C.m=–2D.m≠2
    6.下列计算正确的是( )
    A.=±3B.﹣32=9C.(﹣3)﹣2=D.﹣3+|﹣3|=﹣6
    7.已知二次函数 (为常数),当自变量的值满足时,与其对应的函数值的最大值为-1,则的值为( )
    A.3或6B.1或6C.1或3D.4或6
    8.已知等边三角形的内切圆半径,外接圆半径和高的比是( )
    A.1:2:B.2:3:4C.1::2D.1:2:3
    9.为了解中学300名男生的身高情况,随机抽取若干名男生进行身高测量,将所得数据整理后,画出频数分布直方图(如图).估计该校男生的身高在169.5cm~174.5cm之间的人数有( )
    A.12B.48C.72D.96
    10.在△ABC中,∠C=90°,sinA=,则tanB等于( )
    A.B.
    C.D.
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.如图,已知正方形ABCD中,∠MAN=45°,连接BD与AM,AN分别交于E,F点,则下列结论正确的有_____.
    ①MN=BM+DN
    ②△CMN的周长等于正方形ABCD的边长的两倍;
    ③EF1=BE1+DF1;
    ④点A到MN的距离等于正方形的边长
    ⑤△AEN、△AFM都为等腰直角三角形.
    ⑥S△AMN=1S△AEF
    ⑦S正方形ABCD:S△AMN=1AB:MN
    ⑧设AB=a,MN=b,则≥1﹣1.
    12.如果一个扇形的弧长等于它的半径,那么此扇形成为“等边扇形”.则半径为2的“等边扇形”的面积为 .
    13.如图,某商店营业大厅自动扶梯AB的倾斜角为31°,AB的长为12米,则大厅两层之间的高度为____米.(结果保留两个有效数字)(参考数据;sin31°=0.515,cs31°=0.857,tan31°=0.601)
    14.因式分解:x3﹣4x=_____.
    15.如图,正△的边长为,点、在半径为的圆上,点在圆内,将正绕点逆时针针旋转,当点第一次落在圆上时,旋转角的正切值为_______________
    16.如果=k(b+d+f≠0),且a+c+e=3(b+d+f),那么k=_____.
    三、解答题(共8题,共72分)
    17.(8分)某天,甲、乙、丙三人一起乘坐公交车,他们上车时发现公交车上还有A,B,W三个空座位,且只有A,B两个座位相邻,若三人随机选择座位,试解决以下问题:
    (1)甲选择座位W的概率是多少;
    (2)试用列表或画树状图的方法求甲、乙选择相邻座位A,B的概率.
    18.(8分)嘉淇在做家庭作业时,不小心将墨汁弄倒,恰好覆盖了题目的一部分:计算:(﹣7)0+|1﹣|+()﹣1﹣□+(﹣1)2018,经询问,王老师告诉题目的正确答案是1.
    (1)求被覆盖的这个数是多少?
    (2)若这个数恰好等于2tan(α﹣15)°,其中α为三角形一内角,求α的值.
    19.(8分)在△ABC中,已知AB=AC,∠BAC=90°,E为边AC上一点,连接BE.如图1,若∠ABE=15°,O为BE中点,连接AO,且AO=1,求BC的长;如图2,D为AB上一点,且满足AE=AD,过点A作AF⊥BE交BC于点F,过点F作FG⊥CD交BE的延长线于点G,交AC于点M,求证:BG=AF+FG.
    20.(8分)如图,一次函数y1=kx+b(k≠0)和反比例函数y2=(m≠0)的图象交于点A(-1,6),B(a,-2).求一次函数与反比例函数的解析式;根据图象直接写出y1>y2 时,x的取值范围.
    21.(8分)计算:3tan30°+|2﹣|﹣(3﹣π)0﹣(﹣1)2018.
    22.(10分)如图,直线AB∥CD,BC平分∠ABD,∠1=65°,求∠2的度数.
    23.(12分)对几何命题进行逆向思考是几何研究中的重要策略,我们知道,等腰三角形两腰上的高 线相等,那么等腰三角形两腰上的中线,两底角的角平分线也分别相等吗?它们的逆命 题会正确吗?
    (1)请判断下列命题的真假,并在相应命题后面的括号内填上“真”或“假”.
    ①等腰三角形两腰上的中线相等 ;
    ②等腰三角形两底角的角平分线相等 ;
    ③有两条角平分线相等的三角形是等腰三角形 ;
    (2)请写出“等腰三角形两腰上的中线相等”的逆命题,如果逆命题为真,请画出图形,写出已知、求证并进行证明,如果不是,请举出反例.
    24.如图,AB为⊙O的直径,直线BM⊥AB于点B,点C在⊙O上,分别连接BC,AC,且AC的延长线交BM于点D,CF为⊙O的切线交BM于点F.
    (1)求证:CF=DF;
    (2)连接OF,若AB=10,BC=6,求线段OF的长.
    参考答案
    一、选择题(共10小题,每小题3分,共30分)
    1、B
    【解析】
    科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.
    【详解】
    将6500000用科学记数法表示为:6.5×106.
    故答案选B.
    【点睛】
    本题考查了科学计数法,解题的关键是熟练的掌握科学计数法的表示形式.
    2、A
    【解析】
    先求出每个不等式的解集,再求出不等式组的解集即可.
    【详解】
    解:
    ∵不等式①得:x>1,
    解不等式②得:x≤2,
    ∴不等式组的解集为1<x≤2,
    在数轴上表示为:,
    故选A.
    【点睛】
    本题考查了解一元一次不等式组和在数轴上表示不等式组的解集,能根据不等式的解集找出不等式组的解集是解此题的关键.
    3、A
    【解析】
    科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
    【详解】
    解:6 700 000=6.7×106,
    故选:A
    【点睛】
    此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
    4、A
    【解析】
    解:连接OA,OC,过点O作OD⊥AC于点D,
    ∵∠AOC=2∠B,且∠AOD=∠COD=∠AOC,
    ∴∠COD=∠B=60°;
    在Rt△COD中,OC=4,∠COD=60°,
    ∴CD=OC=2,
    ∴AC=2CD=4.
    故选A.
    【点睛】
    本题考查三角形的外接圆;勾股定理;圆周角定理;垂径定理.
    5、D
    【解析】
    试题分析:根据一元二次方程的概念,可知m-2≠0,解得m≠2.
    故选D
    6、C
    【解析】
    分别根据二次根式的定义,乘方的意义,负指数幂的意义以及绝对值的定义解答即可.
    【详解】
    =3,故选项A不合题意;
    ﹣32=﹣9,故选项B不合题意;
    (﹣3)﹣2=,故选项C符合题意;
    ﹣3+|﹣3|=﹣3+3=0,故选项D不合题意.
    故选C.
    【点睛】
    本题主要考查了二次根式的定义,乘方的定义、负指数幂的意义以及绝对值的定义,熟记定义是解答本题的关键.
    7、B
    【解析】
    分析:分h<2、2≤h≤5和h>5三种情况考虑:当h<2时,根据二次函数的性质可得出关于h的一元二次方程,解之即可得出结论;当2≤h≤5时,由此时函数的最大值为0与题意不符,可得出该情况不存在;当h>5时,根据二次函数的性质可得出关于h的一元二次方程,解之即可得出结论.综上即可得出结论.
    详解:如图,
    当h<2时,有-(2-h)2=-1,
    解得:h1=1,h2=3(舍去);
    当2≤h≤5时,y=-(x-h)2的最大值为0,不符合题意;
    当h>5时,有-(5-h)2=-1,
    解得:h3=4(舍去),h4=1.
    综上所述:h的值为1或1.
    故选B.
    点睛:本题考查了二次函数的最值以及二次函数的性质,分h<2、2≤h≤5和h>5三种情况求出h值是解题的关键.
    8、D
    【解析】
    试题分析:图中内切圆半径是OD,外接圆的半径是OC,高是AD,因而AD=OC+OD;
    在直角△OCD中,∠DOC=60°,则OD:OC=1:2,因而OD:OC:AD=1:2:1,
    所以内切圆半径,外接圆半径和高的比是1:2:1.故选D.
    考点:正多边形和圆.
    9、C
    【解析】
    解:根据图形,
    身高在169.5cm~174.5cm之间的人数的百分比为:,
    ∴该校男生的身高在169.5cm~174.5cm之间的人数有300×24%=72(人).
    故选C.
    10、B
    【解析】
    法一,依题意△ABC为直角三角形,∴∠A+∠B=90°,∴csB=,∵,∴sinB=,∵tanB==故选B
    法2,依题意可设a=4,b=3,则c=5,∵tanb=故选B
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、①②③④⑤⑥⑦.
    【解析】
    将△ABM绕点A逆时针旋转,使AB与AD重合,得到△ADH.证明△MAN≌△HAN,得到MN=NH,根据三角形周长公式计算判断①;判断出BM=DN时,MN最小,即可判断出⑧;根据全等三角形的性质判断②④;将△ADF绕点A顺时针性质90°得到△ABH,连接HE.证明△EAH≌△EAF,得到∠HBE=90°,根据勾股定理计算判断③;根据等腰直角三角形的判定定理判断⑤;根据等腰直角三角形的性质、三角形的面积公式计算,判断⑥,根据点A到MN的距离等于正方形ABCD的边长、三角形的面积公式计算,判断⑦.
    【详解】
    将△ABM绕点A逆时针旋转,使AB与AD重合,得到△ADH.
    则∠DAH=∠BAM,
    ∵四边形ABCD是正方形,
    ∴∠BAD=90°,
    ∵∠MAN=45°,
    ∴∠BAN+∠DAN=45°,
    ∴∠NAH=45°,
    在△MAN和△HAN中,

    ∴△MAN≌△HAN,
    ∴MN=NH=BM+DN,①正确;
    ∵BM+DN≥1,(当且仅当BM=DN时,取等号)
    ∴BM=DN时,MN最小,
    ∴BM=b,
    ∵DH=BM=b,
    ∴DH=DN,
    ∵AD⊥HN,
    ∴∠DAH=∠HAN=11.5°,
    在DA上取一点G,使DG=DH=b,
    ∴∠DGH=45°,HG=DH=b,
    ∵∠DGH=45°,∠DAH=11.5°,
    ∴∠AHG=∠HAD,
    ∴AG=HG=b,
    ∴AB=AD=AG+DG=b+b=b=a,
    ∴,
    ∴,
    当点M和点B重合时,点N和点C重合,此时,MN最大=AB,
    即:,
    ∴≤≤1,⑧错误;
    ∵MN=NH=BM+DN
    ∴△CMN的周长=CM+CN+MN=CM+BM+CN+DN=CB+CD,
    ∴△CMN的周长等于正方形ABCD的边长的两倍,②结论正确;
    ∵△MAN≌△HAN,
    ∴点A到MN的距离等于正方形ABCD的边长AD,④结论正确;

    如图1,将△ADF绕点A顺时针性质90°得到△ABH,连接HE.
    ∵∠DAF+∠BAE=90°-∠EAF=45°,∠DAF=∠BAE,
    ∴∠EAH=∠EAF=45°,
    ∵EA=EA,AH=AD,
    ∴△EAH≌△EAF,
    ∴EF=HE,
    ∵∠ABH=∠ADF=45°=∠ABD,
    ∴∠HBE=90°,
    在Rt△BHE中,HE1=BH1+BE1,
    ∵BH=DF,EF=HE,
    ∵EF1=BE1+DF1,③结论正确;
    ∵四边形ABCD是正方形,
    ∴∠ADC=90°,∠BDC=∠ADB=45°,
    ∵∠MAN=45°,
    ∴∠EAN=∠EDN,
    ∴A、E、N、D四点共圆,
    ∴∠ADN+∠AEN=180°,
    ∴∠AEN=90°
    ∴△AEN是等腰直角三角形,
    同理△AFM是等腰直角三角形;⑤结论正确;
    ∵△AEN是等腰直角三角形,同理△AFM是等腰直角三角形,
    ∴AM=AF,AN=AE,
    如图3,过点M作MP⊥AN于P,
    在Rt△APM中,∠MAN=45°,
    ∴MP=AMsin45°,
    ∵S△AMN=AN•MP=AM•AN•sin45°,
    S△AEF=AE•AF•sin45°,
    ∴S△AMN:S△AEF=1,
    ∴S△AMN=1S△AEF,⑥正确;
    ∵点A到MN的距离等于正方形ABCD的边长,
    ∴S正方形ABCD:S△AMN==1AB:MN,⑦结论正确.
    即:正确的有①②③④⑤⑥⑦,
    故答案为①②③④⑤⑥⑦.
    【点睛】
    此题是四边形综合题,主要考查了正方形的性质,全等三角形的判定和性质,等腰直角三角形的判定和性质,解本题的关键是构造全等三角形.
    12、1
    【解析】
    试题分析:根据题意可得圆心角的度数为:,则S==1.
    考点:扇形的面积计算.
    13、6.2
    【解析】
    根据题意和锐角三角函数可以求得BC的长,从而可以解答本题.
    【详解】
    解:在Rt△ABC中,
    ∵∠ACB=90°,
    ∴BC=AB•sin∠BAC=12×0.515≈6.2(米),
    答:大厅两层之间的距离BC的长约为6.2米.
    故答案为:6.2.
    【点睛】
    本题考查解直角三角形的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用锐角三角函数和数形结合的思想解答.
    14、x(x+2)(x﹣2)
    【解析】
    试题分析:首先提取公因式x,进而利用平方差公式分解因式.即x3﹣4x=x(x2﹣4)=x(x+2)(x﹣2).故答案为x(x+2)(x﹣2).
    考点:提公因式法与公式法的综合运用.
    15、
    【解析】
    作辅助线,首先求出∠DAC的大小,进而求出旋转的角度,即可得出答案.
    【详解】
    如图,分别连接OA、OB、OD;
    ∵OA=OB= ,AB=2,
    ∴△OAB是等腰直角三角形,
    ∴∠OAB=45°;
    同理可证:∠OAD=45°,
    ∴∠DAB=90°;
    ∵∠CAB=60°,
    ∴∠DAC=90°−60°=30°,
    ∴旋转角的正切值是,
    故答案为:.
    【点睛】
    此题考查等边三角形的性质,旋转的性质,点与圆的位置关系,解直角三角形,解题关键在于作辅助线.
    16、3
    【解析】
    ∵=k,∴a=bk,c=dk,e=fk,∴a+c+e=bk+dk+fk=k(a+b+c),
    ∵a+c+e=3(b+d+f),∴k=3,
    故答案为:3.
    三、解答题(共8题,共72分)
    17、(1);(2)
    【解析】
    (1)根据概率公式计算可得;
    (2)画树状图列出所有等可能结果,从中找到符合要求的结果数,利用概率公式计算可得.
    【详解】
    解:(1)由于共有A、B、W三个座位,
    ∴甲选择座位W的概率为,
    故答案为:;
    (2)画树状图如下:
    由图可知,共有6种等可能结果,其中甲、乙选择相邻的座位有两种,
    所以P(甲乙相邻)==.
    【点睛】
    此题考查了树状图法求概率.注意树状图法适合两步或两步以上完成的事件,树状图法可以不重不漏的表示出所有等可能的结果,用到的知识点为:概率=所求情况数与总情况数之比.
    18、(1)2;(2)α=75°.
    【解析】
    (1)直接利用绝对值的性质以及负指数幂的性质以及零指数幂的性质分别化简得出答案;
    (2)直接利用特殊角的三角函数值计算得出答案.
    【详解】
    解:(1)原式=1+﹣1+﹣□+1=1,
    ∴□=1+﹣1++1﹣1=2;
    (2)∵α为三角形一内角,
    ∴0°<α<180°,
    ∴﹣15°<(α﹣15)°<165°,
    ∵2tan(α﹣15)°=,
    ∴α﹣15°=60°,
    ∴α=75°.
    【点睛】
    此题主要考查了实数运算,正确化简各数是解题关键.
    19、(1) (2)证明见解析
    【解析】
    (1)如图1中,在AB上取一点M,使得BM=ME,连接ME.,设AE=x,则ME=BM=2x,AM=x,根据AB2+AE2=BE2,可得方程(2x+x)2+x2=22,解方程即可解决问题.
    (2)如图2中,作CQ⊥AC,交AF的延长线于Q,首先证明EG=MG,再证明FM=FQ即可解决问题.
    【详解】
    解:如图 1 中,在 AB 上取一点 M,使得 BM=ME,连接 ME.
    在 Rt△ABE 中,∵OB=OE,
    ∴BE=2OA=2,
    ∵MB=ME,
    ∴∠MBE=∠MEB=15°,
    ∴∠AME=∠MBE+∠MEB=30°,设 AE=x,则 ME=BM=2x,AM=x,
    ∵AB2+AE2=BE2,
    ∴,
    ∴x= (负根已经舍弃),
    ∴AB=AC=(2+ )• ,
    ∴BC= AB= +1.
    作 CQ⊥AC,交 AF 的延长线于 Q,
    ∵ AD=AE ,AB=AC ,∠BAE=∠CAD,
    ∴△ABE≌△ACD(SAS),
    ∴∠ABE=∠ACD,
    ∵∠BAC=90°,FG⊥CD,
    ∴∠AEB=∠CMF,
    ∴∠GEM=∠GME,
    ∴EG=MG,
    ∵∠ABE=∠CAQ,AB=AC,∠BAE=∠ACQ=90°,
    ∴△ABE≌△CAQ(ASA),
    ∴BE=AQ,∠AEB=∠Q,
    ∴∠CMF=∠Q,
    ∵∠MCF=∠QCF=45°,CF=CF,
    ∴△CMF≌△CQF(AAS),
    ∴FM=FQ,
    ∴BE=AQ=AF+FQ=AF=FM,
    ∵EG=MG,
    ∴BG=BE+EG=AF+FM+MG=AF+FG.
    【点睛】
    本题考查全等三角形的判定和性质、直角三角形斜边中线定理,等腰直角三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.
    20、(1)y1=-2x+4,y2=-;(2)x<-1或0【解析】
    (1)把点A坐标代入反比例函数求出k的值,也就求出了反比例函数解析式,再把点B的坐标代入反比例函数解析式求出a的值,得到点B的坐标,然后利用待定系数法即可求出一次函数解析式;
    (2)找出直线在一次函数图形的上方的自变量x的取值即可.
    【详解】
    解:(1)把点A(﹣1,6)代入反比例函数(m≠0)得:m=﹣1×6=﹣6,
    ∴.
    将B(a,﹣2)代入得:,a=1,∴B(1,﹣2),将A(﹣1,6),B(1,﹣2)代入一次函数y1=kx+b得:,
    ∴,
    ∴;
    (2)由函数图象可得:x<﹣1或0<x<1.
    【点睛】
    本题考查反比例函数与一次函数的交点问题,利用数形结合思想解题是本题的关键.
    21、1.
    【解析】
    直接利用绝对值的性质以及特殊角的三角函数值分别化简得出答案.
    【详解】
    3tan31°+|2﹣|﹣(3﹣π)1﹣(﹣1)2118
    =3×+2﹣﹣1﹣1
    =+2﹣﹣1﹣1
    =1.
    【点睛】
    本题考查了绝对值的性质以及特殊角的三角函数值,解题的关键是熟练的掌握绝对值的性质以及特殊角的三角函数值.
    22、50°.
    【解析】
    试题分析:由平行线的性质得到∠ABC=∠1=65°,∠ABD+∠BDE=180°,由BC平分∠ABD,得到∠ABD=2∠ABC=130°,于是得到结论.
    解:∵AB∥CD,
    ∴∠ABC=∠1=65°,
    ∵BC平分∠ABD,
    ∴∠ABD=2∠ABC=130°,
    ∴∠BDE=180°﹣∠ABD=50°,
    ∴∠2=∠BDE=50°.
    【点评】
    本题考查了平行线的性质和角平分线定义等知识点,解此题的关键是求出∠ABD的度数,题目较好,难度不大.
    23、(1)①真;②真;③真;(2)逆命题是:有两边上的中线相等的三角形是等腰三角形;见解析.
    【解析】
    (1)根据命题的真假判断即可;
    (2)根据全等三角形的判定和性质进行证明即可.
    【详解】
    (1)①等腰三角形两腰上的中线相等是真命题;
    ②等腰三角形两底角的角平分线相等是真命题;
    ③有两条角平分线相等的三角形是等腰三角形是真命题;
    故答案为真;真;真;
    (2)逆命题是:有两边上的中线相等的三角形是等腰三角形;
    已知:如图,△ABC中,BD,CE分别是AC,BC边上的中线,且BD=CE,
    求证:△ABC是等腰三角形;
    证明:连接DE,过点D作DF∥EC,交BC的延长线于点F,
    ∵BD,CE分别是AC,BC边上的中线,
    ∴DE是△ABC的中位线,
    ∴DE∥BC,
    ∵DF∥EC,
    ∴四边形DECF是平行四边形,
    ∴EC=DF,
    ∵BD=CE,
    ∴DF=BD,
    ∴∠DBF=∠DFB,
    ∵DF∥EC,
    ∴∠F=∠ECB,
    ∴∠ECB=∠DBC,
    在△DBC与△ECB中

    ∴△DBC≌△ECB,
    ∴EB=DC,
    ∴AB=AC,
    ∴△ABC是等腰三角形.
    【点睛】
    本题考查了全等三角形的判定与性质及等腰三角形的性质;证明的步骤是:先根据题意画出图形,再根据图形写出已知和求证,最后写出证明过程.
    24、(1)详见解析;(2)OF=.
    【解析】
    (1)连接OC,如图,根据切线的性质得∠1+∠3=90°,则可证明∠3=∠4,再根据圆周角定理得到∠ACB=90°,然后根据等角的余角相等得到∠BDC=∠5,从而根据等腰三角形的判定定理得到结论;
    (2)根据勾股定理计算出AC=8,再证明△ABC∽△ABD,利用相似比得到AD=,然后证明OF为△ABD的中位线,从而根据三角形中位线性质求出OF的长.
    【详解】
    (1)证明:连接OC,如图,
    ∵CF为切线,
    ∴OC⊥CF,
    ∴∠1+∠3=90°,
    ∵BM⊥AB,
    ∴∠2+∠4=90°,
    ∵OC=OB,
    ∴∠1=∠2,
    ∴∠3=∠4,
    ∵AB为直径,
    ∴∠ACB=90°,
    ∴∠3+∠5=90°,∠4+∠BDC=90°,
    ∴∠BDC=∠5,
    ∴CF=DF;
    (2)在Rt△ABC中,AC==8,
    ∵∠BAC=∠DAB,
    ∴△ABC∽△ABD,
    ∴,即,
    ∴AD=,
    ∵∠3=∠4,
    ∴FC=FB,
    而FC=FD,
    ∴FD=FB,
    而BO=AO,
    ∴OF为△ABD的中位线,
    ∴OF=AD=.
    【点睛】
    本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了圆周角定理和垂径定理.
    相关试卷

    2022-2023学年安徽省亳州市涡阳县七年级(下)期中数学试卷(沪科版)(含解析): 这是一份2022-2023学年安徽省亳州市涡阳县七年级(下)期中数学试卷(沪科版)(含解析),共17页。试卷主要包含了选择题,填空题等内容,欢迎下载使用。

    2022-2023学年安徽省亳州市涡阳县八年级(下)期中数学试卷(人教版)(含解析): 这是一份2022-2023学年安徽省亳州市涡阳县八年级(下)期中数学试卷(人教版)(含解析),共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    安徽省瑶海区2021-2022学年中考试题猜想数学试卷含解析: 这是一份安徽省瑶海区2021-2022学年中考试题猜想数学试卷含解析,共21页。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map