


安徽省淮南市谢家集区重点达标名校2021-2022学年中考数学押题卷含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.自1993年起,联合国将每年的3月11日定为“世界水日”,宗旨是唤起公众的节水意识,加强水资源保护.某校在开展“节约每一滴水”的活动中,从初三年级随机选出10名学生统计出各自家庭一个月的节约用水量,有关数据整理如下表.
节约用水量(单位:吨)
1
1.1
1.4
1
1.5
家庭数
4
6
5
3
1
这组数据的中位数和众数分别是( )
A.1.1,1.1; B.1.4,1.1; C.1.3,1.4; D.1.3,1.1.
2.如图,在△ABC中,以点B为圆心,以BA长为半径画弧交边BC于点D,连接AD.若∠B=40°,∠C=36°,则∠DAC的度数是( )
A.70° B.44° C.34° D.24°
3.已知一次函数y=kx+b的图象如图,那么正比例函数y=kx和反比例函数y=在同一坐标系中的图象的形状大致是( )
A. B.
C. D.
4.如图,在平面直角坐标系中Rt△ABC的斜边BC在x轴上,点B坐标为(1,0),AC=2,∠ABC=30°,把Rt△ABC先绕B点顺时针旋转180°,然后再向下平移2个单位,则A点的对应点A′的坐标为( )
A.(﹣4,﹣2﹣) B.(﹣4,﹣2+) C.(﹣2,﹣2+) D.(﹣2,﹣2﹣)
5.某班选举班干部,全班有1名同学都有选举权和被选举权,他们的编号分别为1,2,…,1.老师规定:同意某同学当选的记“1”,不同意(含弃权)的记“0”.
如果令
其中i=1,2,…,1;j=1,2,…,1.则a1,1a1,2+a2,1a2,2+a3,1a3,2+…+a1,1a1,2表示的实际意义是( )
A.同意第1号或者第2号同学当选的人数
B.同时同意第1号和第2号同学当选的人数
C.不同意第1号或者第2号同学当选的人数
D.不同意第1号和第2号同学当选的人数
6.如图,等腰直角三角形纸片ABC中,∠C=90°,把纸片沿EF对折后,点A恰好落在BC上的点D处,点CE=1,AC=4,则下列结论一定正确的个数是( )
①∠CDE=∠DFB;②BD>CE;③BC=CD;④△DCE与△BDF的周长相等.
A.1个 B.2个 C.3个 D.4个
7.在体育课上,甲,乙两名同学分别进行了5次跳远测试,经计算他们的平均成绩相同.若要比较这两名同学的成绩哪一个更为稳定,通常需要比较他们成绩的( )
A.众数 B.平均数 C.中位数 D.方差
8.如图,矩形ABCD中,E为DC的中点,AD:AB=:2,CP:BP=1:2,连接EP并延长,交AB的延长线于点F,AP、BE相交于点O.下列结论:①EP平分∠CEB;②=PB•EF;③PF•EF=2;④EF•EP=4AO•PO.其中正确的是( )
A.①②③ B.①②④ C.①③④ D.③④
9.如图,A,B是半径为1的⊙O上两点,且OA⊥OB.点P从A出发,在⊙O上以每秒一个单位长度的速度匀速运动,回到点A运动结束. 设运动时间为x,弦BP的长度为y,那么下面图象中可能表示y与x的函数关系的是
A.① B.④ C.②或④ D.①或③
10.若函数的图象在其象限内y的值随x值的增大而增大,则m的取值范围是( )
A.m>﹣2 B.m<﹣2
C.m>2 D.m<2
11.据统计, 2015年广州地铁日均客运量均为人次,将用科学记数法表示为( )
A. B. C. D.
12.有五名射击运动员,教练为了分析他们成绩的波动程度,应选择下列统计量中的( )
A.方差 B.中位数 C.众数 D.平均数
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.如图,已知AE∥BD,∠1=130°,∠2=28°,则∠C的度数为____.
14.抛物线 的顶点坐标是________.
15.方程3x(x-1)=2(x-1)的根是
16.观察下列图形:它们是按一定的规律排列的,依照此规律,第n个图形共有___个★.
17.如图,矩形ABCD中,E为BC的中点,将△ABE沿直线AE折叠时点B落在点F处,连接FC,若∠DAF=18°,则∠DCF=_____度.
18.如图,某景区的两个景点A、B处于同一水平地面上、一架无人机在空中沿MN方向水平飞行进行航拍作业,MN与AB在同一铅直平面内,当无人机飞行至C处时、测得景点A的俯角为45°,景点B的俯角为30°,此时C到地面的距离CD为100米,则两景点A、B间的距离为__米(结果保留根号).
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)在如图的正方形网格中,每一个小正方形的边长为1;格点三角形ABC(顶点是网格线交点的三角形)的顶点A、C的坐标分别是(-4,6)、(-1,4);请在图中的网格平面内建立平面直角坐标系;请画出△ABC关于x轴对称的△A1B1C1;请在y轴上求作一点P,使△PB1C的周长最小,并直接写出点P的坐标.
20.(6分)如图,在矩形ABCD中,AB═2,AD=,P是BC边上的一点,且BP=2CP.
(1)用尺规在图①中作出CD边上的中点E,连接AE、BE(保留作图痕迹,不写作法);
(2)如图②,在(1)的条体下,判断EB是否平分∠AEC,并说明理由;
(3)如图③,在(2)的条件下,连接EP并廷长交AB的廷长线于点F,连接AP,不添加辅助线,△PFB能否由都经过P点的两次变换与△PAE组成一个等腰三角形?如果能,说明理由,并写出两种方法(指出对称轴、旋转中心、旋转方向和平移距离)
21.(6分)如图,一次函数y=kx+b与反比例函数y=的图象在第一象限交于点A(4,3),与y轴的负半轴交于点B,且OA=OB.
(1)求一次函数y=kx+b和y=的表达式;
(2)已知点C在x轴上,且△ABC的面积是8,求此时点C的坐标;
(3)反比例函数y=(1≤x≤4)的图象记为曲线C1,将C1向右平移3个单位长度,得曲线C2,则C1平移至C2处所扫过的面积是_________.(直接写出答案)
22.(8分)如图,抛物线经过点A(﹣2,0),点B(0,4).
(1)求这条抛物线的表达式;
(2)P是抛物线对称轴上的点,联结AB、PB,如果∠PBO=∠BAO,求点P的坐标;
(3)将抛物线沿y轴向下平移m个单位,所得新抛物线与y轴交于点D,过点D作DE∥x轴交新抛物线于点E,射线EO交新抛物线于点F,如果EO=2OF,求m的值.
23.(8分)(1)(问题发现)小明遇到这样一个问题:
如图1,△ABC是等边三角形,点D为BC的中点,且满足∠ADE=60°,DE交等边三角形外角平分线CE所在直线于点E,试探究AD与DE的数量关系.
(1)小明发现,过点D作DF//AC,交AC于点F,通过构造全等三角形,经过推理论证,能够使问题得到解决,请直接写出AD与DE的数量关系: ;
(2)(类比探究)如图2,当点D是线段BC上(除B,C外)任意一点时(其它条件
不变),试猜想AD与DE之间的数量关系,并证明你的结论.
(3)(拓展应用)当点D在线段BC的延长线上,且满足CD=BC(其它条件不变)时,
请直接写出△ABC与△ADE的面积之比.
24.(10分)先化简÷(x-),然后从-
(1)求两批次购蔬菜各购进多少吨?
(2)公司收购后对蔬菜进行加工,分为粗加工和精加工两种:粗加工每吨利润400元,精加工每吨利润800元.要求精加工数量不多于粗加工数量的三倍.为获得最大利润,精加工数量应为多少吨?最大利润是多少?
26.(12分)如图,在东西方向的海岸线MN上有A,B两港口,海上有一座小岛P,渔民每天都乘轮船从A,B两港口沿AP,BP的路线去小岛捕鱼作业.已知小岛P在A港的北偏东60°方向,在B港的北偏西45°方向,小岛P距海岸线MN的距离为30海里.
求AP,BP的长(参考数据:≈1.4,≈1.7,≈2.2);甲、乙两船分别从A,B两港口同时出发去小岛P捕鱼作业,甲船比乙船晚到小岛24分钟.已知甲船速度是乙船速度的1.2倍,利用(1)中的结果求甲、乙两船的速度各是多少海里/时?
27.(12分)计算:2-1+20160-3tan30°+|-|
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、D
【解析】
分析:中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.
详解:这组数据的中位数是;
这组数据的众数是1.1.
故选D.
点睛:本题属于基础题,考查了确定一组数据的中位数和众数的能力,要明确定义,一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.
2、C
【解析】
易得△ABD为等腰三角形,根据顶角可算出底角,再用三角形外角性质可求出∠DAC
【详解】
∵AB=BD,∠B=40°,
∴∠ADB=70°,
∵∠C=36°,
∴∠DAC=∠ADB﹣∠C=34°.
故选C.
【点睛】
本题考查三角形的角度计算,熟练掌握三角形外角性质是解题的关键.
3、C
【解析】
试题分析:如图所示,由一次函数y=kx+b的图象经过第一、三、四象限,可得k>1,b<1.因此可知正比例函数y=kx的图象经过第一、三象限,反比例函数y=的图象经过第二、四象限.综上所述,符合条件的图象是C选项.
故选C.
考点:1、反比例函数的图象;2、一次函数的图象;3、一次函数图象与系数的关系
4、D
【解析】
解:作AD⊥BC,并作出把Rt△ABC先绕B点顺时针旋转180°后所得△A1BC1,如图所示.∵AC=2,∠ABC=10°,∴BC=4,∴AB=2,∴AD===,∴BD===1.∵点B坐标为(1,0),∴A点的坐标为(4,).∵BD=1,∴BD1=1,∴D1坐标为(﹣2,0),∴A1坐标为(﹣2,﹣).∵再向下平移2个单位,∴A′的坐标为(﹣2,﹣﹣2).故选D.
点睛:本题主要考查了直角三角形的性质,勾股定理,旋转的性质和平移的性质,作出图形利用旋转的性质和平移的性质是解答此题的关键.
5、B
【解析】
先写出同意第1号同学当选的同学,再写出同意第2号同学当选的同学,那么同时同意1,2号同学当选的人数是他们对应相乘再相加.
【详解】
第1,2,3,……,1名同学是否同意第1号同学当选依次由a1,1,a2,1,a3,1,…,a1,1来确定,
是否同意第2号同学当选依次由a1,2,a2,2,a3,2,…,a1,2来确定,
∴a1,1a1,2+a2,1a2,2+a3,1a3,2+…+a1,1a1,2表示的实际意义是同时同意第1号和第2号同学当选的人数,
故选B.
【点睛】
本题考查了推理应用题,题目比较新颖,是基础题.
6、D
【解析】
等腰直角三角形纸片ABC中,∠C=90°,
∴∠A=∠B=45°,
由折叠可得,∠EDF=∠A=45°,
∴∠CDE+∠BDF=135°,∠DFB+∠B=135°,
∴∠CDE=∠DFB,故①正确;
由折叠可得,DE=AE=3,
∴CD=,
∴BD=BC﹣DC=4﹣>1,
∴BD>CE,故②正确;
∵BC=4,CD=4,
∴BC=CD,故③正确;
∵AC=BC=4,∠C=90°,
∴AB=4,
∵△DCE的周长=1+3+2=4+2,
由折叠可得,DF=AF,
∴△BDF的周长=DF+BF+BD=AF+BF+BD=AB+BD=4+(4﹣2)=4+2,
∴△DCE与△BDF的周长相等,故④正确;
故选D.
点睛:本题主要考查了折叠问题,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.
7、D
【解析】
方差是反映一组数据的波动大小的一个量.方差越大,则各数据与其平均值的离散程度越大,稳定性也越小;反之,则各数据与其平均值的离散程度越小,稳定性越好。
【详解】
由于方差能反映数据的稳定性,需要比较这两名学生立定跳远成绩的方差.
故选D.
8、B
【解析】
由条件设AD=x,AB=2x,就可以表示出CP=x,BP=x,用三角函数值可以求出∠EBC的度数和∠CEP的度数,则∠CEP=∠BEP,运用勾股定理及三角函数值就可以求出就可以求出BF、EF的值,从而可以求出结论.
【详解】
解:设AD=x,AB=2x
∵四边形ABCD是矩形
∴AD=BC,CD=AB,∠D=∠C=∠ABC=90°.DC∥AB
∴BC=x,CD=2x
∵CP:BP=1:2
∴CP=x,BP=x
∵E为DC的中点,
∴CE=CD=x,
∴tan∠CEP==,tan∠EBC==
∴∠CEP=30°,∠EBC=30°
∴∠CEB=60°
∴∠PEB=30°
∴∠CEP=∠PEB
∴EP平分∠CEB,故①正确;
∵DC∥AB,
∴∠CEP=∠F=30°,
∴∠F=∠EBP=30°,∠F=∠BEF=30°,
∴△EBP∽△EFB,
∴
∴BE·BF=EF·BP
∵∠F=∠BEF,
∴BE=BF
∴=PB·EF,故②正确
∵∠F=30°,
∴PF=2PB=x,
过点E作EG⊥AF于G,
∴∠EGF=90°,
∴EF=2EG=2x
∴PF·EF=x·2x=8x2
2AD2=2×(x)2=6x2,
∴PF·EF≠2AD2,故③错误.
在Rt△ECP中,
∵∠CEP=30°,
∴EP=2PC=x
∵tan∠PAB==
∴∠PAB=30°
∴∠APB=60°
∴∠AOB=90°
在Rt△AOB和Rt△POB中,由勾股定理得,
AO=x,PO=x
∴4AO·PO=4×x·x=4x2
又EF·EP=2x·x=4x2
∴EF·EP=4AO·PO.故④正确.
故选,B
【点睛】
本题考查了矩形的性质的运用,相似三角形的判定及性质的运用,特殊角的正切值的运用,勾股定理的运用及直角三角形的性质的运用,解答时根据比例关系设出未知数表示出线段的长度是关键.
9、D
【解析】
分两种情形讨论当点P顺时针旋转时,图象是③,当点P逆时针旋转时,图象是①,由此即可解决问题.
【详解】
解:当点P顺时针旋转时,图象是③,当点P逆时针旋转时,图象是①.
故选D.
10、B
【解析】
根据反比例函数的性质,可得m+1<0,从而得出m的取值范围.
【详解】
∵函数的图象在其象限内y的值随x值的增大而增大,
∴m+1<0,
解得m<-1.
故选B.
11、D
【解析】
科学记数法就是将一个数字表示成(a×10的n次幂的形式),其中1≤|a|<10,n表示整数.n为整数位数减1,即从左边第一位开始,在首位非零的后面加上小数点,再乘以10的n次幂.
【详解】
解:6 590 000=6.59×1.
故选:D.
【点睛】
本题考查学生对科学记数法的掌握,一定要注意a的形式,以及指数n的确定方法.
12、A
【解析】
试题分析:方差是用来衡量一组数据波动大小的量,体现数据的稳定性,集中程度;方差越大,即波动越大,数据越不稳定;反之,方差越小,数据越稳定.故教练要分析射击运动员成绩的波动程度,只需要知道训练成绩的方差即可.
故选A.
考点:1、计算器-平均数,2、中位数,3、众数,4、方差
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、22°
【解析】
由AE∥BD,根据平行线的性质求得∠CBD的度数,再由对顶角相等求得∠CDB的度数,继而利用三角形的内角和等于180°求得∠C的度数.
【详解】
解:∵AE∥BD,∠1=130°,∠2=28°,
∴∠CBD=∠1=130°,∠CDB=∠2=28°,
∴∠C=180°﹣∠CBD﹣∠CDB=180°﹣130°﹣28°=22°.
故答案为22°
【点睛】
本题考查了平行线的性质,对顶角相等及三角形内角和定理.熟练运用相关知识是解决问题的关键.
14、(0,-1)
【解析】
∵a=2,b=0,c=-1,∴-=0, ,
∴抛物线的顶点坐标是(0,-1),
故答案为(0,-1).
15、x1=1,x2=-.
【解析】
试题解析:3x(x-1)=2(x-1)
3x(x-1)-2 (x-1) =0
(3x-2)(x-1)=0
3x-2=0,x-1=0
解得:x1=1,x2=-.
考点:解一元二次方程---因式分解法.
16、
【解析】
分别求出第1个、第2个、第3个、第4个图形中★的个数,得到第5个图形中★的个数,进而找到规律,得出第n个图形中★的个数,即可求解.
【详解】
第1个图形中有1+3×1=4个★,
第2个图形中有1+3×2=7个★,
第3个图形中有1+3×3=10个★,
第4个图形中有1+3×4=13个★,
第5个图形中有1+3×5=16个★,
…
第n个图形中有1+3×n=(3n+1)个★.
故答案是:1+3n.
【点睛】
考查了规律型:图形的变化类;根据图形中变化的量和n的关系与不变的量得到图形中★的个数与n的关系是解决本题的关键.
17、1 .
【解析】
由折叠的性质得:FE=BE,∠FAE=∠BAE,∠AEB=∠AEF,求出∠BAE=∠FAE=1°,由直角三角形的性质得出∠AEF=∠AEB=54°,求出∠CEF=72°,求出FE=CE,由等腰三角形的性质求出∠ECF=54°,即可得出∠DCF的度数.
【详解】
解:∵四边形ABCD是矩形,
∴∠BAD=∠B=∠BCD=90°,
由折叠的性质得:FE=BE,∠FAE=∠BAE,∠AEB=∠AEF,
∵∠DAF=18°,
∴∠BAE=∠FAE=×(90°﹣18°)=1°,
∴∠AEF=∠AEB=90°﹣1°=54°,
∴∠CEF=180°﹣2×54°=72°,
∵E为BC的中点,
∴BE=CE,
∴FE=CE,
∴∠ECF=×(180°﹣72°)=54°,
∴∠DCF=90°﹣∠ECF=1°.
故答案为1.
【点睛】
本题考查了矩形的性质、折叠变换的性质、直角三角形的性质、等腰三角形的性质、三角形内角和定理等知识点,求出∠ECF的度数是解题的关键.
18、100+100
【解析】
【分析】由已知可得∠ACD=∠MCA=45°,∠B=∠NCB=30°,继而可得∠DCB=60°,从而可得AD=CD=100米,DB= 100米,再根据AB=AD+DB计算即可得.
【详解】∵MN//AB,∠MCA=45°,∠NCB=30°,
∴∠ACD=∠MCA=45°,∠B=∠NCB=30°,
∵CD⊥AB,∴∠CDA=∠CDB=90°,∠DCB=60°,
∵CD=100米,∴AD=CD=100米,DB=CD•tan60°=CD=100米,
∴AB=AD+DB=100+100(米),
故答案为:100+100.
【点睛】本题考查了解直角三角形的应用﹣﹣仰角俯角问题,解题的关键是借助俯角构造直角三角形并解直角三角形.注意方程思想与数形结合思想的应用.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1)(2)见解析;(3)P(0,2).
【解析】
分析:(1)根据A,C两点的坐标即可建立平面直角坐标系.
(2)分别作各点关于x轴的对称点,依次连接即可.
(3)作点C关于y轴的对称点C′,连接B1C′交y轴于点P,即为所求.
详解:(1)(2)如图所示:
(3)作点C关于y轴的对称点C′,连接B1C′交y轴于点P,则点P即为所求.
设直线B1C′的解析式为y=kx+b(k≠0),
∵B1(﹣2,-2),C′(1,4),
∴,解得:,
∴直线AB2的解析式为:y=2x+2,
∴当x=0时,y=2,∴P(0,2).
点睛:本题主要考查轴对称图形的绘制和轴对称的应用.
20、(1)作图见解析;(2)EB是平分∠AEC,理由见解析; (3)△PFB能由都经过P点的两次变换与△PAE组成一个等腰三角形,变换的方法为:将△BPF绕点B顺时针旋转120°和△EPA重合,①沿PF折叠,②沿AE折叠.
【解析】
【分析】(1)根据作线段的垂直平分线的方法作图即可得出结论;
(2)先求出DE=CE=1,进而判断出△ADE≌△BCE,得出∠AED=∠BEC,再用锐角三角函数求出∠AED,即可得出结论;
(3)先判断出△AEP≌△FBP,即可得出结论.
【详解】(1)依题意作出图形如图①所示;
(2)EB是平分∠AEC,理由:
∵四边形ABCD是矩形,
∴∠C=∠D=90°,CD=AB=2,BC=AD=,
∵点E是CD的中点,
∴DE=CE=CD=1,
在△ADE和△BCE中,,
∴△ADE≌△BCE,
∴∠AED=∠BEC,
在Rt△ADE中,AD=,DE=1,
∴tan∠AED==,
∴∠AED=60°,
∴∠BCE=∠AED=60°,
∴∠AEB=180°﹣∠AED﹣∠BEC=60°=∠BEC,
∴BE平分∠AEC;
(3)∵BP=2CP,BC==,
∴CP=,BP=,
在Rt△CEP中,tan∠CEP==,
∴∠CEP=30°,
∴∠BEP=30°,
∴∠AEP=90°,
∵CD∥AB,
∴∠F=∠CEP=30°,
在Rt△ABP中,tan∠BAP==,
∴∠PAB=30°,
∴∠EAP=30°=∠F=∠PAB,
∵CB⊥AF,
∴AP=FP,
∴△AEP≌△FBP,
∴△PFB能由都经过P点的两次变换与△PAE组成一个等腰三角形,
变换的方法为:将△BPF绕点B顺时针旋转120°和△EPA重合,①沿PF折叠,②沿AE折叠.
【点睛】本题考查了矩形的性质,全等三角形的判定和性质,解直角三角形,图形的变换等,熟练掌握和灵活应用相关的性质与定理、判断出△AEP≌△△FBP是解本题的关键.
21、(1),;(2)点C的坐标为或;(3)2.
【解析】
试题分析:(1)由点A的坐标利用反比例函数图象上点的坐标特征即可求出a值,从而得出反比例函数解析式;由勾股定理得出OA的长度从而得出点B的坐标,由点A、B的坐标利用待定系数法即可求出直线AB的解析式;
(2)设点C的坐标为(m,0),令直线AB与x轴的交点为D,根据三角形的面积公式结合△ABC的面积是8,可得出关于m的含绝对值符号的一元一次方程,解方程即可得出m值,从而得出点C的坐标;
(3)设点E的横坐标为1,点F的横坐标为6,点M、N分别对应点E、F,根据反比例函数解析式以及平移的性质找出点E、F、M、N的坐标,根据EM∥FN,且EM=FN,可得出四边形EMNF为平行四边形,再根据平行四边形的面积公式求出平行四边形EMNF的面积S,根据平移的性质即可得出C1平移至C2处所扫过的面积正好为S.
试题解析:
(1)∵点A(4,3)在反比例函数y=的图象上,
∴a=4×3=12,
∴反比例函数解析式为y=;
∵OA==1,OA=OB,点B在y轴负半轴上,
∴点B(0,﹣1).
把点A(4,3)、B(0,﹣1)代入y=kx+b中,
得: ,解得: ,
∴一次函数的解析式为y=2x﹣1.
(2)设点C的坐标为(m,0),令直线AB与x轴的交点为D,如图1所示.
令y=2x﹣1中y=0,则x=,
∴D(,0),
∴S△ABC=CD•(yA﹣yB)=|m﹣|×[3﹣(﹣1)]=8,
解得:m=或m=.
故当△ABC的面积是8时,点C的坐标为(,0)或(,0).
(3)设点E的横坐标为1,点F的横坐标为6,点M、N分别对应点E、F,如图2所示.
令y=中x=1,则y=12,
∴E(1,12),;
令y=中x=4,则y=3,
∴F(4,3),
∵EM∥FN,且EM=FN,
∴四边形EMNF为平行四边形,
∴S=EM•(yE﹣yF)=3×(12﹣3)=2.
C1平移至C2处所扫过的面积正好为平行四边形EMNF的面积.
故答案为2.
【点睛】运用了反比例函数图象上点的坐标特征、待定系数法求函数解析式、三角形的面积以及平行四边形的面积,解题的关键是:(1)利用待定系数法求出函数解析式;(2)找出关于m的含绝对值符号的一元一次方程;(3)求出平行四边形EMNF的面积.本题属于中档题,难度不小,解决(3)时,巧妙的借助平行四边的面积公式求出C1平移至C2处所扫过的面积,此处要注意数形结合的重要性.
22、(1);(2)P(1,); (3)3或5.
【解析】
(1)将点A、B代入抛物线,用待定系数法求出解析式.
(2)对称轴为直线x=1,过点P作PG⊥y轴,垂足为G, 由∠PBO=∠BAO,得tan∠PBO=tan∠BAO,即,可求出P的坐标.
(3)新抛物线的表达式为,由题意可得DE=2,过点F作FH⊥y轴,垂足为H,∵DE∥FH,EO=2OF,∴,∴FH=1.然后分情况讨论点D在y轴的正半轴上和在y轴的负半轴上,可求得m的值为3或5.
【详解】
解:(1)∵抛物线经过点A(﹣2,0),点B(0,4)
∴,解得,
∴抛物线解析式为,
(2),
∴对称轴为直线x=1,过点P作PG⊥y轴,垂足为G,
∵∠PBO=∠BAO,∴tan∠PBO=tan∠BAO,
∴,
∴,
∴,
,
∴P(1,),
(3)设新抛物线的表达式为
则,,DE=2
过点F作FH⊥y轴,垂足为H,∵DE∥FH,EO=2OF
∴,
∴FH=1.
点D在y轴的正半轴上,则,
∴,
∴,
∴m=3,
点D在y轴的负半轴上,则,
∴,
∴,
∴m=5,
∴综上所述m的值为3或5.
【点睛】
本题是二次函数和相似三角形的综合题目,整体难度不大,但是非常巧妙,学会灵活运用是关键.
23、(1)AD=DE;(2)AD=DE,证明见解析;(3).
【解析】
试题分析:本题难度中等.主要考查学生对探究例子中的信息进行归纳总结.并能够结合三角形的性质是解题关键.
试题解析:(10分)
(1)AD=DE.
(2)AD=DE.
证明:如图2,过点D作DF//AC,交AC于点F,
∵△ABC是等边三角形,
∴AB=BC,∠B=∠ACB=∠ABC=60°.
又∵DF//AC,
∴∠BDF=∠BFD=60°
∴△BDF是等边三角形,BF=BD,∠BFD=60°,
∴AF=CD,∠AFD=120°.
∵EC是外角的平分线,
∠DCE=120°=∠AFD.
∵∠ADC是△ABD的外角,
∴∠ADC=∠B+∠FAD=60°+∠FAD.
∵∠ADC=∠ADE+∠EDC=60°+∠EDC,
∴∠FAD=∠EDC.
∴△AFD≌△DCE(ASA),
∴AD=DE;
(3).
考点:1.等边三角形探究题;2.全等三角形的判定与性质;3.等边三角形的判定与性质.
24、当x=-1时,原式=; 当x=1时,原式=
【解析】
先将括号外的分式进行因式分解,再把括号内的分式通分,然后按照分式的除法法则,将除法转化为乘法进行计算.
【详解】
原式=
=
=
∵-<x<,且x为整数,
∴若使分式有意义,x只能取-1和1
当x=1时,原式=.或:当x=-1时,原式=1
25、(1)第一次购进40吨,第二次购进160吨;(2)为获得最大利润,精加工数量应为150吨,最大利润是1.
【解析】
(1)设第一批购进蒜薹a吨,第二批购进蒜薹b吨.构建方程组即可解决问题.
(2)设精加工x吨,利润为w元,则粗加工(100-x)吨.利润w=800x+400(200﹣x)=400x+80000,再由x≤3(100-x),解得x≤150,即可解决问题.
【详解】
(1)设第一次购进a吨,第二次购进b吨,
,
解得 ,
答:第一次购进40吨,第二次购进160吨;
(2)设精加工x吨,利润为w元,
w=800x+400(200﹣x)=400x+80000,
∵x≤3(200﹣x),
解得,x≤150,
∴当x=150时,w取得最大值,此时w=1,
答:为获得最大利润,精加工数量应为150吨,最大利润是1.
【点睛】
本题考查了二元一次方程组的应用与一次函数的应用,解题的关键是熟练的掌握二元一次方程组的应用与一次函数的应用.
26、(1)AP=60海里,BP=42(海里);(2)甲船的速度是24海里/时,乙船的速度是20海里/时
【解析】
(1)过点P作PE⊥AB于点E,则有PE=30海里,由题意,可知∠PAB=30°,∠PBA=45°,从而可得 AP=60海里,在Rt△PEB中,利用勾股定理即可求得BP的长;
(2)设乙船的速度是x海里/时,则甲船的速度是1.2x海里/时,根据甲船比乙船晚到小岛24分钟列出分式方程,求解后进行检验即可得.
【详解】
(1)如图,过点P作PE⊥MN,垂足为E,
由题意,得∠PAB=90°-60°=30°,∠PBA=90°-45°=45°,
∵PE=30海里,∴AP=60海里,
∵PE⊥MN,∠PBA=45°,∴∠PBE=∠BPE= 45°,
∴PE=EB=30海里,
在Rt△PEB中,BP==30≈42海里,
故AP=60海里,BP=42(海里);
(2)设乙船的速度是x海里/时,则甲船的速度是1.2x海里/时,
根据题意,得,
解得x=20,
经检验,x=20是原方程的解,
甲船的速度为1.2x=1.2×20=24(海里/时).,
答:甲船的速度是24海里/时,乙船的速度是20海里/时.
【点睛】
本题考查了勾股定理的应用,分式方程的应用,含30度角的直角三角形的性质,等腰直角三角形的判定与性质,熟练掌握各相关知识是解题的关键.
27、
【解析】
原式第一项利用负指数幂法则计算,第二项利用零指数幂法则计算,第三项利用特殊角的三角函数值化简,最后一项利用绝对值的代数意义化简,即可得到结果;
【详解】
原式=
=
=.
【点睛】
此题考查实数的混合运算.此题难度不大,注意解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、特殊角的三角函数值、绝对值等考点的运算.
2022届安徽省淮南市谢家集区重点达标名校中考数学适应性模拟试题含解析: 这是一份2022届安徽省淮南市谢家集区重点达标名校中考数学适应性模拟试题含解析,共23页。试卷主要包含了答题时请按要求用笔,如图所示,下列计算,正确的是等内容,欢迎下载使用。
2021-2022学年山西省永济市重点达标名校中考数学押题卷含解析: 这是一份2021-2022学年山西省永济市重点达标名校中考数学押题卷含解析,共17页。试卷主要包含了下列运算正确的是等内容,欢迎下载使用。
2021-2022学年安徽省淮南市田区重点达标名校中考数学最后冲刺模拟试卷含解析: 这是一份2021-2022学年安徽省淮南市田区重点达标名校中考数学最后冲刺模拟试卷含解析,共20页。试卷主要包含了答题时请按要求用笔,下列说法不正确的是等内容,欢迎下载使用。