安徽省宿州市鹏程中学2021-2022学年中考数学模拟预测试卷含解析
展开1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.如图,在△ABC中,点D是边AB上的一点,∠ADC=∠ACB,AD=2,BD=6,则边AC的长为( )
A.2B.4C.6D.8
2.如图,,则的度数为( )
A.115°B.110°C.105°D.65°
3.甲、乙两盒中分别放入编号为1、2、3、4的形状相同的4个小球,从甲盒中任意摸出一球,再从乙盒中任意摸出一球,将两球编号数相加得到一个数,则得到数( )的概率最大.
A.3B.4C.5D.6
4.如图是由四个相同的小正方体堆成的物体,它的正视图是( )
A.B.C.D.
5.已知函数y=(k-1)x2-4x+4的图象与x轴只有一个交点,则k的取值范围是( )
A.k≤2且k≠1B.k<2且k≠1
C.k=2D.k=2或1
6.下列事件中,必然事件是( )
A.若ab=0,则a=0
B.若|a|=4,则a=±4
C.一个多边形的内角和为1000°
D.若两直线被第三条直线所截,则同位角相等
7.据中国电子商务研究中心发布年度中国共享经济发展报告显示,截止2017年12月,共有190家共享经济平台获得亿元投资,数据亿元用科学记数法可表示为
A.元B.元C.元D.元
8.如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴的正半轴相交于A,B两点,与y轴相交于点C,对称轴为直线x=2,且OA=OC.有下列结论:①abc<0;②3b+4c<0;③c>﹣1;④关于x的方程ax2+bx+c=0有一个根为﹣,其中正确的结论个数是( )
A.1B.2C.3D.4
9.如图,在▱ABCD中,AB=1,AC=4,对角线AC与BD相交于点O,点E是BC的中点,连接AE交BD于点F.若AC⊥AB,则FD的长为( )
A.2B.3C.4D.6
10.如图,将木条a,b与c钉在一起,∠1=70°,∠2=50°,要使木条a与b平行,木条a旋转的度数至少是( )
A.10°B.20°C.50°D.70°
11.等腰三角形的两边长分别为5和11,则它的周长为( )
A.21B.21或27C.27D.25
12.已知am=2,an=3,则a3m+2n的值是( )
A.24B.36C.72D.6
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.若反比例函数y=的图象在每一个象限中,y随着x的增大而减小,则m的取值范围是_____.
14.已知抛物线y=,那么抛物线在y轴右侧部分是_________(填“上升的”或“下降的”).
15.因式分解:y3﹣16y=_____.
16.图甲是小明设计的带菱形图案的花边作品,该作品由形如图乙的矩形图案拼接而成(不重叠,无缝隙).图乙种,,EF=4cm,上下两个阴影三角形的面积之和为54cm2,其内部菱形由两组距离相等的平行线交叉得到,则该菱形的周长为___cm
17.今年“五一”节日期间,我市四个旅游景区共接待游客约303000多人次,这个数据用科学记数法可记为_____.
18.如图,在直角坐标系中,点A,B分别在x轴,y轴上,点A的坐标为(﹣1,0),∠ABO=30°,线段PQ的端点P从点O出发,沿△OBA的边按O→B→A→O运动一周,同时另一端点Q随之在x轴的非负半轴上运动,如果PQ=,那么当点P运动一周时,点Q运动的总路程为__________.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)已知:不等式≤2+x
(1)求不等式的解;
(2)若实数a满足a>2,说明a是否是该不等式的解.
20.(6分)A、B、C三人玩篮球传球游戏,游戏规则是:第一次传球由A将球随机地传给B、C两人中的某一人,以后的每一次传球都是由上次的传球者随机地传给其他两人中的某一人.
(1)求两次传球后,球恰在B手中的概率;
(2)求三次传球后,球恰在A手中的概率.
21.(6分)某市为了解市民对已闭幕的某一博览会的总体印象,利用最新引进的“计算机辅助电话访问系统”(简称CATI系统),采取电脑随机抽样的方式,对本市年龄在16~65岁之间的居民,进行了400个电话抽样调查.并根据每个年龄段的抽查人数和该年龄段对博览会总体印象感到满意的人数绘制了下面的图(1)和图(1)(部分)
根据上图提供的信息回答下列问题:
(1)被抽查的居民中,人数最多的年龄段是 岁;
(1)已知被抽查的400人中有83%的人对博览会总体印象感到满意,请你求出31~40岁年龄段的满意人数,并补全图1.
注:某年龄段的满意率=该年龄段满意人数÷该年龄段被抽查人数×100%.
22.(8分)如图①,在四边形ABCD中,AC⊥BD于点E,AB=AC=BD,点M为BC中点,N为线段AM上的点,且MB=MN.
(1)求证:BN平分∠ABE;
(2)若BD=1,连结DN,当四边形DNBC为平行四边形时,求线段BC的长;
(3)如图②,若点F为AB的中点,连结FN、FM,求证:△MFN∽△BDC.
23.(8分)某市出租车计费方法如图所示,x(km)表示行驶里程,y(元)表示车费,请根据图象回答下列问题:出租车的起步价是多少元?当x>3时,求y关于x的函数关系式;若某乘客有一次乘出租车的车费为32元,求这位乘客乘车的里程.
24.(10分)计算:-2-2 - + 0
25.(10分)我市某中学决定在八年级阳光体育“大课间”活动中开设A:实心球,B:立定跳远,C:跳绳,D:跑步四种活动项目.为了了解学生对四种项目的喜欢情况,随机抽取了部分学生进行调查,并将调查结果绘制成如图①②的统计图.请结合图中的信息解答下列问题:
(1)在这项调查中,共调查了多少名学生?
(2)将两个统计图补充完整;
(3)若调查到喜欢“立定跳远”的5名学生中有3名男生,2名女生.现从这5名学生中任意抽取2名学生.请用画树状图或列表的方法,求出刚好抽到同性别学生的概率.
26.(12分)均衡化验收以来,乐陵每个学校都高楼林立,校园环境美如画,软件、硬件等设施齐全,小明想要测量学校食堂和食堂正前方一棵树的高度,他从食堂楼底M处出发,向前走6 米到达A处,测得树顶端E的仰角为30°,他又继续走下台阶到达C处,测得树的顶端的仰角是60°,再继续向前走到大树底D处,测得食堂楼顶N的仰角为45°,已如A点离地面的高度AB=4米,∠BCA=30°,且B、C、D 三点在同一直线上.
(1)求树DE的高度;
(2)求食堂MN的高度.
27.(12分)如图,已知直线与抛物线相交于A,B两点,且点A(1,-4)为抛物线的顶点,点B在x轴上.
(1)求抛物线的解析式;
(2)在(1)中抛物线的第二象限图象上是否存在一点P,使△POB与△POC全等?若存在,求出点P的坐标;若不存在,请说明理由;
(3)若点Q是y轴上一点,且△ABQ为直角三角形,求点Q的坐标.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、B
【解析】
证明△ADC∽△ACB,根据相似三角形的性质可推导得出AC2=AD•AB,由此即可解决问题.
【详解】
∵∠A=∠A,∠ADC=∠ACB,
∴△ADC∽△ACB,
∴,
∴AC2=AD•AB=2×8=16,
∵AC>0,
∴AC=4,
故选B.
【点睛】
本题考查相似三角形的判定和性质、解题的关键是正确寻找相似三角形解决问题.
2、A
【解析】
根据对顶角相等求出∠CFB=65°,然后根据CD∥EB,判断出∠B=115°.
【详解】
∵∠AFD=65°,
∴∠CFB=65°,
∵CD∥EB,
∴∠B=180°−65°=115°,
故选:A.
【点睛】
本题考查了平行线的性质,知道“两直线平行,同旁内角互补”是解题的关键.
3、C
【解析】
解:甲和乙盒中1个小球任意摸出一球编号为1、2、3、1的概率各为,
其中得到的编号相加后得到的值为{2,3,1,5,6,7,8}
和为2的只有1+1;
和为3的有1+2;2+1;
和为1的有1+3;2+2;3+1;
和为5的有1+1;2+3;3+2;1+1;
和为6的有2+1;1+2;
和为7的有3+1;1+3;
和为8的有1+1.
故p(5)最大,故选C.
4、A
【解析】
【分析】根据正视图是从物体的正面看得到的图形即可得.
【详解】从正面看可得从左往右2列正方形的个数依次为2,1,
如图所示:
故选A.
【点睛】本题考查了三视图的知识,正视图是从物体的正面看得到的视图.
5、D
【解析】
当k+1=0时,函数为一次函数必与x轴有一个交点;当k+1≠0时,函数为二次函数,根据条件可知其判别式为0,可求得k的值.
【详解】
当k-1=0,即k=1时,函数为y=-4x+4,与x轴只有一个交点;
当k-1≠0,即k≠1时,由函数与x轴只有一个交点可知,
∴△=(-4)2-4(k-1)×4=0,
解得k=2,
综上可知k的值为1或2,
故选D.
【点睛】
本题主要考查函数与x轴的交点,掌握二次函数与x轴只有一个交点的条件是解题的关键,解决本题时注意考虑一次函数和二次函数两种情况.
6、B
【解析】
直接利用绝对值的性质以及多边形的性质和平行线的性质分别分析得出答案.
【详解】
解:A、若ab=0,则a=0,是随机事件,故此选项错误;
B、若|a|=4,则a=±4,是必然事件,故此选项正确;
C、一个多边形的内角和为1000°,是不可能事件,故此选项错误;
D、若两直线被第三条直线所截,则同位角相等,是随机事件,故此选项错误;
故选:B.
【点睛】
此题主要考查了事件的判别,正确把握各命题的正确性是解题关键.
7、C
【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【详解】
亿=115956000000,
所以亿用科学记数法表示为1.15956×1011,
故选C.
【点睛】
本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
8、B
【解析】
由二次函数图象的开口方向、对称轴及与y轴的交点可分别判断出a、b、c的符号,从而可判断①;由对称轴=2可知a=,由图象可知当x=1时,y>0,可判断②;由OA=OC,且OA<1,可判断③;把-代入方程整理可得ac2-bc+c=0,结合③可判断④;从而可得出答案.
【详解】
解:∵图象开口向下,∴a<0,
∵对称轴为直线x=2,∴>0,∴b>0,
∵与y轴的交点在x轴的下方,∴c<0,
∴abc>0,故①错误.
∵对称轴为直线x=2,∴=2,∴a=,
∵由图象可知当x=1时,y>0,
∴a+b+c>0,∴4a+4b+4c>0,∴4()+4b+4c>0,
∴3b+4c>0,故②错误.
∵由图象可知OA<1,且OA=OC,
∴OC<1,即-c<1,
∴c>-1,故③正确.
∵假设方程的一个根为x=-,把x=-代入方程可得+c=0,
整理可得ac-b+1=0,
两边同时乘c可得ac2-bc+c=0,
∴方程有一个根为x=-c,
由③可知-c=OA,而当x=OA是方程的根,
∴x=-c是方程的根,即假设成立,故④正确.
综上可知正确的结论有三个:③④.
故选B.
【点睛】
本题主要考查二次函数的图象和性质.熟练掌握图象与系数的关系以及二次函数与方程、不等式的关系是解题的关键.特别是利用好题目中的OA=OC,是解题的关键.
9、C
【解析】
利用平行四边形的性质得出△ADF∽△EBF,得出=,再根据勾股定理求出BO的长,进而得出答案.
【详解】
解:∵在□ABCD中,对角线AC、BD相交于O,
∴BO=DO,AO=OC,AD∥BC,
∴△ADF∽△EBF,
∴=,
∵AC=4,
∴AO=2,
∵AB=1,AC⊥AB,
∴BO===3,
∴BD=6,
∵E是BC的中点,
∴==,
∴BF=2, FD=4.
故选C.
【点睛】
本题考查了勾股定理与相似三角形的判定与性质,解题的关键是熟练的掌握勾股定理与相似三角形的判定与性质.
10、B
【解析】
要使木条a与b平行,那么∠1=∠2,从而可求出木条a至少旋转的度数.
【详解】
解:∵要使木条a与b平行,
∴∠1=∠2,
∴当∠1需变为50 º,
∴木条a至少旋转:70º-50º=20º.
故选B.
【点睛】
本题考查了旋转的性质及平行线的性质:①两直线平行同位角相等;②两直线平行内错角相等;③两直线平行同旁内角互补;④夹在两平行线间的平行线段相等.在运用平行线的性质定理时,一定要找准同位角,内错角和同旁内角.
11、C
【解析】
试题分析:分类讨论:当腰取5,则底边为11,但5+5<11,不符合三角形三边的关系;当腰取11,则底边为5,根据等腰三角形的性质得到另外一边为11,然后计算周长.
解:当腰取5,则底边为11,但5+5<11,不符合三角形三边的关系,所以这种情况不存在;
当腰取11,则底边为5,则三角形的周长=11+11+5=1.
故选C.
考点:等腰三角形的性质;三角形三边关系.
12、C
【解析】
试题解析:∵am=2,an=3,
∴a3m+2n
=a3m•a2n
=(am)3•(an)2
=23×32
=8×9
=1.
故选C.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、m>1
【解析】
∵反比例函数的图象在其每个象限内,y随x的增大而减小,
∴>0,
解得:m>1,
故答案为m>1.
14、上升的
【解析】
∵抛物线y=x2-1开口向上,对称轴为x=0 (y 轴),
∴在y 轴右侧部分抛物线呈上升趋势.
故答案为:上升的.
【点睛】
本题考查的知识点是二次函数的性质,解题的关键是熟练的掌握二次函数的性质.
15、y(y+4)(y﹣4)
【解析】
试题解析:原式
故答案为
点睛:提取公因式法和公式法相结合因式分解.
16、
【解析】
试题分析:根据,EF=4可得:AB=和BC的长度,根据阴影部分的面积为54可得阴影部分三角形的高,然后根据菱形的性质可以求出小菱形的边长为,则菱形的周长为:×4=.
考点:菱形的性质.
17、3.03×101
【解析】分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于303000有6位整数,所以可以确定n=6-1=1.
详解:303000=3.03×101,
故答案为:3.03×101.
点睛:此题考查科学记数法表示较大的数的方法,准确确定a与n的值是解题的关键.
18、4
【解析】
首先根据题意正确画出从O→B→A运动一周的图形,分四种情况进行计算:①点P从O→B时,路程是线段PQ的长;②当点P从B→C时,点Q从O运动到Q,计算OQ的长就是运动的路程;③点P从C→A时,点Q由Q向左运动,路程为QQ′;④点P从A→O时,点Q运动的路程就是点P运动的路程;最后相加即可.
【详解】
在Rt△AOB中,∵∠ABO=30°,AO=1,
∴AB=2,BO=
①当点P从O→B时,如图1、图2所示,点Q运动的路程为,
②当点P从B→C时,如图3所示,这时QC⊥AB,则∠ACQ=90°
∵∠ABO=30°
∴∠BAO=60°
∴∠OQD=90°﹣60°=30°
∴AQ=2AC,
又∵CQ=,
∴AQ=2
∴OQ=2﹣1=1,则点Q运动的路程为QO=1,
③当点P从C→A时,如图3所示,点Q运动的路程为QQ′=2﹣,
④当点P从A→O时,点Q运动的路程为AO=1,
∴点Q运动的总路程为:+1+2﹣+1=4
故答案为4.
考点:解直角三角形
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1)x≥﹣1;(2)a是不等式的解.
【解析】
(1)根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得.
(2)根据不等式的解的定义求解可得
【详解】
解:(1)去分母得:2﹣x≤3(2+x),
去括号得:2﹣x≤6+3x,
移项、合并同类项得:﹣4x≤4,
系数化为1得:x≥﹣1.
(2)∵a>2,不等式的解集为x≥﹣1,而2>﹣1,
∴a是不等式的解.
【点睛】
本题考查了解一元一次不等式,掌握解一元一次不等式的步骤是解题的关键
20、(1);(2) .
【解析】
试题分析:(1)直接列举出两次传球的所有结果,球球恰在B手中的结果只有一种即可求概率;(2)画出树状图,表示出三次传球的所有结果,三次传球后,球恰在A手中的结果有2种,即可求出三次传球后,球恰在A手中的概率.
试题解析:
解:(1)两次传球的所有结果有4种,分别是A→B→C,A→B→A,A→C→B,A→C→A.每种结果发生的可能性相等,球球恰在B手中的结果只有一种,所以两次传球后,球恰在B手中的概率是;
(2)树状图如下,
由树状图可知,三次传球的所有结果有8种,每种结果发生的可能性相等.其中,三次传球后,球恰在A手中的结果有A→B→C→A,A→C→B→A这两种,所以三次传球后,球恰在A手中的概率是.
考点:用列举法求概率.
21、(1)11~30;(1)31~40岁年龄段的满意人数为66人,图见解析;
【解析】
(1)取扇形统计图中所占百分比最大的年龄段即可;
(1)先求出总体感到满意的总人数,然后减去其它年龄段的人数即可,再补全条形图.
【详解】
(1)由扇形统计图可得11~30岁的人数所占百分比最大为39%,
所以,人数最多的年龄段是11~30岁;
(1)根据题意,被调查的人中,总体印象感到满意的有:400×83%=331人,
31~40岁年龄段的满意人数为:331﹣54﹣116﹣53﹣14﹣9=331﹣116=66人,
补全统计图如图.
【点睛】
本题考点:条形统计图与扇形统计图.
22、(1)证明见解析;(2);(3)证明见解析.
【解析】
分析:(1)由AB=AC知∠ABC=∠ACB,由等腰三角形三线合一知AM⊥BC,从而根据∠MAB+∠ABC=∠EBC+∠ACB知∠MAB=∠EBC,再由△MBN为等腰直角三角形知∠EBC+∠NBE=∠MAB+∠ABN=∠MNB=45°可得证;
(2)设BM=CM=MN=a,知DN=BC=2a,证△ABN≌△DBN得AN=DN=2a,Rt△ABM中利用勾股定理可得a的值,从而得出答案;
(3)F是AB的中点知MF=AF=BF及∠FMN=∠MAB=∠CBD,再由即可得证.
详解:(1)∵AB=AC,
∴∠ABC=∠ACB,
∵M为BC的中点,
∴AM⊥BC,
在Rt△ABM中,∠MAB+∠ABC=90°,
在Rt△CBE中,∠EBC+∠ACB=90°,
∴∠MAB=∠EBC,
又∵MB=MN,
∴△MBN为等腰直角三角形,
∴∠MNB=∠MBN=45°,
∴∠EBC+∠NBE=45°,∠MAB+∠ABN=∠MNB=45°,
∴∠NBE=∠ABN,即BN平分∠ABE;
(2)设BM=CM=MN=a,
∵四边形DNBC是平行四边形,
∴DN=BC=2a,
在△ABN和△DBN中,
∵,
∴△ABN≌△DBN(SAS),
∴AN=DN=2a,
在Rt△ABM中,由AM2+MB2=AB2可得(2a+a)2+a2=1,
解得:a=±(负值舍去),
∴BC=2a=;
(3)∵F是AB的中点,
∴在Rt△MAB中,MF=AF=BF,
∴∠MAB=∠FMN,
又∵∠MAB=∠CBD,
∴∠FMN=∠CBD,
∵,
∴,
∴△MFN∽△BDC.
点睛:本题主要考查相似形的综合问题,解题的关键是掌握等腰三角形三线合一的性质、直角三角形和平行四边形的性质及全等三角形与相似三角形的判定与性质等知识点.
23、 (1)y=2x+2(2)这位乘客乘车的里程是15km
【解析】
(1)根据函数图象可以得出出租车的起步价是8元,设当x>3时,y与x的函数关系式为y=kx+b(k≠0),运用待定系数法就可以求出结论;
(2)将y=32代入(1)的解析式就可以求出x的值.
【详解】
(1)由图象得:
出租车的起步价是8元;
设当x>3时,y与x的函数关系式为y=kx+b(k≠0),由函数图象,得
,
解得:
故y与x的函数关系式为:y=2x+2;
(2)∵32元>8元,
∴当y=32时,
32=2x+2,
x=15
答:这位乘客乘车的里程是15km.
24、
【解析】
直接利用负指数幂的性质以及零指数幂的性质和特殊角的锐角三角函数值分别化简,再根据实数的运算法则即可求出答案.
【详解】
解:原式=
【点睛】
本题考查了负指数幂的性质以及零指数幂的性质和特殊角的锐角三角函数值,熟记这些运算法则是解题的关键.
25、 (1)50名;(2)补图见解析;(3) 刚好抽到同性别学生的概率是
【解析】
试题分析:(1)由题意可得本次调查的学生共有:15÷30%;
(2)先求出C的人数,再求出C的百分比即可;
(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与刚好抽到同性别学生的情况,再利用概率公式即可求得答案.
试题解析:(1)根据题意得: 15÷30%=50(名).
答;在这项调查中,共调查了50名学生;
(2)图如下:
(3)用A表示男生,B表示女生,画图如下:
共有20种情况,同性别学生的情况是8种,
则刚好抽到同性别学生的概率是.
26、(1)12米;(2)(2+8)米
【解析】
(1)设DE=x,先证明△ACE是直角三角形,∠CAE=60°,∠AEC=30°,得到AE=16,根据EF=8求出x的值得到答案;
(2)延长NM交DB延长线于点P,先分别求出PB、CD得到PD,利用∠NDP=45°得到NP,即可求出MN.
【详解】
(1)如图,设DE=x,
∵AB=DF=4,∠ACB=30°,
∴AC=8,
∵∠ECD=60°,
∴△ACE是直角三角形,
∵AF∥BD,
∴∠CAF=30°,
∴∠CAE=60°,∠AEC=30°,
∴AE=16,
∴Rt△AEF中,EF=8,
即x﹣4=8,
解得x=12,
∴树DE的高度为12米;
(2)延长NM交DB延长线于点P,则AM=BP=6,
由(1)知CD=CE=×AC=4,BC=4,
∴PD=BP+BC+CD=6+4+4=6+8,
∵∠NDP=45°,且∠NPD=90°,
∴NP=PD=6+8,
∴NM=NP﹣MP=6+8﹣4=2+8,
∴食堂MN的高度为(2+8)米.
【点睛】
此题是解直角三角形的实际应用,考查直角三角形的性质,30°角所对的直角边等于斜边的一半,锐角三角函数,将已知的线段及角放在相应的直角三角形中利用三角函数解题,由此做相应的辅助线是解题的关键.
27、解:(1);(2)存在,P(,);(1)Q点坐标为(0,-)或(0,)或(0,-1)或(0,-1).
【解析】
(1)已知点A坐标可确定直线AB的解析式,进一步能求出点B的坐标.点A是抛物线的顶点,那么可以将抛物线的解析式设为顶点式,再代入点B的坐标,依据待定系数法可解.
(2)首先由抛物线的解析式求出点C的坐标,在△POB和△POC中,已知的条件是公共边OP,若OB与OC不相等,那么这两个三角形不能构成全等三角形;若OB等于OC,那么还要满足的条件为:∠POC=∠POB,各自去掉一个直角后容易发现,点P正好在第二象限的角平分线上,联立直线y=-x与抛物线的解析式,直接求交点坐标即可,同时还要注意点P在第二象限的限定条件.
(1)分别以A、B、Q为直角顶点,分类进行讨论,找出相关的相似三角形,依据对应线段成比例进行求解即可.
【详解】
解:(1)把A(1,﹣4)代入y=kx﹣6,得k=2,
∴y=2x﹣6,
令y=0,解得:x=1,
∴B的坐标是(1,0).
∵A为顶点,
∴设抛物线的解析为y=a(x﹣1)2﹣4,
把B(1,0)代入得:4a﹣4=0,
解得a=1,
∴y=(x﹣1)2﹣4=x2﹣2x﹣1.
(2)存在.
∵OB=OC=1,OP=OP,
∴当∠POB=∠POC时,△POB≌△POC,
此时PO平分第二象限,即PO的解析式为y=﹣x.
设P(m,﹣m),则﹣m=m2﹣2m﹣1,解得m=(m=>0,舍),
∴P(,).
(1)①如图,当∠Q1AB=90°时,△DAQ1∽△DOB,
∴,即=,∴DQ1=,
∴OQ1=,即Q1(0,-);
②如图,当∠Q2BA=90°时,△BOQ2∽△DOB,
∴,即,
∴OQ2=,即Q2(0,);
③如图,当∠AQ1B=90°时,作AE⊥y轴于E,
则△BOQ1∽△Q1EA,
∴,即
∴OQ12﹣4OQ1+1=0,∴OQ1=1或1,
即Q1(0,﹣1),Q4(0,﹣1).
综上,Q点坐标为(0,-)或(0,)或(0,﹣1)或(0,﹣1).
安徽省宿州市鹏程中学2023-2024学年数学八上期末预测试题含答案: 这是一份安徽省宿州市鹏程中学2023-2024学年数学八上期末预测试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。
2022-2023学年安徽省宿州市萧县鹏程中学八年级(下)期中数学试卷(含解析): 这是一份2022-2023学年安徽省宿州市萧县鹏程中学八年级(下)期中数学试卷(含解析),共14页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
安徽省宿州市第十一中学2021-2022学年中考数学模拟预测题含解析: 这是一份安徽省宿州市第十一中学2021-2022学年中考数学模拟预测题含解析,共20页。试卷主要包含了﹣的绝对值是,下列运算正确的是等内容,欢迎下载使用。