终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    安徽省庐阳区五校联考2021-2022学年中考一模数学试题含解析

    立即下载
    加入资料篮
    安徽省庐阳区五校联考2021-2022学年中考一模数学试题含解析第1页
    安徽省庐阳区五校联考2021-2022学年中考一模数学试题含解析第2页
    安徽省庐阳区五校联考2021-2022学年中考一模数学试题含解析第3页
    还剩15页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    安徽省庐阳区五校联考2021-2022学年中考一模数学试题含解析

    展开

    这是一份安徽省庐阳区五校联考2021-2022学年中考一模数学试题含解析,共18页。试卷主要包含了答题时请按要求用笔,下列运算正确的是,一元二次方程=0的两个根是等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    注意事项:
    1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
    2.答题时请按要求用笔。
    3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
    4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
    5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.“绿水青山就是金山银山”.某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务.设实际工作时每天绿化的面积为x万平方米,则下面所列方程中正确的是(  )
    A. B.
    C. D.
    2.sin45°的值等于(  )
    A. B.1 C. D.
    3.在学校演讲比赛中,10名选手的成绩折线统计图如图所示,则下列说法正确的是( )

    A.最高分90 B.众数是5 C.中位数是90 D.平均分为87.5
    4.如图是抛物线y1=ax2+bx+c(a≠0)图象的一部分,抛物线的顶点坐标A(1,3),与x轴的一个交点B(4,0),直线y2=mx+n(m≠0)与抛物线交于A,B两点,下列结论:
    ①2a+b=0;②abc>0;③方程ax2+bx+c=3有两个相等的实数根;④抛物线与x轴的另一个交点是(﹣1,0);⑤当1<x<4时,有y2<y1,
    其中正确的是( )

    A.①②③ B.①③④ C.①③⑤ D.②④⑤
    5.下列式子中,与互为有理化因式的是(  )
    A. B. C. D.
    6.下列运算正确的是(  )
    A.5ab﹣ab=4 B.a6÷a2=a4
    C. D.(a2b)3=a5b3
    7.一次函数满足,且随的增大而减小,则此函数的图象不经过( )
    A.第一象限 B.第二象限 C.第三象限 D.第四象限
    8.一元二次方程(x+3)(x-7)=0的两个根是
    A.x1=3,x2=-7 B.x1=3,x2=7
    C.x1=-3,x2=7 D.x1=-3,x2=-7
    9.空气的密度为0.00129g/cm3,0.00129这个数用科学记数法可表示为( )
    A.0.129×10﹣2 B.1.29×10﹣2 C.1.29×10﹣3 D.12.9×10﹣1
    10.如图是某蓄水池的横断面示意图,分为深水池和浅水池,如果向这个蓄水池以固定的流量注水,下面能大致表示水的最大深度与时间之间的关系的图象是( )

    A. B. C. D.
    二、填空题(共7小题,每小题3分,满分21分)
    11.一个多边形的内角和是,则它是______边形.
    12.如图,在Rt△ABC中,∠ACB=90°,AC=5cm,BC=12cm,将△ABC绕点B顺时针旋转60°,得到△BDE,连接DC交AB于点F,则△ACF与△BDF的周长之和为_______cm.

    13.如图,等边三角形AOB的顶点A的坐标为(﹣4,0),顶点B在反比例函数(x<0)的图象上,则k= .

    14.有一组数据:3,a,4,6,7,它们的平均数是5,则a=_____,这组数据的方差是_____.
    15.如图,△ABC中,AB=AC,D是AB上的一点,且AD=AB,DF∥BC,E为BD的中点.若EF⊥AC,BC=6,则四边形DBCF的面积为____.

    16.如图,O是坐标原点,菱形OABC的顶点A的坐标为(﹣3,﹣4),顶点C在x轴的负半轴上,函数y=(x<0)的图象经过菱形OABC中心E点,则k的值为_____.

    17.若是关于的完全平方式,则__________.
    三、解答题(共7小题,满分69分)
    18.(10分)2013年我国多地出现雾霾天气,某企业抓住商机准备生产空气净化设备,该企业决定从以下两个投资方案中选择一个进行投资生产,方案一:生产甲产品,每件产品成本为a元(a为常数,且40<a<100),每件产品销售价为120元,每年最多可生产125万件;方案二:生产乙产品,每件产品成本价为80元,每件产品销售价为180元,每年可生产120万件,另外,年销售x万件乙产品时需上交0.5x2万元的特别关税,在不考虑其它因素的情况下:
    (1)分别写出该企业两个投资方案的年利润y1(万元)、y2(万元)与相应生产件数x(万件)(x为正整数)之间的函数关系式,并指出自变量的取值范围;
    (2)分别求出这两个投资方案的最大年利润;
    (3)如果你是企业决策者,为了获得最大收益,你会选择哪个投资方案?
    19.(5分)计算:.化简:.
    20.(8分)在大课间活动中,体育老师随机抽取了七年级甲、乙两班部分女学生进行仰卧起坐的测试,并对成绩进行统计分析,绘制了频数分布表和统计图,请你根据图表中的信息完成下列问题:频数分布表中a = ,b= ,并将统计图补充完整;如果该校七年级共有女生180人,估计仰卧起坐能够一分钟完成30或30次以上的女学生有多少人?已知第一组中只有一个甲班学生,第四组中只有一个乙班学生,老师随机从这两个组中各选一名学生谈心得体会,则所选两人正好都是甲班学生的概率是多少?

    21.(10分)如图,在矩形ABCD中,对角线AC,BD相交于点O.
    (1)画出△AOB平移后的三角形,其平移后的方向为射线AD的方向,平移的距离为AD的长.
    (2)观察平移后的图形,除了矩形ABCD外,还有一种特殊的平行四边形?请证明你的结论.

    22.(10分)地球环境问题已经成为我们日益关注的问题.学校为了普及生态环保知识,提高学生生态环境保护意识,举办了“我参与,我环保”的知识竞赛.以下是从初一、初二两个年级随机抽取20名同学的测试成绩进行调查分析,成绩如下:
    初一:76 88 93 65 78 94 89 68 95 50
    89 88 89 89 77 94 87 88 92 91
    初二:74 97 96 89 98 74 69 76 72 78
    99 72 97 76 99 74 99 73 98 74
    (1)根据上面的数据,将下列表格补充完整;
    整理、描述数据:
    成绩x
    人数
    班级





    初一
    1
    2
    3

    6
    初二
    0
    1
    10
    1
    8
    (说明:成绩90分及以上为优秀,80~90分为良好,60~80分为合格,60分以下为不合格)
    分析数据:
    年级
    平均数
    中位数
    众数
    初一
    84
    88.5

    初二
    84.2

    74
    (2)得出结论:
    你认为哪个年级掌握生态环保知识水平较好并说明理由.(至少从两个不同的角度说明推断的合理性).
    23.(12分)某商场购进甲、乙两种商品,甲种商品共用了2000元,乙种商品共用了2400元已知乙种商品每件进价比甲种商品每件进价多8元,且购进的甲、乙两种商品件数相同.
    求甲、乙两种商品的每件进价;
    该商场将购进的甲、乙两种商品进行销售,甲种商品的销售单价为60元,乙种商品的销售单价为88元,销售过程中发现甲种商品销量不好,商场决定:甲种商品销售一定数量后,将剩余的甲种商品按原销售单价的七折销售;乙种商品销售单价保持不变要使两种商品全部售完后共获利不少于2460元,问甲种商品按原销售单价至少销售多少件?
    24.(14分)如图,矩形OABC中,点O为原点,点A的坐标为(0,8),点C的坐标为(6,0).抛物线经过A、C两点,与AB边交于点D.
    (1)求抛物线的函数表达式;
    (2)点P为线段BC上一个动点(不与点C重合),点Q为线段AC上一个动点,AQ=CP,连接PQ,设CP=m,△CPQ的面积为S.
    ①求S关于m的函数表达式,并求出m为何值时,S取得最大值;
    ②当S最大时,在抛物线的对称轴l上若存在点F,使△FDQ为直角三角形,请直接写出所有符合条件的F的坐标;若不存在,请说明理由.




    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、C
    【解析】
    分析:设实际工作时每天绿化的面积为x万平方米,根据工作时间=工作总量÷工作效率结合提前 30 天完成任务,即可得出关于x的分式方程.
    详解:设实际工作时每天绿化的面积为x万平方米,则原来每天绿化的面积为万平方米,
    依题意得:,即.
    故选C.
    点睛:考查了由实际问题抽象出分式方程.找到关键描述语,找到合适的等量关系是解决问题的关键.
    2、D
    【解析】
    根据特殊角的三角函数值得出即可.
    【详解】
    解:sin45°=,
    故选:D.
    【点睛】
    本题考查了特殊角的三角函数的应用,能熟记特殊角的三角函数值是解此题的关键,难度适中.
    3、C
    【解析】
    试题分析:根据折线统计图可得:最高分为95,众数为90;中位数90;平均分=(80×2+85+90×5+95×2)÷(2+1+5+2)=88.5.
    4、C
    【解析】
    试题解析:∵抛物线的顶点坐标A(1,3),
    ∴抛物线的对称轴为直线x=-=1,
    ∴2a+b=0,所以①正确;
    ∵抛物线开口向下,
    ∴a<0,
    ∴b=-2a>0,
    ∵抛物线与y轴的交点在x轴上方,
    ∴c>0,
    ∴abc<0,所以②错误;
    ∵抛物线的顶点坐标A(1,3),
    ∴x=1时,二次函数有最大值,
    ∴方程ax2+bx+c=3有两个相等的实数根,所以③正确;
    ∵抛物线与x轴的一个交点为(4,0)
    而抛物线的对称轴为直线x=1,
    ∴抛物线与x轴的另一个交点为(-2,0),所以④错误;
    ∵抛物线y1=ax2+bx+c与直线y2=mx+n(m≠0)交于A(1,3),B点(4,0)
    ∴当1<x<4时,y2<y1,所以⑤正确.
    故选C.
    考点:1.二次函数图象与系数的关系;2.抛物线与x轴的交点.
    5、B
    【解析】
    直接利用有理化因式的定义分析得出答案.
    【详解】
    ∵()(,)
    =12﹣2,
    =10,
    ∴与互为有理化因式的是:,
    故选B.
    【点睛】
    本题考查了有理化因式,如果两个含有二次根式的非零代数式相乘,它们的积不含有二次根式,就说这两个非零代数式互为有理化因式. 单项二次根式的有理化因式是它本身或者本身的相反数;其他代数式的有理化因式可用平方差公式来进行分步确定.
    6、B
    【解析】
    由整数指数幂和分式的运算的法则计算可得答案.
    【详解】
    A项, 根据单项式的减法法则可得:5ab-ab=4ab,故A项错误;
    B项, 根据“同底数幂相除,底数不变,指数相减”可得: a6÷a2=a4,故B项正确;
    C项,根据分式的加法法则可得:,故C项错误;
    D项, 根据 “积的乘方等于乘方的积” 可得:,故D项错误;
    故本题正确答案为B.
    【点睛】
    幂的运算法则:
    (1) 同底数幂的乘法: (m、n都是正整数)
    (2)幂的乘方:(m、n都是正整数)
    (3)积的乘方: (n是正整数)
    (4)同底数幂的除法:(a≠0,m、n都是正整数,且m>n)
    (5)零次幂:(a≠0)
    (6) 负整数次幂: (a≠0, p是正整数).
    7、A
    【解析】
    试题分析:根据y随x的增大而减小得:k<0,又kb>0,则b<0,故此函数的图象经过第二、三、四象限,即不经过第一象限.
    故选A.
    考点:一次函数图象与系数的关系.
    8、C
    【解析】
    根据因式分解法直接求解即可得.
    【详解】
    ∵(x+3)(x﹣7)=0,
    ∴x+3=0或x﹣7=0,
    ∴x1=﹣3,x2=7,
    故选C.
    【点睛】
    本题考查了解一元二次方程——因式分解法,根据方程的特点选择恰当的方法进行求解是解题的关键.
    9、C
    【解析】
    试题分析:0.00129这个数用科学记数法可表示为1.29×10﹣1.故选C.
    考点:科学记数法—表示较小的数.
    10、C
    【解析】
    首先看图可知,蓄水池的下部分比上部分的体积小,故h与t的关系变为先快后慢.
    【详解】
    根据题意和图形的形状,可知水的最大深度h与时间t之间的关系分为两段,先快后慢。
    故选:C.
    【点睛】
    此题考查函数的图象,解题关键在于观察图形

    二、填空题(共7小题,每小题3分,满分21分)
    11、六
    【解析】
    试题分析:这个正多边形的边数是n,则(n﹣2)•180°=720°,解得:n=1.则这个正多边形的边数是六,故答案为六.
    考点:多边形内角与外角.
    12、1.
    【解析】
    试题分析:∵将△ABC绕点B顺时针旋转60°,得到△BDE,∴△ABC≌△BDE,∠CBD=60°,∴BD=BC=12cm,∴△BCD为等边三角形,∴CD=BC=CD=12cm,在Rt△ACB中,AB===13,△ACF与△BDF的周长之和=AC+AF+CF+BF+DF+BD=AC+AB+CD+BD=5+13+12+12=1(cm),故答案为1.
    考点:旋转的性质.
    13、-4.
    【解析】
    过点B作BD⊥x轴于点D,因为△AOB是等边三角形,点A的坐标为(-4,0)所∠AOB=60°,根据锐角三角函数的定义求出BD及OD的长,可得出B点坐标,进而得出反比例函数的解析式.
    【详解】
    过点B作BD⊥x轴于点D,

    ∵△AOB是等边三角形,点A的坐标为(﹣4,0),
    ∴∠AOB=60°,OB=OA=AB=4,
    ∴OD= OB=2,BD=OB•sin60°=4×=2,
    ∴B(﹣2,2 ),
    ∴k=﹣2×2 =﹣4.
    【点睛】
    本题考查了反比例函数图象上点的坐标特点、等边三角形的性质、解直角三角函数等知识,难度适中.
    14、5 1.
    【解析】
    ∵一组数据:3,a,4,6,7,它们的平均数是5,
    ∴,
    解得,,
    ∴=1.
    故答案为5,1.
    15、2
    【解析】
    解:如图,过D点作DG⊥AC,垂足为G,过A点作AH⊥BC,垂足为H,

    ∵AB=AC,点E为BD的中点,且AD=AB,
    ∴设BE=DE=x,则AD=AF=1x.
    ∵DG⊥AC,EF⊥AC,
    ∴DG∥EF,∴,即,解得.
    ∵DF∥BC,∴△ADF∽△ABC,∴,即,解得DF=1.
    又∵DF∥BC,∴∠DFG=∠C,
    ∴Rt△DFG∽Rt△ACH,∴,即,解得.
    在Rt△ABH中,由勾股定理,得.
    ∴.
    又∵△ADF∽△ABC,∴,

    ∴.
    故答案为:2.
    16、8
    【解析】
    根据反比例函数的性质结合点的坐标利用勾股定理解答.
    【详解】
    解:菱形OABC的顶点A的坐标为(-3,-4),OA=OC=则点B的横坐标为-5-3=-8,点B的坐标为(-8,-4),点C的坐标为(-5,0)则点E的坐标为(-4,-2),将点E的坐标带入y=(x<0)中,得k=8.
    给答案为:8.
    【点睛】
    此题重点考察学生对反比例函数性质的理解,掌握坐标轴点的求法和菱形性质是解题的关键.
    17、1或-1
    【解析】
    【分析】直接利用完全平方公式的定义得出2(m-3)=±8,进而求出答案.
    详解:∵x2+2(m-3)x+16是关于x的完全平方式,
    ∴2(m-3)=±8,
    解得:m=-1或1,
    故答案为-1或1.
    点睛:此题主要考查了完全平方公式,正确掌握完全平方公式的基本形式是解题关键.

    三、解答题(共7小题,满分69分)
    18、(1)y1=(120-a)x(1≤x≤125,x为正整数),y2=100x-0.5x2(1≤x≤120,x为正整数);(2)110-125a(万元),10(万元);(3)当40<a<80时,选择方案一;当a=80时,选择方案一或方案二均可;当80<a<100时,选择方案二.
    【解析】
    (1)根据题意直接得出y1与y2与x的函数关系式即可;
    (2)根据a的取值范围可知y1随x的增大而增大,可求出y1的最大值.又因为﹣0.5<0,可求出y2的最大值;
    (3)第三问要分两种情况决定选择方案一还是方案二.当2000﹣200a>1以及2000﹣200a<1.
    【详解】
    解:(1)由题意得:
    y1=(120﹣a)x(1≤x≤125,x为正整数),
    y2=100x﹣0.5x2(1≤x≤120,x为正整数);
    (2)①∵40<a<100,∴120﹣a>0,
    即y1随x的增大而增大,
    ∴当x=125时,y1最大值=(120﹣a)×125=110﹣125a(万元)
    ②y2=﹣0.5(x﹣100)2+10,
    ∵a=﹣0.5<0,
    ∴x=100时,y2最大值=10(万元);
    (3)∵由110﹣125a>10,
    ∴a<80,
    ∴当40<a<80时,选择方案一;
    由110﹣125a=10,得a=80,
    ∴当a=80时,选择方案一或方案二均可;
    由110﹣125a<10,得a>80,
    ∴当80<a<100时,选择方案二.
    考点:二次函数的应用.
    19、(1)5;(2)-3x+4
    【解析】
    (1)第一项计算算术平方根,第二项计算零指数幂,第三项计算特殊角的三角函数值,最后计算有理数运算.
    (2)利用完全平方公式和去括号法则进行计算,再进行合并同类项运算.
    【详解】
    (1)解:原式
    (2)解:原式
    【点睛】
    本题考查实数的混合运算和整式运算,解题关键是熟练运用完全平方公式和熟记特殊角的三角函数值.
    20、(1)a=0.3,b=4;(2)99人;(3)
    【解析】
    分析:(1)由统计图易得a与b的值,继而将统计图补充完整;
    (2)利用用样本估计总体的知识求解即可求得答案;
    (3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与所选两人正好都是甲班学生的情况,再利用概率公式即可求得答案.
    详解:(1)a=1-0.15-0.35-0.20=0.3;
    ∵总人数为:3÷0.15=20(人),
    ∴b=20×0.20=4(人);
    故答案为:0.3,4;
    补全统计图得:

    (2)估计仰卧起坐能够一分钟完成30或30次以上的女学生有:180×(0.35+0.20)=99(人);
    (3)画树状图得:

    ∵共有12种等可能的结果,所选两人正好都是甲班学生的有3种情况,
    ∴所选两人正好都是甲班学生的概率是:.
    点睛:此题考查了列表法或树状图法求概率以及条形统计图的知识.用到的知识点为:概率=所求情况数与总情况数之比.
    21、(1)如图所示见解析;(2)四边形OCED是菱形.理由见解析.
    【解析】
    (1)根据图形平移的性质画出平移后的△DEC即可;
    (2)根据图形平移的性质得出AC∥DE,OA=DE,故四边形OCED是平行四边形,再由矩形的性质可知OA=OB,故DE=CE,由此可得出结论.
    【详解】
    (1)如图所示;

    (2)四边形OCED是菱形.
    理由:∵△DEC由△AOB平移而成,
    ∴AC∥DE,BD∥CE,OA=DE,OB=CE,
    ∴四边形OCED是平行四边形.
    ∵四边形ABCD是矩形,
    ∴OA=OB,
    ∴DE=CE,
    ∴四边形OCED是菱形.
    【点睛】
    本题考查了作图与矩形的性质,解题的关键是熟练的掌握矩形的性质与根据题意作图.
    22、(1)1,2,19;(2)初一年级掌握生态环保知识水平较好.
    【解析】
    (1)根据初一、初二同学的测试成绩以及众数与中位数的定义即可完成表格;
    (2)根据平均数、众数、中位数的统计意义回答.
    【详解】
    (1)补全表格如下:
    整理、描述数据:
    初一成绩x满足10≤x≤19的有:11 19 19 11 19 19 17 11,共1个.
    故答案为:1.

    分析数据:
    在76 11 93 65 71 94 19 61 95 50 19 11 19 19 2 94 17 11 92 91中,19出现的次数最多,故众数为19;
    把初二的抽查成绩从小到大排列为:69 72 72 73 74 74 74 74 76 76 71 19 96 97 97 91 91 99 99 99,第10个数为76,第11个数为71,故中位数为:(76+71)÷2=2.
    故答案为:19,2.

    (2)初一年级掌握生态环保知识水平较好.
    因为两个年级的平均数相差不大,但是初一年级同学的中位数是11.5,众数是19,初二年级同学的中位数是2,众数是74,即初一年级同学的中位数与众数明显高于初二年级同学的成绩,所以初一年级掌握生态环保知识水平较好.
    【点睛】
    本题考查了频数(率)分布表,众数、中位数以及平均数.掌握众数、中位数以及平均数的定义是解题的关键.
    23、 甲种商品的每件进价为40元,乙种商品的每件进价为48元;甲种商品按原销售单价至少销售20件.
    【解析】
    【分析】设甲种商品的每件进价为x元,乙种商品的每件进价为(x+8))元根据“某商场购进甲、乙两种商品,甲种商品共用了2000元,乙种商品共用了2400元购进的甲、乙两种商品件数相同”列出方程进行求解即可;
    设甲种商品按原销售单价销售a件,则由“两种商品全部售完后共获利不少于2460元”列出不等式进行求解即可.
    【详解】设甲种商品的每件进价为x元,则乙种商品的每件进价为元,
    根据题意得,,
    解得,
    经检验,是原方程的解,
    答:甲种商品的每件进价为40元,乙种商品的每件进价为48元;
    甲乙两种商品的销售量为,
    设甲种商品按原销售单价销售a件,则

    解得,
    答:甲种商品按原销售单价至少销售20件.
    【点睛】本题考查了分式方程的应用,一元一次不等式的应用,弄清题意,找出等量关系列出方程,找出不等关系列出不等式是解题的关键.
    24、(1);(2)①,当m=5时,S取最大值;②满足条件的点F共有四个,坐标分别为,,,,
    【解析】
    (1)将A、C两点坐标代入抛物线y=-x2+bx+c,即可求得抛物线的解析式;
    (2)①先用m表示出QE的长度,进而求出三角形的面积S关于m的函数;
    ②直接写出满足条件的F点的坐标即可,注意不要漏写.
    【详解】
    解:(1)将A、C两点坐标代入抛物线,得 ,
    解得: ,
    ∴抛物线的解析式为y=﹣x2+x+8;
    (2)①∵OA=8,OC=6,
    ∴AC= =10,
    过点Q作QE⊥BC与E点,则sin∠ACB = = =,
    ∴ =,
    ∴QE=(10﹣m),
    ∴S=•CP•QE=m×(10﹣m)=﹣m2+3m;
    ②∵S=•CP•QE=m×(10﹣m)=﹣m2+3m=﹣(m﹣5)2+,
    ∴当m=5时,S取最大值;
    在抛物线对称轴l上存在点F,使△FDQ为直角三角形,
    ∵抛物线的解析式为y=﹣x2+x+8的对称轴为x=,
    D的坐标为(3,8),Q(3,4),
    当∠FDQ=90°时,F1(,8),
    当∠FQD=90°时,则F2(,4),
    当∠DFQ=90°时,设F(,n),
    则FD2+FQ2=DQ2,
    即+(8﹣n)2++(n﹣4)2=16,
    解得:n=6± ,
    ∴F3(,6+),F4(,6﹣),
    满足条件的点F共有四个,坐标分别为
    F1(,8),F2(,4),F3(,6+),F4(,6﹣).

    【点睛】
    本题考查二次函数的综合应用能力,其中涉及到的知识点有抛物线的解析式的求法抛物线的最值等知识点,是各地中考的热点和难点,解题时注意数形结合数学思想的运用,同学们要加强训练,属于中档题.

    相关试卷

    安徽省合肥市庐阳区2022年中考五模数学试题含解析:

    这是一份安徽省合肥市庐阳区2022年中考五模数学试题含解析,共22页。试卷主要包含了花园甜瓜是乐陵的特色时令水果等内容,欢迎下载使用。

    2021-2022学年浙江省宁波鄞州区五校联考中考数学五模试卷含解析:

    这是一份2021-2022学年浙江省宁波鄞州区五校联考中考数学五模试卷含解析,共19页。试卷主要包含了考生要认真填写考场号和座位序号,下列命题是真命题的是,已知,下列说法中,不正确的是等内容,欢迎下载使用。

    2021-2022学年安徽省庐阳区五校联考中考二模数学试题含解析:

    这是一份2021-2022学年安徽省庐阳区五校联考中考二模数学试题含解析,共23页。试卷主要包含了要使式子有意义,的取值范围是,下列各式中,正确的是等内容,欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map