搜索
    上传资料 赚现金
    英语朗读宝

    2022年浙江省温州市瓯北一中中考数学押题卷含解析

    2022年浙江省温州市瓯北一中中考数学押题卷含解析第1页
    2022年浙江省温州市瓯北一中中考数学押题卷含解析第2页
    2022年浙江省温州市瓯北一中中考数学押题卷含解析第3页
    还剩23页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年浙江省温州市瓯北一中中考数学押题卷含解析

    展开

    这是一份2022年浙江省温州市瓯北一中中考数学押题卷含解析,共26页。试卷主要包含了已知等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    注意事项:
    1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
    2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
    3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
    4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.将2001×1999变形正确的是(  )
    A.20002﹣1 B.20002+1 C.20002+2×2000+1 D.20002﹣2×2000+1
    2.如图,在Rt△ABC中,∠ACB=90°,点D,E分别是AB,BC的中点,点F是BD的中点.若AB=10,则EF=(  )

    A.2.5 B.3 C.4 D.5
    3.已知,用尺规作图的方法在上确定一点,使,则符合要求的作图痕迹是( )
    A. B.
    C. D.
    4.如图,四边形ABCD是菱形,∠A=60°,AB=2,扇形BEF的半径为2,圆心角为60°,则图中阴影部分的面积是( )

    A. B. C. D.
    5.若抛物线y=x2-(m-3)x-m能与x轴交,则两交点间的距离最值是( )
    A.最大值2, B.最小值2 C.最大值2 D.最小值2
    6.已知:如图,在正方形ABCD外取一点E,连接AE、BE、DE,过点A作AE的垂线交DE于点P,若AE=AP=1,PB=.下列结论:①△APD≌△AEB;②点B到直线AE的距离为;③EB⊥ED;④S△APD+S△APB=1+;⑤S正方形ABCD=4+.其中正确结论的序号是(  )

    A.①③④ B.①②⑤ C.③④⑤ D.①③⑤
    7.一个两位数,它的十位数字是3,个位数字是抛掷一枚质地均匀的骰子(六个面分别标有数字1﹣6)朝上一面的数字,任意抛掷这枚骰子一次,得到的两位数是3的倍数的概率等于(  )
    A. B. C. D.
    8.□ABCD中,E、F是对角线BD上不同的两点,下列条件中,不能得出四边形AECF一定为平行四边形的是( )
    A.BE=DF B.AE=CF C.AF//CE D.∠BAE=∠DCF
    9.如图是一个由4个相同的长方体组成的立体图形,它的主视图是( )

    A. B. C. D.
    10.如图,在△ABC中,∠ABC=90°,AB=8,BC=1.若DE是△ABC的中位线,延长DE交△ABC的外角∠ACM的平分线于点F,则线段DF的长为(   )

    A.7 B.8 C.9 D.10
    二、填空题(共7小题,每小题3分,满分21分)
    11.数据:2,5,4,2,2的中位数是_____,众数是_____,方差是_____.
    12.如图,正方形ABCD的边长为2,分别以A、D为圆心,2为半径画弧BD、AC,则图中阴影部分的面积为_____.

    13.将点P(﹣1,3)绕原点顺时针旋转180°后坐标变为_____.
    14.近年来,我国持续大面积的雾霾天气让环保和健康问题成为焦点.为进一步普及环保和健康知识,我市某校举行了“建设宜居成都,关注环境保护”的知识竞赛,某班的学生成绩统计如下:
    成绩(分)
    60
    70
    80
    90
    100
    人 数
    4
    8
    12
    11
    5
    则该办学生成绩的众数和中位数分别是( )
    A.70分,80分 B.80分,80分
    C.90分,80分 D.80分,90分
    15.如图,在Rt△ABC中,∠ACB=90°,BC=6,CD是斜边AB上的中线,将△BCD沿直线CD翻折至△ECD的位置,连接AE.若DE∥AC,计算AE的长度等于_____.

    16.一个斜面的坡度i=1:0.75,如果一个物体从斜面的底部沿着斜面方向前进了20米,那么这个物体在水平方向上前进了_____米.
    17.如图,是用火柴棒拼成的图形,则第n个图形需_____根火柴棒.

    三、解答题(共7小题,满分69分)
    18.(10分)已知△ABC在平面直角坐标系中的位置如图所示.分别写出图中点A和点C的坐标;画出△ABC绕点C按顺时针方向旋转90°后的△A′B′C′;求点A旋转到点A′所经过的路线长(结果保留π).

    19.(5分)如图,在平面直角坐标系中,将坐标原点O沿x轴向左平移2个单位长度得到点A,过点A作y轴的平行线交反比例函数的图象于点B,AB=.求反比例函数的解析式;若P(,)、Q(,)是该反比例函数图象上的两点,且时,,指出点P、Q各位于哪个象限?并简要说明理由.

    20.(8分)已知一个口袋中装有7个只有颜色不同的球,其中3个白球,4个黑球.
    (1)求从中随机抽取出一个黑球的概率是多少?
    (2)若往口袋中再放入x个白球和y个黑球,从口袋中随机取出一个白球的概率是,求y与x之间的函数关系式.
    21.(10分)已知抛物线F:y=x1+bx+c的图象经过坐标原点O,且与x轴另一交点为(﹣,0).

    (1)求抛物线F的解析式;
    (1)如图1,直线l:y=x+m(m>0)与抛物线F相交于点A(x1,y1)和点B(x1,y1)(点A在第二象限),求y1﹣y1的值(用含m的式子表示);
    (3)在(1)中,若m=,设点A′是点A关于原点O的对称点,如图1.
    ①判断△AA′B的形状,并说明理由;
    ②平面内是否存在点P,使得以点A、B、A′、P为顶点的四边形是菱形?若存在,求出点P的坐标;若不存在,请说明理由.
    22.(10分)抛物线y=﹣x2+(m﹣1)x+m与y轴交于(0,3)点.

    (1)求出m的值并画出这条抛物线;
    (2)求它与x轴的交点和抛物线顶点的坐标;
    (3)x取什么值时,抛物线在x轴上方?
    (4)x取什么值时,y的值随x值的增大而减小?
    23.(12分)已知:如图,AB为⊙O的直径,C是BA延长线上一点,CP切⊙O于P,弦PD⊥AB于E,过点B作BQ⊥CP于Q,交⊙O于H,
    (1)如图1,求证:PQ=PE;
    (2)如图2,G是圆上一点,∠GAB=30°,连接AG交PD于F,连接BF,若tan∠BFE=3,求∠C的度数;
    (3)如图3,在(2)的条件下,PD=6,连接QC交BC于点M,求QM的长.

    24.(14分)如图,AB为⊙O的直径,直线BM⊥AB于点B,点C在⊙O上,分别连接BC,AC,且AC的延长线交BM于点D,CF为⊙O的切线交BM于点F.
    (1)求证:CF=DF;
    (2)连接OF,若AB=10,BC=6,求线段OF的长.




    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、A
    【解析】
    原式变形后,利用平方差公式计算即可得出答案.
    【详解】
    解:原式=(2000+1)×(2000-1)=20002-1,
    故选A.
    【点睛】
    此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.
    2、A
    【解析】
    先利用直角三角形的性质求出CD的长,再利用中位线定理求出EF的长.
    【详解】
    ∵∠ACB=90°,D为AB中点
    ∴CD=
    ∵点E、F分别为BC、BD中点
    ∴.
    故答案为:A.
    【点睛】
    本题考查的知识点是直角三角形的性质和中位线定理,解题关键是寻找EF与题目已知长度的线段的数量关系.
    3、D
    【解析】
    试题分析:D选项中作的是AB的中垂线,∴PA=PB,∵PB+PC=BC,
    ∴PA+PC=BC.故选D.
    考点:作图—复杂作图.
    4、B
    【解析】
    根据菱形的性质得出△DAB是等边三角形,进而利用全等三角形的判定得出△ABG≌△DBH,得出四边形GBHD的面积等于△ABD的面积,进而求出即可.
    【详解】
    连接BD,

    ∵四边形ABCD是菱形,∠A=60°,
    ∴∠ADC=120°,
    ∴∠1=∠2=60°,
    ∴△DAB是等边三角形,
    ∵AB=2,
    ∴△ABD的高为,
    ∵扇形BEF的半径为2,圆心角为60°,
    ∴∠4+∠5=60°,∠3+∠5=60°,
    ∴∠3=∠4,
    设AD、BE相交于点G,设BF、DC相交于点H,
    在△ABG和△DBH中,

    ∴△ABG≌△DBH(ASA),
    ∴四边形GBHD的面积等于△ABD的面积,
    ∴图中阴影部分的面积是:S扇形EBF-S△ABD=
    =.
    故选B.
    5、D
    【解析】
    设抛物线与x轴的两交点间的横坐标分别为:x1,x2,
    由韦达定理得:
    x1+x2=m-3,x1•x2=-m,
    则两交点间的距离d=|x1-x2|== ,
    ∴m=1时,dmin=2.
    故选D.
    6、D
    【解析】
    ①首先利用已知条件根据边角边可以证明△APD≌△AEB;
    ②由①可得∠BEP=90°,故BE不垂直于AE过点B作BF⊥AE延长线于F,由①得∠AEB=135°所以∠EFB=45°,所以△EFB是等腰Rt△,故B到直线AE距离为BF=,故②是错误的;
    ③利用全等三角形的性质和对顶角相等即可判定③说法正确;
    ④由△APD≌△AEB,可知S△APD+S△APB=S△AEB+S△APB,然后利用已知条件计算即可判定;
    ⑤连接BD,根据三角形的面积公式得到S△BPD=PD×BE=,所以S△ABD=S△APD+S△APB+S△BPD=2+,由此即可判定.
    【详解】
    由边角边定理易知△APD≌△AEB,故①正确;
    由△APD≌△AEB得,∠AEP=∠APE=45°,从而∠APD=∠AEB=135°,
    所以∠BEP=90°,
    过B作BF⊥AE,交AE的延长线于F,则BF的长是点B到直线AE的距离,
    在△AEP中,由勾股定理得PE=,
    在△BEP中,PB= ,PE=,由勾股定理得:BE=,
    ∵∠PAE=∠PEB=∠EFB=90°,AE=AP,
    ∴∠AEP=45°,
    ∴∠BEF=180°-45°-90°=45°,
    ∴∠EBF=45°,
    ∴EF=BF,
    在△EFB中,由勾股定理得:EF=BF=,
    故②是错误的;
    因为△APD≌△AEB,所以∠ADP=∠ABE,而对顶角相等,所以③是正确的;
    由△APD≌△AEB,
    ∴PD=BE=,
    可知S△APD+S△APB=S△AEB+S△APB=S△AEP+S△BEP=+,因此④是错误的;
    连接BD,则S△BPD=PD×BE= ,
    所以S△ABD=S△APD+S△APB+S△BPD=2+,
    所以S正方形ABCD=2S△ABD=4+ .
    综上可知,正确的有①③⑤.

    故选D.
    【点睛】
    考查了正方形的性质、全等三角形的性质与判定、三角形的面积及勾股定理,综合性比较强,解题时要求熟练掌握相关的基础知识才能很好解决问题.
    7、B
    【解析】
    直接得出两位数是3的倍数的个数,再利用概率公式求出答案.
    【详解】
    ∵一枚质地均匀的骰子,其六个面上分别标有数字1,2,3,4,5,6,投掷一次,
    十位数为3,则两位数是3的倍数的个数为2.
    ∴得到的两位数是3的倍数的概率为: =.
    故答案选:B.
    【点睛】
    本题考查了概率的知识点,解题的关键是根据题意找出两位数是3的倍数的个数再运用概率公式解答即可.
    8、B
    【解析】
    【分析】根据平行线的判定方法结合已知条件逐项进行分析即可得.
    【详解】A、如图,∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,
    ∵BE=DF,∴OE=OF,∴四边形AECF是平行四边形,故不符合题意;

    B、如图所示,AE=CF,不能得到四边形AECF是平行四边形,故符合题意;

    C、如图,∵四边形ABCD是平行四边形,∴OA=OC,
    ∵AF//CE,∴∠FAO=∠ECO,
    又∵∠AOF=∠COE,∴△AOF≌△COE,∴AF=CE,
    ∴AF CE,∴四边形AECF是平行四边形,故不符合题意;

    D、如图,∵四边形ABCD是平行四边形,∴AB=CD,AB//CD,
    ∴∠ABE=∠CDF,
    又∵∠BAE=∠DCF,∴△ABE≌△CDF,∴AE=CF,∠AEB=∠CFD,∴∠AEO=∠CFO,
    ∴AE//CF,
    ∴AE CF,∴四边形AECF是平行四边形,故不符合题意,
    故选B.

    【点睛】本题考查了平行四边形的性质与判定,熟练掌握平行四边形的判定定理与性质定理是解题的关键.
    9、A
    【解析】
    由三视图的定义可知,A是该几何体的三视图,B、C、D不是该几何体的三视图.
    故选A.
    点睛:从正面看到的图是正视图,从上面看到的图形是俯视图,从左面看到的图形是左视图,能看到的线画实线,看不到的线画虚线.本题从左面看有两列,左侧一列有两层,右侧一列有一层.
    10、B
    【解析】
    根据三角形中位线定理求出DE,得到DF∥BM,再证明EC=EF=AC,由此即可解决问题.
    【详解】
    在RT△ABC中,∵∠ABC=90°,AB=2,BC=1,
    ∴AC===10,
    ∵DE是△ABC的中位线,
    ∴DF∥BM,DE=BC=3,
    ∴∠EFC=∠FCM,
    ∵∠FCE=∠FCM,
    ∴∠EFC=∠ECF,
    ∴EC=EF=AC=5,
    ∴DF=DE+EF=3+5=2.
    故选B.


    二、填空题(共7小题,每小题3分,满分21分)
    11、2 2 1.1.
    【解析】
    先将这组数据从小到大排列,再找出最中间的数,即可得出中位数;找出这组数据中最多的数则是众数;先求出这组数据的平均数,再根据方差公式S2=[(x1-)2+(x2-)2+…+(xn-)2]进行计算即可.
    【详解】
    解:把这组数据从小到大排列为:2,2,2,4,5,最中间的数是2,
    则中位数是2;
    众数为2;
    ∵这组数据的平均数是(2+2+2+4+5)÷5=3,
    ∴方差是: [(2−3)2+(2−3)2+(2−3)2+(4−3)2+(5−3)2]=1.1.
    故答案为2,2,1.1.
    【点睛】
    本题考查了中位数、众数与方差的定义,解题的关键是熟练的掌握中位数、众数与方差的定义.
    12、2﹣
    【解析】
    过点F作FE⊥AD于点E,则AE=AD=AF,故∠AFE=∠BAF=30°,再根据勾股定理求出EF的长,由S弓形AF=S扇形ADF-S△ADF可得出其面积,再根据S阴影=2(S扇形BAF-S弓形AF)即可得出结论
    【详解】
    如图所示,过点F作FE⊥AD于点E,∵正方形ABCD的边长为2,
    ∴AE=AD=AF=1,∴∠AFE=∠BAF=30°,∴EF=.
    ∴S弓形AF=S扇形ADF-S△ADF=,
    ∴ S阴影=2(S扇形BAF-S弓形AF)=2×[]=2×()=.

    【点睛】
    本题考查了扇形的面积公式和长方形性质的应用,关键是根据图形的对称性分析,主要考查学生的计算能力.
    13、(1,﹣3)
    【解析】
    画出平面直角坐标系,然后作出点P绕原点O顺时针旋转180°的点P′的位置,再根据平面直角坐标系写出坐标即可.
    【详解】
    如图所示:

    点P(-1,3)绕原点O顺时针旋转180°后的对应点P′的坐标为(1,-3).
    故答案是:(1,-3).
    【点睛】
    考查了坐标与图形变化-旋转,作出图形,利用数形结合的思想求解更简便,形象直观.
    14、B.
    【解析】
    试题分析:众数是在一组数据中,出现次数最多的数据,这组数据中80出现12次,出现的次数最多,故这组数据的众数为80分;
    中位数是一组数据从小到大(或从大到小)排列后,最中间的那个数(最中间两个数的平均数).因此这组40个按大小排序的数据中,中位数是按从小到大排列后第20,21个数的平均数,而第20,21个数都在80分组,故这组数据的中位数为80分.
    故选B.
    考点:1.众数;2.中位数.
    15、2
    【解析】
    根据题意、解直角三角形、菱形的性质、翻折变化可以求得AE的长.
    【详解】
    由题意可得,
    DE=DB=CD=AB,
    ∴∠DEC=∠DCE=∠DCB,
    ∵DE∥AC,∠DCE=∠DCB,∠ACB=90°,
    ∴∠DEC=∠ACE,
    ∴∠DCE=∠ACE=∠DCB=30°,
    ∴∠ACD=60°,∠CAD=60°,
    ∴△ACD是等边三角形,
    ∴AC=CD,
    ∴AC=DE,
    ∵AC∥DE,AC=CD,
    ∴四边形ACDE是菱形,
    ∵在Rt△ABC中,∠ACB=90°,BC=6,∠B=30°,
    ∴AC=2,
    ∴AE=2.
    故答案为2.
    【点睛】
    本题考查翻折变化、平行线的性质、直角三角形斜边上的中线,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.
    16、1.
    【解析】
    直接根据题意得出直角边的比值,即可表示出各边长进而得出答案.
    【详解】
    如图所示:
    ∵坡度i=1:0.75,
    ∴AC:BC=1:0.75=4:3,
    ∴设AC=4x,则BC=3x,
    ∴AB==5x,
    ∵AB=20m,
    ∴5x=20,
    解得:x=4,
    故3x=1,
    故这个物体在水平方向上前进了1m.
    故答案为:1.

    【点睛】
    此题主要考查坡度的运用,需注意的是坡度是坡角的正切值,是铅直高度h和水平宽l的比,我们把斜坡面与水平面的夹角叫做坡角,若用α表示坡角,可知坡度与坡角的关系是.
    17、2n+1.
    【解析】
    解:根据图形可得出:
    当三角形的个数为1时,火柴棒的根数为3;
    当三角形的个数为2时,火柴棒的根数为5;
    当三角形的个数为3时,火柴棒的根数为7;
    当三角形的个数为4时,火柴棒的根数为9;
    ……
    由此可以看出:当三角形的个数为n时,火柴棒的根数为3+2(n﹣1)=2n+1.
    故答案为:2n+1.

    三、解答题(共7小题,满分69分)
    18、(1)、(2)见解析(3)
    【解析】
    试题分析:(1)根据点的平面直角坐标系中点的位置写出点的坐标;(2)根据旋转图形的性质画出旋转后的图形;(3)点A所经过的路程是以点C为圆心,AC长为半径的扇形的弧长.
    试题解析:(1)A(0,4)C(3,1)
    (2)如图所示:
    (3)根据勾股定理可得:AC=3,则.
    考点:图形的旋转、扇形的弧长计算公式.
    19、(1);(2)P在第二象限,Q在第三象限.
    【解析】
    试题分析:(1)求出点B坐标即可解决问题;
    (2)结论:P在第二象限,Q在第三象限.利用反比例函数的性质即可解决问题;
    试题解析:解:(1)由题意B(﹣2,),把B(﹣2,)代入中,得到k=﹣3,∴反比例函数的解析式为.
    (2)结论:P在第二象限,Q在第三象限.理由:∵k=﹣3<0,∴反比例函数y在每个象限y随x的增大而增大,∵P(x1,y1)、Q(x2,y2)是该反比例函数图象上的两点,且x1<x2时,y1>y2,∴P、Q在不同的象限,∴P在第二象限,Q在第三象限.
    点睛:此题考查待定系数法、反比例函数的性质、坐标与图形的变化等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
    20、(1).(2).
    【解析】
    试题分析:(1)根据取出黑球的概率=黑球的数量÷球的总数量得出答案;(2)根据概率的计算方法得出方程,从求出函数关系式.
    试题解析:(1)取出一个黑球的概率
    (2)取出一个白球的概率


    与的函数关系式为:.
    考点:概率
    21、(1)y=x1+x;(1)y1﹣y1=;(3)①△AA′B为等边三角形,理由见解析;②平面内存在点P,使得以点A、B、A′、P为顶点的四边形是菱形,点P的坐标为(1,)、(﹣ )和(﹣,﹣1)
    【解析】
    (1)根据点的坐标,利用待定系数法即可求出抛物线F的解析式;
    (1)将直线l的解析式代入抛物线F的解析式中,可求出x1、x1的值,利用一次函数图象上点的坐标特征可求出y1、y1的值,做差后即可得出y1-y1的值;
    (3)根据m的值可得出点A、B的坐标,利用对称性求出点A′的坐标.
    ①利用两点间的距离公式(勾股定理)可求出AB、AA′、A′B的值,由三者相等即可得出△AA′B为等边三角形;
    ②根据等边三角形的性质结合菱形的性质,可得出存在符合题意得点P,设点P的坐标为(x,y),分三种情况考虑:(i)当A′B为对角线时,根据菱形的性质(对角线互相平分)可求出点P的坐标;(ii)当AB为对角线时,根据菱形的性质(对角线互相平分)可求出点P的坐标;(iii)当AA′为对角线时,根据菱形的性质(对角线互相平分)可求出点P的坐标.综上即可得出结论.
    【详解】
    (1)∵抛物线y=x1+bx+c的图象经过点(0,0)和(﹣,0),
    ∴,解得:,
    ∴抛物线F的解析式为y=x1+x.
    (1)将y=x+m代入y=x1+x,得:x1=m,
    解得:x1=﹣,x1=,
    ∴y1=﹣+m,y1=+m,
    ∴y1﹣y1=(+m)﹣(﹣+m)=(m>0).
    (3)∵m=,
    ∴点A的坐标为(﹣,),点B的坐标为(,1).
    ∵点A′是点A关于原点O的对称点,
    ∴点A′的坐标为(,﹣).
    ①△AA′B为等边三角形,理由如下:
    ∵A(﹣,),B(,1),A′(,﹣),
    ∴AA′=,AB=,A′B=,
    ∴AA′=AB=A′B,
    ∴△AA′B为等边三角形.
    ②∵△AA′B为等边三角形,
    ∴存在符合题意的点P,且以点A、B、A′、P为顶点的菱形分三种情况,设点P的坐标为(x,y).
    (i)当A′B为对角线时,有,
    解得,
    ∴点P的坐标为(1,);
    (ii)当AB为对角线时,有,
    解得:,
    ∴点P的坐标为(﹣,);
    (iii)当AA′为对角线时,有,
    解得:,
    ∴点P的坐标为(﹣,﹣1).
    综上所述:平面内存在点P,使得以点A、B、A′、P为顶点的四边形是菱形,点P的坐标为(1,)、(﹣ )和(﹣,﹣1).
    【点睛】
    本题考查了待定系数法求二次函数解析式、一次函数图象上点的坐标特征、等边三角形的判定与性质以及菱形的判定与性质,解题的关键是:(1)根据点的坐标,利用待定系数法求出二次函数解析式;(1)将一次函数解析式代入二次函数解析式中求出x1、x1的值;(3)①利用勾股定理(两点间的距离公式)求出AB、AA′、A′B的值;②分A′B为对角线、AB为对角线及AA′为对角线三种情况求出点P的坐标.
    22、(1);(2),;(1);(2)
    【解析】
    试题分析:(1)由抛物线y=﹣x2+(m﹣1)x+m与y轴交于(0,1)得:m=1.
    ∴抛物线为y=﹣x2+2x+1=﹣(x﹣1)2+2.
    列表得:

    X

    ﹣1


    0


    1


    2


    1


    y


    0


    1


    2


    1


    0

    图象如下.

    (2)由﹣x2+2x+1=0,得:x1=﹣1,x2=1.
    ∴抛物线与x轴的交点为(﹣1,0),(1,0).
    ∵y=﹣x2+2x+1=﹣(x﹣1)2+2
    ∴抛物线顶点坐标为(1,2).
    (1)由图象可知:
    当﹣1<x<1时,抛物线在x轴上方.
    (2)由图象可知:
    当x>1时,y的值随x值的增大而减小
    考点: 二次函数的运用
    23、(1)证明见解析(2)30°(3) QM=
    【解析】
    试题分析:
    (1)连接OP,PB,由已知易证∠OBP=∠OPB=∠QBP,从而可得BP平分∠OBQ,结合BQ⊥CP于点Q,PE⊥AB于点E即可由角平分线的性质得到PQ=PE;
    (2)如下图2,连接OP,则由已知易得∠CPO=∠PEC=90°,由此可得∠C=∠OPE,设EF=x,则由∠GAB=30°,∠AEF=90°可得AE=,在Rt△BEF中,由tan∠BFE=可得BE=,从而可得AB=,则OP=OA=,结合AE=可得OE=,这样即可得到sin∠OPE=,由此可得∠OPE=30°,则∠C=30°;
    (3)如下图3,连接BG,过点O作OK⊥HB于点K,结合BQ⊥CP,∠OPQ=90°,可得四边形POKQ为矩形.由此可得QK=PO,OK∥CQ从而可得∠KOB=∠C=30°;由已知易证PE=,在Rt△EPO中结合(2)可解得PO=6,由此可得OB=QK=6;在Rt△KOB中可解得KB=3,由此可得QB=9;在△ABG中由已知条件可得BG=6,∠ABG=60°;过点G作GN⊥QB交QB的延长线于点N,由∠ABG=∠CBQ=60°,可得∠GBN=60°,从而可得解得GN=,BN=3,由此可得QN=12,则在Rt△BGN中可解得QG=,由∠ABG=∠CBQ=60°可知△BQG中BM是角平分线,由此可得QM:GM=QB:GB=9:6由此即可求得QM的长了.
    试题解析:
    (1)如下图1,连接OP,PB,∵CP切⊙O于P,
    ∴OP⊥CP于点P,
    又∵BQ⊥CP于点Q,
    ∴OP∥BQ,
    ∴∠OPB=∠QBP,
    ∵OP=OB,
    ∴∠OPB=∠OBP,
    ∴∠QBP=∠OBP,
    又∵PE⊥AB于点E,
    ∴PQ=PE;

    (2)如下图2,连接,∵CP切⊙O于P,


    ∵PD⊥AB



    在Rt中,∠GAB=30°
    ∴设EF=x,则
    在Rt中,tan∠BFE=3




    ∴在RtPEO中,
    ∴30°;

    (3)如下图3,连接BG,过点O作于K,又BQ⊥CP,
    ∴,
    ∴四边形POKQ为矩形,
    ∴QK=PO,OK//CQ,
    ∴30°,
    ∵⊙O 中PD⊥AB于E ,PD=6 ,AB为⊙O的直径,
    ∴PE= PD= 3,
    根据(2)得,在RtEPO中,,
    ∴,
    ∴OB=QK=PO=6,
    ∴在Rt中, ,
    ∴,
    ∴QB=9,
    在△ABG中,AB为⊙O的直径,
    ∴AGB=90°,
    ∵BAG=30°,
    ∴BG=6,ABG=60°,
    过点G作GN⊥QB交QB的延长线于点N,则∠N=90°,∠GBN=180°-∠CBQ-∠ABG=60°,
    ∴BN=BQ·cos∠GBQ=3,GN=BQ·sin∠GBQ=,
    ∴QN=QB+BN=12,
    ∴在Rt△QGN中,QG=,
    ∵∠ABG=∠CBQ=60°,
    ∴BM是△BQG的角平分线,
    ∴QM:GM=QB:GB=9:6,
    ∴QM=.

    点睛:解本题第3小题的要点是:(1)作出如图所示的辅助线,结合已知条件和(2)先求得BQ、BG的长及∠CBQ=∠ABG=60°;(2)再过点G作GN⊥QB并交QB的延长线于点N,解出BN和GN的长,这样即可在Rt△QGN中求得QG的长,最后在△BQG中“由角平分线分线段成比例定理”即可列出比例式求得QM的长了.
    24、(1)详见解析;(2)OF=.
    【解析】
    (1)连接OC,如图,根据切线的性质得∠1+∠3=90°,则可证明∠3=∠4,再根据圆周角定理得到∠ACB=90°,然后根据等角的余角相等得到∠BDC=∠5,从而根据等腰三角形的判定定理得到结论;
    (2)根据勾股定理计算出AC=8,再证明△ABC∽△ABD,利用相似比得到AD=,然后证明OF为△ABD的中位线,从而根据三角形中位线性质求出OF的长.
    【详解】
    (1)证明:连接OC,如图,

    ∵CF为切线,
    ∴OC⊥CF,
    ∴∠1+∠3=90°,
    ∵BM⊥AB,
    ∴∠2+∠4=90°,
    ∵OC=OB,
    ∴∠1=∠2,
    ∴∠3=∠4,
    ∵AB为直径,
    ∴∠ACB=90°,
    ∴∠3+∠5=90°,∠4+∠BDC=90°,
    ∴∠BDC=∠5,
    ∴CF=DF;
    (2)在Rt△ABC中,AC==8,
    ∵∠BAC=∠DAB,
    ∴△ABC∽△ABD,
    ∴,即,
    ∴AD=,
    ∵∠3=∠4,
    ∴FC=FB,
    而FC=FD,
    ∴FD=FB,
    而BO=AO,
    ∴OF为△ABD的中位线,
    ∴OF=AD=.
    【点睛】
    本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了圆周角定理和垂径定理.

    相关试卷

    浙江省温州市2019年中考数学押题卷(含解析):

    这是一份浙江省温州市2019年中考数学押题卷(含解析),共31页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    浙江省温州市瓯北一中2023届中考数学适应性模拟试题含解析:

    这是一份浙江省温州市瓯北一中2023届中考数学适应性模拟试题含解析,共16页。

    浙江省温州市苍南县2022年中考数学押题试卷含解析:

    这是一份浙江省温州市苍南县2022年中考数学押题试卷含解析,共23页。试卷主要包含了考生要认真填写考场号和座位序号,二次函数y=ax1+bx+c等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map