安徽六安市叶集区平岗中学2022年中考联考数学试题含解析
展开
这是一份安徽六安市叶集区平岗中学2022年中考联考数学试题含解析,共20页。试卷主要包含了如图,已知直线l1,对于反比例函数y=等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(共10小题,每小题3分,共30分)
1.一个不透明的布袋里装有7个只有颜色不同的球,其中3个红球,4个白球,从布袋中随机摸出一个球,摸出的球是红球的概率是( )
A. B. C. D.
2.下面调查方式中,合适的是( )
A.调查你所在班级同学的体重,采用抽样调查方式
B.调查乌金塘水库的水质情况,采用抽样调査的方式
C.调查《CBA联赛》栏目在我市的收视率,采用普查的方式
D.要了解全市初中学生的业余爱好,采用普查的方式
3.如图是由四个小正方体叠成的一个几何体,它的左视图是( )
A. B. C. D.
4.若顺次连接四边形各边中点所得的四边形是菱形,则四边形一定是( )
A.矩形 B.菱形
C.对角线互相垂直的四边形 D.对角线相等的四边形
5.如图,△ABC中,∠B=55°,∠C=30°,分别以点A和点C为圆心,大于AC的长为半径画弧,两弧相交于点M,N作直线MN,交BC于点D,连结AD,则∠BAD的度数为( )
A.65° B.60°
C.55° D.45°
6.如图,△ABC中,AB>AC,∠CAD为△ABC的外角,观察图中尺规作图的痕迹,则下列结论错误的是( )
A.∠DAE=∠B B.∠EAC=∠C C.AE∥BC D.∠DAE=∠EAC
7.如图,已知直线l1:y=﹣2x+4与直线l2:y=kx+b(k≠0)在第一象限交于点M.若直线l2与x轴的交点为A(﹣2,0),则k的取值范围是( )
A.﹣2<k<2 B.﹣2<k<0 C.0<k<4 D.0<k<2
8.在中国集邮总公司设计的2017年纪特邮票首日纪念截图案中,可以看作中心对称图形的是( )
A.千里江山图
B.京津冀协同发展
C.内蒙古自治区成立七十周年
D.河北雄安新区建立纪念
9.在Rt△ABC中,∠C=90°,AB=4,AC=1,则cosB的值为( )
A. B. C. D.
10.对于反比例函数y=(k≠0),下列所给的四个结论中,正确的是( )
A.若点(3,6)在其图象上,则(﹣3,6)也在其图象上
B.当k>0时,y随x的增大而减小
C.过图象上任一点P作x轴、y轴的线,垂足分别A、B,则矩形OAPB的面积为k
D.反比例函数的图象关于直线y=﹣x成轴对称
二、填空题(本大题共6个小题,每小题3分,共18分)
11.若a﹣3有平方根,则实数a的取值范围是_____.
12.已知关于x的方程x2﹣2x+n=1没有实数根,那么|2﹣n|﹣|1﹣n|的化简结果是_____.
13.如图,点D、E、F分别位于△ABC的三边上,满足DE∥BC,EF∥AB,如果AD:DB=3:2,那么BF:FC=_____.
14.如图,在矩形ABCD中,E是AD上一点,把△ABE沿直线BE翻折,点A正好落在BC边上的点F处,如果四边形CDEF和矩形ABCD相似,那么四边形CDEF和矩形ABCD面积比是__.
15.已知a2+1=3a,则代数式a+的值为 .
16.将绕点逆时针旋转到使、、在同一直线上,若,,,则图中阴影部分面积为________.
三、解答题(共8题,共72分)
17.(8分)如图,矩形中,对角线、交于点,以、为邻边作平行四边形,连接
求证:四边形是菱形若,,求四边形的面积
18.(8分)先化简再求值:(a﹣)÷,其中a=1+,b=1﹣.
19.(8分)已知:如图,在平面直角坐标系中,O为坐标原点,△OAB的顶点A、B的坐标分别是A(0,5),B(3,1),过点B画BC⊥AB交直线于点C,连结AC,以点A为圆心,AC为半径画弧交x轴负半轴于点D,连结AD、CD.
(1)求证:△ABC≌△AOD.
(2)设△ACD的面积为,求关于的函数关系式.
(3)若四边形ABCD恰有一组对边平行,求的值.
20.(8分)(1)如图1,在矩形ABCD中,点O在边AB上,∠AOC=∠BOD,求证:AO=OB;
(2)如图2,AB是⊙O的直径,PA与⊙O相切于点A,OP与⊙O相交于点C,连接CB,∠OPA=40°,求∠ABC的度数.
21.(8分)如图,在Rt△ABC中∠ABC=90°,AC的垂直平分线交BC于D点,交AC于E点,OC=OD.
(1)若,DC=4,求AB的长;
(2)连接BE,若BE是△DEC的外接圆的切线,求∠C的度数.
22.(10分)先化简,再求值:(1﹣)÷,其中x是不等式组的整数解
23.(12分)从广州去某市,可乘坐普通列车或高铁,已知高铁的行驶路程是400千米,普通列车的行驶路程是高铁的行驶路程的1.3倍.求普通列车的行驶路程;若高铁的平均速度(千米/时)是普通列车平均速度(千米/时)的2.5倍,且乘坐高铁所需时间比乘坐普通列车所需时间缩短3小时,求高铁的平均速度.
24.如图,一次函数y=﹣x+的图象与反比例函数y=(k>0)的图象交于A,B两点,过A点作x轴的垂线,垂足为M,△AOM面积为1.
(1)求反比例函数的解析式;
(2)在y轴上求一点P,使PA+PB的值最小,并求出其最小值和P点坐标.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、B
【解析】
袋中一共7个球,摸到的球有7种可能,而且机会均等,其中有3个红球,因此摸到红球的概率为,故选B.
2、B
【解析】
由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.
【详解】
A、调查你所在班级同学的体重,采用普查,故A不符合题意;
B、调查乌金塘水库的水质情况,无法普查,采用抽样调査的方式,故B符合题意;
C、调查《CBA联赛》栏目在我市的收视率,调查范围广适合抽样调查,故C不符合题意;
D、要了解全市初中学生的业余爱好,调查范围广适合抽样调查,故D不符合题意;
故选B.
【点睛】
本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
3、A
【解析】
试题分析:如图是由四个小正方体叠成的一个几何体,它的左视图是.故选A.
考点:简单组合体的三视图.
4、C
【解析】
【分析】如图,根据三角形的中位线定理得到EH∥FG,EH=FG,EF=BD,则可得四边形EFGH是平行四边形,若平行四边形EFGH是菱形,则可有EF=EH,由此即可得到答案.
【点睛】如图,∵E,F,G,H分别是边AD,DC,CB,AB的中点,
∴EH=AC,EH∥AC,FG=AC,FG∥AC,EF=BD,
∴EH∥FG,EH=FG,
∴四边形EFGH是平行四边形,
假设AC=BD,
∵EH=AC,EF=BD,
则EF=EH,
∴平行四边形EFGH是菱形,
即只有具备AC=BD即可推出四边形是菱形,
故选D.
【点睛】本题考查了中点四边形,涉及到菱形的判定,三角形的中位线定理,平行四边形的判定等知识,熟练掌握和灵活运用相关性质进行推理是解此题的关键.
5、A
【解析】
根据线段垂直平分线的性质得到AD=DC,根据等腰三角形的性质得到∠C=∠DAC,求得∠DAC=30°,根据三角形的内角和得到∠BAC=95°,即可得到结论.
【详解】
由题意可得:MN是AC的垂直平分线,
则AD=DC,故∠C=∠DAC,
∵∠C=30°,
∴∠DAC=30°,
∵∠B=55°,
∴∠BAC=95°,
∴∠BAD=∠BAC-∠CAD=65°,
故选A.
【点睛】
此题主要考查了线段垂直平分线的性质,三角形的内角和,正确掌握线段垂直平分线的性质是解题关键.
6、D
【解析】
解:根据图中尺规作图的痕迹,可得∠DAE=∠B,故A选项正确,
∴AE∥BC,故C选项正确,
∴∠EAC=∠C,故B选项正确,
∵AB>AC,∴∠C>∠B,∴∠CAE>∠DAE,故D选项错误,
故选D.
【点睛】
本题考查作图—复杂作图;平行线的判定与性质;三角形的外角性质.
7、D
【解析】
解:∵直线l1与x轴的交点为A(﹣1,0),
∴﹣1k+b=0,∴,解得:.
∵直线l1:y=﹣1x+4与直线l1:y=kx+b(k≠0)的交点在第一象限,
∴,
解得0<k<1.
故选D.
【点睛】
两条直线相交或平行问题;一次函数图象上点的坐标特征.
8、C
【解析】
根据中心对称图形的概念求解.
【详解】
解:A选项是轴对称图形,不是中心对称图形,故本选项错误;
B选项不是中心对称图形,故本选项错误;
C选项为中心对称图形,故本选项正确;
D选项不是中心对称图形,故本选项错误.
故选C.
【点睛】
本题主要考查了中心对称图形的概念:关键是找到相关图形的对称中心,旋转180度后与原图重合.
9、A
【解析】
∵在Rt△ABC中,∠C=90°,AB=4,AC=1,
∴BC== ,
则cosB== ,
故选A
10、D
【解析】
分析:根据反比例函数的性质一一判断即可;
详解:A.若点(3,6)在其图象上,则(﹣3,6)不在其图象上,故本选项不符合题意;
B.当k>0时,y随x的增大而减小,错误,应该是当k>0时,在每个象限,y随x的增大而减小;故本选项不符合题意;
C.错误,应该是过图象上任一点P作x轴、y轴的线,垂足分别A、B,则矩形OAPB的面积为|k|;故本选项不符合题意;
D.正确,本选项符合题意.
故选D.
点睛:本题考查了反比例函数的性质,解题的关键是熟练掌握反比例函数的性质,灵活运用所学知识解决问题,属于中考常考题型.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、a≥1.
【解析】
根据平方根的定义列出不等式计算即可.
【详解】
根据题意,得
解得:
故答案为
【点睛】
考查平方根的定义,正数有两个平方根,它们互为相反数,0的平方根是0,负数没有平方根.
12、﹣1
【解析】
根据根与系数的关系得出b2-4ac=(-2)2-4×1×(n-1)=-4n+8<0,求出n>2,再去绝对值符号,即可得出答案.
【详解】
解:∵关于x的方程x2−2x+n=1没有实数根,
∴b2-4ac=(-2)2-4×1×(n-1)=-4n+8<0,
∴n>2,
∴|2−n |-│1-n│=n-2-n+1=-1.
故答案为-1.
【点睛】
本题考查了根的判别式,解题的关键是根据根与系数的关系求出n的取值范围再去绝对值求解即可.
13、3:2
【解析】
因为DE∥BC,所以,因为EF∥AB,所以,所以,故答案为: 3:2.
14、
【解析】
由题意易得四边形ABFE是正方形,
设AB=1,CF=x,则有BC=x+1,CD=1,
∵四边形CDEF和矩形ABCD相似,
∴CD:BC=FC:CD,
即1:(x+1)=x:1,
∴x=或x=(舍去),
∴ =,
故答案为.
【点睛】本题考查了折叠的性质,相似多边形的性质等,熟练掌握相似多边形的面积比等于相似比的平方是解题的关键.
15、1
【解析】
根据题意a2+1=1a,整体代入所求的式子即可求解.
【详解】
∵a2+1=1a,
∴a+=+===1.
故答案为1.
16、
【解析】
分析:易得整理后阴影部分面积为圆心角为110°,两个半径分别为4和1的圆环的面积.
详解:由旋转可得△ABC≌△A′BC′.∵∠BCA=90°,∠BAC=30°,AB=4cm,
∴BC=1cm,AC=1cm,∠A′BA=110°,∠CBC′=110°,
∴阴影部分面积=(S△A′BC′+S扇形BAA′)-S扇形BCC′-S△ABC=×(41-11)=4πcm1.
故答案为4π.
点睛:本题利用旋转前后的图形全等,直角三角形的性质,扇形的面积公式求解.
三、解答题(共8题,共72分)
17、(1)见解析;(2)S四边形ADOE =.
【解析】
(1) 根据矩形的性质有OA=OB=OC=OD,根据四边形ADOE是平行四边形,得到OD∥AE,AE=OD. 等量代换得到AE=OB.即可证明四边形AOBE为平行四边形.根据有一组邻边相等的平行四边形是菱形即可证明.
(2)根据菱形的性质有∠EAB=∠BAO.根据矩形的性质有AB∥CD,根据平行线的性质有∠BAC=∠ACD,求出∠DCA=60°,求出AD=.根据面积公式SΔADC,即可求解.
【详解】
(1)证明:∵矩形ABCD,
∴OA=OB=OC=OD.
∵平行四边形ADOE,
∴OD∥AE,AE=OD.
∴AE=OB.
∴四边形AOBE为平行四边形.
∵OA=OB,
∴四边形AOBE为菱形.
(2)解:∵菱形AOBE,
∴∠EAB=∠BAO.
∵矩形ABCD,
∴AB∥CD.
∴∠BAC=∠ACD,∠ADC=90°.
∴∠EAB=∠BAO=∠DCA.
∵∠EAO+∠DCO=180°,
∴∠DCA=60°.
∵DC=2,
∴AD=.
∴SΔADC=.
∴S四边形ADOE =.
【点睛】
考查平行四边形的判定与性质,矩形的性质,菱形的判定与性质,解直角三角形,综合性比较强.
18、原式=
【解析】
括号内先通分进行分式的加减运算,然后再进行分式的乘除法运算,最后将数个代入进行计算即可.
【详解】
原式=
=
=,
当a=1+,b=1﹣时,
原式==.
【点睛】
本题考查了分式的化简求值,熟练掌握分式混合运算的运算顺序以及运算法则是解题的关键.
19、(1)证明详见解析;(2)S=(m+1)2+(m>);(2)2或1.
【解析】
试题分析:(1)利用两点间的距离公式计算出AB=5,则AB=OA,则可根据“HL”证明△ABC≌△AOD;
(2)过点B作直线BE⊥直线y=﹣m于E,作AF⊥BE于F,如图,证明Rt△ABF∽Rt△BCE,利用相似比可得BC=(m+1),再在Rt△ACB中,由勾股定理得AC2=AB2+BC2=25+(m+1)2,然后证明△AOB∽△ACD,利用相似的性质得,而S△AOB=,于是可得S=(m+1)2+(m>);
(2)作BH⊥y轴于H,如图,分类讨论:当AB∥CD时,则∠ACD=∠CAB,由△AOB∽△ACD得∠ACD=∠AOB,所以∠CAB=∠AOB,利用三角函数得到tan∠AOB=2,tan∠ACB=,所以=2;当AD∥BC,则∠5=∠ACB,由△AOB∽△ACD得到∠4=∠5,则∠ACB=∠4,根据三角函数定义得到tan∠4=,tan∠ACB=,则=,然后分别解关于m的方程即可得到m的值.
试题解析:(1)证明:∵A(0,5),B(2,1),
∴AB==5,
∴AB=OA,
∵AB⊥BC,
∴∠ABC=90°,
在Rt△ABC和Rt△AOD中,
,
∴Rt△ABC≌Rt△AOD;
(2)解:过点B作直线BE⊥直线y=﹣m于E,作AF⊥BE于F,如图,∵∠1+∠2=90°,∠1+∠2=90°,
∴∠2=∠2,
∴Rt△ABF∽Rt△BCE,
∴,即,
∴BC=(m+1),
在Rt△ACB中,AC2=AB2+BC2=25+(m+1)2,
∵△ABC≌△AOD,
∴∠BAC=∠OAD,即∠4+∠OAC=∠OAC+∠5,
∴∠4=∠5,
而AO=AB,AD=AC,
∴△AOB∽△ACD,
∴=,
而S△AOB=×5×2=,
∴S=(m+1)2+(m>);
(2)作BH⊥y轴于H,如图,
当AB∥CD时,则∠ACD=∠CAB,
而△AOB∽△ACD,
∴∠ACD=∠AOB,
∴∠CAB=∠AOB,
而tan∠AOB==2,tan∠ACB===,
∴=2,解得m=1;
当AD∥BC,则∠5=∠ACB,
而△AOB∽△ACD,
∴∠4=∠5,
∴∠ACB=∠4,
而tan∠4=,tan∠ACB=,
∴=,
解得m=2.
综上所述,m的值为2或1.
考点:相似形综合题.
20、(1)证明见解析;(2)25°.
【解析】
试题分析: (1)根据等量代换可求得∠AOD=∠BOC,根据矩形的对边相等,每个角都是直角,可知∠A=∠B=90°,AD=BC,根据三角形全等的判定AAS证得△AOD≌△BOC,从而得证结论.
(2)利用切线的性质和直角三角形的两个锐角互余的性质得到圆心角∠POA的度数,然后利用圆周角定理来求∠ABC的度数.
试题解析:(1)∵∠AOC=∠BOD
∴∠AOC -∠COD=∠BOD-∠COD
即∠AOD=∠BOC
∵四边形ABCD是矩形
∴∠A=∠B=90°,AD=BC
∴
∴AO=OB
(2)解:∵AB是的直径,PA与相切于点A,
∴PA⊥AB,
∴∠A=90°.
又∵∠OPA=40°,
∴∠AOP=50°,
∵OB=OC,
∴∠B=∠OCB.
又∵∠AOP=∠B+∠OCB,
∴.
21、(1);(2)30°
【解析】
(1)由于DE垂直平分AC,那么AE=EC,∠DEC=90°,而∠ABC=∠DEC=90°,∠C=∠C,易证,△ABC∽△DEC,∠A=∠CDE,于是sin∠CDE=sinA=,AB:AC=DE:DC,而DC=4,易求EC,利用勾股定理可求DE,易知AC=6,利用相似三角形中的比例线段可求AB;
(2)连接OE,由于∠DEC=90°,那么∠EDC+∠C=90°,又BE是切线,那么∠BEO=90°,于是∠EOB+∠EBC=90°,而BE是直角三角形斜边上的中线,那么BE=CE,于是∠EBC=∠C,从而有∠EOB=∠EDC,又OE=OD,易证△DEO是等边三角形,那么∠EDC=60°,从而可求∠C.
【详解】
解:(1)∵AC的垂直平分线交BC于D点,交AC于E点,
∴∠DEC=90°,AE=EC,
∵∠ABC=90°,∠C=∠C,
∴∠A=∠CDE,△ABC∽△DEC,
∴sin∠CDE=,AB:AC=DE:DC,
∵DC=4,
∴ED=3,
∴DE=,
∴AC=6,
∴AB:6=:4,
∴AB=;
(2)连接OE,
∵∠DEC=90°,
∴∠EDC+∠C=90°,
∵BE是⊙O的切线,
∴∠BEO=90°,
∴∠EOB+∠EBC=90°,
∵E是AC的中点,∠ABC=90°,
∴BE=EC,
∴∠EBC=∠C,
∴∠EOB=∠EDC,
又∵OE=OD,
∴△DOE是等边三角形,
∴∠EDC=60°,
∴∠C=30°.
【点睛】
考查了切线的性质、线段垂直平分线的性质、相似三角形的判定和性质、勾股定理、等边三角形的判定和性质.解题的关键是连接OE,构造直角三角形.
22、x=3时,原式=
【解析】
原式括号中两项通分并利用同分母分式的减法法则计算,再利用除以一个数等于乘以这个数的倒数将除法运算化为乘法运算,约分得到最简结果,求出不等式组的解集,找出解集中的整数计算得出到x的值,代入计算即可求出值.
【详解】
解:原式=÷
=×
=,
解不等式组得,2<x<,
∵x取整数,
∴x=3,
当x=3时,原式=.
【点睛】
本题主要考查分式额化简求值及一元一次不等式组的整数解.
23、(1)520千米;(2)300千米/时.
【解析】
试题分析:(1)根据普通列车的行驶路程=高铁的行驶路程×1.3得出答案;(2)首先设普通列车的平均速度为x千米/时,则高铁平均速度为2.5x千米/时,根据题意列出分式方程求出未知数x的值.
试题解析:(1)依题意可得,普通列车的行驶路程为400×1.3=520(千米)
(2)设普通列车的平均速度为x千米/时,则高铁平均速度为2.5x千米/时
依题意有:=3 解得:x=120
经检验:x=120分式方程的解且符合题意 高铁平均速度:2.5×120=300千米/时
答:高铁平均速度为 2.5×120=300千米/时.
考点:分式方程的应用.
24、(1) (2)(0,)
【解析】
(1)根据反比例函数比例系数k的几何意义得出|k|=1,进而得到反比例函数的解析式;
(2)作点A关于y轴的对称点A′,连接A′B,交y轴于点P,得到PA+PB最小时,点P的位置,根据两点间的距离公式求出最小值A′B的长;利用待定系数法求出直线A′B的解析式,得到它与y轴的交点,即点P的坐标.
【详解】
(1)∵反比例函数 y= =(k>0)的图象过点 A,过 A 点作 x 轴的垂线,垂足为 M,
∴|k|=1,
∵k>0,
∴k=2,
故反比例函数的解析式为:y=;
(2)作点 A 关于 y 轴的对称点 A′,连接 A′B,交 y 轴于点 P,则 PA+PB 最小.
由,解得,或,
∴A(1,2),B(4,),
∴A′(﹣1,2),最小值 A′B= =,
设直线 A′B 的解析式为 y=mx+n,
则 ,解得,
∴直线 A′B 的解析式为 y= ,
∴x=0 时,y= ,
∴P 点坐标为(0,).
【点睛】
本题考查的是反比例函数图象与一次函数图象的交点问题以及最短路线问题,解题的关键是确定PA+PB最小时,点P的位置,灵活运用数形结合思想求出有关点的坐标和图象的解析式是解题的关键.
相关试卷
这是一份安徽六安市叶集区平岗中学2023-2024学年数学九年级第一学期期末检测模拟试题含答案,共8页。
这是一份2023-2024学年安徽省六安市叶集区数学八上期末调研试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,不等式组的解为等内容,欢迎下载使用。
这是一份2023-2024学年安徽六安市叶集区平岗中学八年级数学第一学期期末统考模拟试题含答案,共7页。试卷主要包含了运用乘法公式计算2的结果是,在二次根式中,最简二次根式的有等内容,欢迎下载使用。