终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    2022年中卫市重点中学中考数学五模试卷含解析

    立即下载
    加入资料篮
    2022年中卫市重点中学中考数学五模试卷含解析第1页
    2022年中卫市重点中学中考数学五模试卷含解析第2页
    2022年中卫市重点中学中考数学五模试卷含解析第3页
    还剩22页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年中卫市重点中学中考数学五模试卷含解析

    展开

    这是一份2022年中卫市重点中学中考数学五模试卷含解析,共25页。试卷主要包含了答题时请按要求用笔,下列各式中,正确的是,下列图案中,是轴对称图形的是等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    注意事项:
    1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
    2.答题时请按要求用笔。
    3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
    4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
    5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.半径为的正六边形的边心距和面积分别是(  )
    A., B.,
    C., D.,
    2.﹣2的绝对值是( )
    A.2 B. C. D.
    3.如图,在菱形ABCD中,AB=BD,点E,F分别在AB,AD上,且AE=DF,连接BF与DE相交于点G,连接CG与BD相交于点H,下列结论:
    ①△AED≌△DFB;②S四边形 BCDG=CG2;③若AF=2DF,则BG=6GF
    ,其中正确的结论

    A.只有①②. B.只有①③. C.只有②③. D.①②③.
    4.如图,AD∥BC,AC平分∠BAD,若∠B=40°,则∠C的度数是(  )

    A.40° B.65° C.70° D.80°
    5.如图,AB∥CD,直线EF与AB、CD分别相交于E、F,AM⊥EF于点M,若∠EAM=10°,那么∠CFE等于(  )

    A.80° B.85° C.100° D.170°
    6.下列各式中,正确的是(  )
    A.﹣(x﹣y)=﹣x﹣y B.﹣(﹣2)﹣1= C.﹣ D.
    7.如图,三角形纸片ABC,AB=10cm,BC=7cm,AC=6cm,沿过点B的直线折叠这个三角形,使顶点C落在AB边上的点E处,折痕为BD,则△AED的周长为(  )

    A.9cm B.13cm C.16cm D.10cm
    8.如图,函数y=的图象记为c1,它与x轴交于点O和点A1;将c1绕点A1旋转180°得c2,交x轴于点A2;将c2绕点A2旋转180°得c3,交x轴于点A3…如此进行下去,若点P(103,m)在图象上,那么m的值是(  )

    A.﹣2 B.2 C.﹣3 D.4
    9. (3分)如图,是按一定规律排成的三角形数阵,按图中数阵的排列规律,第9行从左至右第5个数是(  )

    A.2 B. C.5 D.
    10.下列图案中,是轴对称图形的是( )
    A. B. C. D.
    11.如图,数轴上有M、N、P、Q四个点,其中点P所表示的数为a,则数-3a所对应的点可能是( )

    A.M B.N C.P D.Q
    12.多项式4a﹣a3分解因式的结果是(  )
    A.a(4﹣a2) B.a(2﹣a)(2+a) C.a(a﹣2)(a+2) D.a(2﹣a)2
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.小球在如图所示的地板上自由地滚动,并随机地停留在某块方砖上,那么小球最终停留在黑色区域的概率是_____________________.

    14.如图,若双曲线()与边长为3的等边△AOB(O为坐标原点)的边OA、AB分别交于C、D两点,且OC=2BD,则k的值为_____.

    15.如图,已知AB是⊙O的直径,点C在⊙O上,过点C的切线与AB的延长线交于点P,连接AC,若∠A=30°,PC=3,则BP的长为 .

    16.某校为了解本校九年级学生足球训练情况,随机抽查该年级若干名学生进行测试,然后把测试结果分为4个等级:A、B、C、D,并将统计结果绘制成两幅不完整的统计图.该年级共有700人,估计该年级足球测试成绩为D等的人数为_____人.

    17.如图,在菱形ABCD中,于E,,,则菱形ABCD的面积是______.

    18.不等式5x﹣3<3x+5的非负整数解是_____.
    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)如图,AB是半圆O的直径,过点O作弦AD的垂线交半圆O于点E,交AC于点C,使∠BED=∠C.

    (1)判断直线AC与圆O的位置关系,并证明你的结论;
    (2)若AC=8,cos∠BED=,求AD的长.
    20.(6分) “大美湿地,水韵盐城”.某校数学兴趣小组就“最想去的盐城市旅游景点”随机调查了本校部分学生,要求每位同学选择且只能选择一个最想去的景点,下面是根据调查结果进行数据整理后绘制出的不完整的统计图:

    请根据图中提供的信息,解答下列问题:
    (1)求被调查的学生总人数;
    (2)补全条形统计图,并求扇形统计图中表示“最想去景点D”的扇形圆心角的度数;
    (3)若该校共有800名学生,请估计“最想去景点B“的学生人数.
    21.(6分)如图是某货站传送货物的平面示意图. 为了提高传送过程的安全性,工人师傅欲减小传送带与地面的夹角,使其由45°改为30°. 已知原传送带AB长为4米.
    (1)求新传送带AC的长度;
    (2)如果需要在货物着地点C的左侧留出2米的通道,试判断距离B点4米的货物MNQP是否需要挪走,并说明理由.(说明:⑴⑵的计算结果精确到0.1米,参考数据:≈1.41,≈1.73,≈2.24,≈2.45)

    22.(8分)(1)如图1,在矩形ABCD中,AB=2,BC=5,∠MPN=90°,且∠MPN的直角顶点在BC边上,BP=1.

    ①特殊情形:若MP过点A,NP过点D,则=   .
    ②类比探究:如图2,将∠MPN绕点P按逆时针方向旋转,使PM交AB边于点E,PN交AD边于点F,当点E与点B重合时,停止旋转.在旋转过程中,的值是否为定值?若是,请求出该定值;若不是,请说明理由.
    (2)拓展探究:在Rt△ABC中,∠ABC=90°,AB=BC=2,AD⊥AB,⊙A的半径为1,点E是⊙A上一动点,CF⊥CE交AD于点F.请直接写出当△AEB为直角三角形时的值.
    23.(8分)已知,四边形ABCD中,E是对角线AC上一点,DE=EC,以AE为直径的⊙O与边CD相切于点D,点B在⊙O上,连接OB.求证:DE=OE;若CD∥AB,求证:BC是⊙O的切线;在(2)的条件下,求证:四边形ABCD是菱形.

    24.(10分)如图,矩形的两边、的长分别为3、8,是的中点,反比例函数的图象经过点,与交于点.
    若点坐标为,求的值及图象经过、两点的一次函数的表达式;若,求反比例函数的表达式.
    25.(10分)某中学为了了解在校学生对校本课程的喜爱情况,随机调查了部分学生对五类校本课程的喜爱情况,要求每位学生只能选择一类最喜欢的校本课程,根据调查结果绘制了如下的两个不完整统计图.请根据图中所提供的信息,完成下列问题:
    (1)本次被调查的学生的人数为 ;
    (2)补全条形统计图
    (3)扇形统计图中,类所在扇形的圆心角的度数为 ;
    (4)若该中学有2000名学生,请估计该校最喜爱两类校本课程的学生约共有多少名.

    26.(12分)如图,△ABD是⊙O的内接三角形,E是弦BD的中点,点C是⊙O外一点且∠DBC=∠A,连接OE延长与圆相交于点F,与BC相交于点C.求证:BC是⊙O的切线;若⊙O的半径为6,BC=8,求弦BD的长.

    27.(12分)如图,二次函数的图像与轴交于、两点,与轴交于点,.点在函数图像上,轴,且,直线是抛物线的对称轴,是抛物线的顶点.求、的值;如图①,连接,线段上的点关于直线的对称点恰好在线段上,求点的坐标;如图②,动点在线段上,过点作轴的垂线分别与交于点,与抛物线交于点.试问:抛物线上是否存在点,使得与的面积相等,且线段的长度最小?如果存在,求出点的坐标;如果不存在,说明理由.



    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、A
    【解析】
    首先根据题意画出图形,易得△OBC是等边三角形,继而可得正六边形的边长为R,然后利用解直角三角形求得边心距,又由S正六边形=求得正六边形的面积.
    【详解】
    解:如图,O为正六边形外接圆的圆心,连接OB,OC,过点O作OH⊥BC于H,

    ∵六边形ABCDEF是正六边形,半径为,
    ∴∠BOC=,
    ∵OB=OC=R,
    ∴△OBC是等边三角形,
    ∴BC=OB=OC=R,
    ∵OH⊥BC,
    ∴在中,,
    即,
    ∴,即边心距为;
    ∵,
    ∴S正六边形=,
    故选:A.
    【点睛】
    本题考查了正多边形和圆的知识;求得正六边形的中心角为60°,得到等边三角形是正确解答本题的关键.
    2、A
    【解析】
    分析:根据数轴上某个数与原点的距离叫做这个数的绝对值的定义,在数轴上,点﹣2到原点的距离是2,所以﹣2的绝对值是2,故选A.
    3、D
    【解析】
    解:①∵ABCD为菱形,∴AB=AD.

    ∵AB=BD,∴△ABD为等边三角形.
    ∴∠A=∠BDF=60°.
    又∵AE=DF,AD=BD,
    ∴△AED≌△DFB;
    ②∵∠BGE=∠BDG+∠DBF=∠BDG+∠GDF=60°=∠BCD,
    即∠BGD+∠BCD=180°,
    ∴点B、C、D、G四点共圆,
    ∴∠BGC=∠BDC=60°,∠DGC=∠DBC=60°.
    ∴∠BGC=∠DGC=60°.
    过点C作CM⊥GB于M,CN⊥GD于N.
    ∴CM=CN,
    则△CBM≌△CDN,(HL)
    ∴S四边形BCDG=S四边形CMGN.
    S四边形CMGN=1S△CMG,
    ∵∠CGM=60°,
    ∴GM=CG,CM=CG,
    ∴S四边形CMGN=1S△CMG=1××CG×CG=CG1.

    ③过点F作FP∥AE于P点.
    ∵AF=1FD,
    ∴FP:AE=DF:DA=1:3,
    ∵AE=DF,AB=AD,
    ∴BE=1AE,
    ∴FP:BE=1:6=FG:BG,
    即 BG=6GF.
    故选D.
    4、C
    【解析】
    根据平行线性质得出∠B+∠BAD=180°,∠C=∠DAC,求出∠BAD,求出∠DAC,即可得出∠C的度数.
    【详解】
    解:∵AD∥BC,
    ∴∠B+∠BAD=180°,
    ∵∠B=40°,
    ∴∠BAD=140°,
    ∵AC平分∠DAB,
    ∴∠DAC=∠BAD=70°,
    ∵A∥BC,
    ∴∠C=∠DAC=70°,
    故选C.
    【点睛】
    本题考查了平行线性质和角平分线定义,关键是求出∠DAC或∠BAC的度数.
    5、C
    【解析】
    根据题意,求出∠AEM,再根据AB∥CD,得出∠AEM与∠CFE互补,求出∠CFE.
    【详解】
    ∵AM⊥EF,∠EAM=10°
    ∴∠AEM=80°
    又∵AB∥CD
    ∴∠AEM+∠CFE=180°
    ∴∠CFE=100°.
    故选C.
    【点睛】
    本题考查三角形内角和与两条直线平行内错角相等.
    6、B
    【解析】
    A.括号前是负号去括号都变号;
    B负次方就是该数次方后的倒数,再根据前面两个负号为正;
    C. 两个负号为正;
    D.三次根号和二次根号的算法.
    【详解】
    A选项,﹣(x﹣y)=﹣x+y,故A错误;
    B选项, ﹣(﹣2)﹣1=,故B正确;
    C选项,﹣,故C错误;
    D选项,22,故D错误.
    【点睛】
    本题考查去括号法则的应用,分式的性质,二次根式的算法,熟记知识点是解题的关键.
    7、A
    【解析】
    试题分析:由折叠的性质知,CD=DE,BC=BE.
    易求AE及△AED的周长.
    解:由折叠的性质知,CD=DE,BC=BE=7cm.
    ∵AB=10cm,BC=7cm,∴AE=AB﹣BE=3cm.
    △AED的周长=AD+DE+AE=AC+AE=6+3=9(cm).
    故选A.
    点评:本题利用了折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.
    8、C
    【解析】
    求出与x轴的交点坐标,观察图形可知第奇数号抛物线都在x轴上方,然后求出到抛物线平移的距离,再根据向右平移横坐标加表示出抛物线的解析式,然后把点P的坐标代入计算即可得解.
    【详解】
    令,则=0,
    解得,

    由图可知,抛物线在x轴下方,
    相当于抛物线向右平移4×(26−1)=100个单位得到得到,再将绕点旋转180°得,
    此时的解析式为y=(x−100)(x−100−4)=(x−100)(x−104),
    在第26段抛物线上,
    m=(103−100)(103−104)=−3.
    故答案是:C.
    【点睛】
    本题考查的知识点是二次函数图象与几何变换,解题关键是根据题意得到p点所在函数表达式.
    9、B
    【解析】
    根据三角形数列的特点,归纳出每一行第一个数的通用公式,即可求出第9行从左至右第5个数.
    【详解】
    根据三角形数列的特点,归纳出每n行第一个数的通用公式是,所以,第9行从左至右第5个数是=.
    故选B
    【点睛】
    本题主要考查归纳推理的应用,根据每一行第一个数的取值规律,利用累加法求出第9行第五个数的数值是解决本题的关键,考查学生的推理能力.
    10、B
    【解析】
    根据轴对称图形的定义,逐一进行判断.
    【详解】
    A、C是中心对称图形,但不是轴对称图形;B是轴对称图形;D不是对称图形.
    故选B.
    【点睛】
    本题考查的是轴对称图形的定义.
    11、A
    【解析】
    解:∵点P所表示的数为a,点P在数轴的右边,∴-3a一定在原点的左边,且到原点的距离是点P到原点距离的3倍,∴数-3a所对应的点可能是M,故选A.
    点睛:本题考查了数轴,解决本题的关键是判断-3a一定在原点的左边,且到原点的距离是点P到原点距离的3倍.
    12、B
    【解析】
    首先提取公因式a,再利用平方差公式分解因式得出答案.
    【详解】
    4a﹣a3=a(4﹣a2)=a(2﹣a)(2+a).
    故选:B.
    【点睛】
    此题主要考查了提取公因式法以及公式法分解因式,正确运用公式是解题关键.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、
    【解析】
    试题分析:根据题意和图示,可知所有的等可能性为18种,然后可知落在黑色区域的可能有4种,因此可求得小球停留在黑色区域的概率为:.
    14、.
    【解析】
    过点C作CE⊥x轴于点E,过点D作DF⊥x轴于点F,

    设OC=2x,则BD=x,
    在Rt△OCE中,∠COE=60°,则OE=x,CE=,
    则点C坐标为(x,),
    在Rt△BDF中,BD=x,∠DBF=60°,则BF=,DF=,
    则点D的坐标为(,),
    将点C的坐标代入反比例函数解析式可得:,
    将点D的坐标代入反比例函数解析式可得:,
    则,
    解得:,(舍去),
    故=.故答案为.
    考点:1.反比例函数图象上点的坐标特征;2.等边三角形的性质.
    15、.
    【解析】
    试题分析:连接OC,已知OA=OC,∠A=30°,所以∠OCA=∠A=30°,由三角形外角的性质可得∠COB=∠A+∠ACO=60°,又因PC是⊙O切线,可得∠PCO=90°,∠P=30°,再由PC=3,根据锐角三角函数可得OC=PC•tan30°=,PC=2OC=2,即可得PB=PO﹣OB=.

    考点:切线的性质;锐角三角函数.
    16、1
    【解析】
    试题解析:∵总人数为14÷28%=50(人),
    ∴该年级足球测试成绩为D等的人数为(人).
    故答案为:1.
    17、
    【解析】
    根据题意可求AD的长度,即可得CD的长度,根据菱形ABCD的面积=CD×AE,可求菱形ABCD的面积.
    【详解】
    ∵sinD=

    ∴AD=11
    ∵四边形ABCD是菱形
    ∴AD=CD=11
    ∴菱形ABCD的面积=11×8=96cm1.
    故答案为:96cm1.
    【点睛】
    本题考查了菱形的性质,解直角三角形,熟练运用菱形性质解决问题是本题的关键.
    18、0,1,2,1
    【解析】
    5x﹣1<1x+5,
    移项得,5x﹣1x<5+1,
    合并同类项得,2x<8,
    系数化为1得,x<4
    所以不等式的非负整数解为0,1,2,1;
    故答案为0,1,2,1.
    【点睛】根据不等式的基本性质正确解不等式,求出解集是解答本题的关键.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、(1)AC与⊙O相切,证明参见解析;(2).
    【解析】
    试题分析:(1)由于OC⊥AD,那么∠OAD+∠AOC=90°,又∠BED=∠BAD,且∠BED=∠C,于是∠OAD=∠C,从而有∠C+∠AOC=90°,再利用三角形内角和定理,可求∠OAC=90°,即AC是⊙O的切线;(2)连接BD,AB是直径,那么∠ADB=90°,在Rt△AOC中,由于AC=8,∠C=∠BED,cos∠BED=,利用三角函数值,可求OA=6,即AB=12,在Rt△ABD中,由于AB=12,∠OAD=∠BED,cos∠BED=,同样利用三角函数值,可求AD.
    试题解析:(1)AC与⊙O相切.∵弧BD是∠BED与∠BAD所对的弧,∴∠BAD=∠BED,∵OC⊥AD,∴∠AOC+∠BAD=90°,∴∠BED+∠AOC=90°,即∠C+∠AOC=90°,∴∠OAC=90°,∴AB⊥AC,即AC与⊙O相切;(2)连接BD.∵AB是⊙O直径,∴∠ADB=90°,在Rt△AOC中,∠CAO=90°,∵AC=8,∠ADB=90°,cos∠C=cos∠BED=,∴AO=6,∴AB=12,在Rt△ABD中,∵cos∠OAD=cos∠BED=,∴AD=AB•cos∠OAD=12×=.

    考点:1.切线的判定;2.解直角三角形.
    20、(1)40;(2)72;(3)1.
    【解析】
    (1)用最想去A景点的人数除以它所占的百分比即可得到被调查的学生总人数;
    (2)先计算出最想去D景点的人数,再补全条形统计图,然后用360°乘以最想去D景点的人数所占的百分比即可得到扇形统计图中表示“最想去景点D”的扇形圆心角的度数;
    (3)用800乘以样本中最想去A景点的人数所占的百分比即可.
    【详解】
    (1)被调查的学生总人数为8÷20%=40(人);
    (2)最想去D景点的人数为40﹣8﹣14﹣4﹣6=8(人),补全条形统计图为:

    扇形统计图中表示“最想去景点D”的扇形圆心角的度数为×360°=72°;
    (3)800×=1,所以估计“最想去景点B“的学生人数为1人.
    21、(1)5.6
    (2)货物MNQP应挪走,理由见解析.
    【解析】
    (1)如图,作AD⊥BC于点D

    Rt△ABD中,
    AD=ABsin45°=4
    在Rt△ACD中,∵∠ACD=30°
    ∴AC=2AD=4
    即新传送带AC的长度约为5.6米.
    (2)结论:货物MNQP应挪走.
    在Rt△ABD中,BD=ABcos45°=4
    在Rt△ACD中,CD=ACcos30°=
    ∴CB=CD—BD=
    ∵PC=PB—CB ≈4—2.1=1.9<2
    ∴货物MNQP应挪走.
    22、 (1) ①特殊情形:;②类比探究: 是定值,理由见解析;(2) 或
    【解析】
    (1)证明,即可求解;
    (2)点E与点B重合时,四边形EBFA为矩形,即可求解;
    (3)分时、时,两种情况分别求解即可.
    【详解】
    解:(1),



    故答案为;
    (2)点E与点B重合时,四边形EBFA为矩形,
    则为定值;
    (3)①当时,如图3,

    过点E、F分别作直线BC的垂线交于点G,H,
    由(1)知:,


    ,同理,
    .
    则,
    则 ;
    ②当时,如图4,




    ,则,

    则 ,
    故或 .
    【点睛】
    本题考查的圆知识的综合运用,涉及到解直角三角形的基本知识,其中(3),要注意分类求解,避免遗漏.
    23、(1)证明见解析;(2)证明见解析;(3)证明见解析.
    【解析】
    (1)先判断出∠2+∠3=90°,再判断出∠1=∠2即可得出结论;
    (2)根据等腰三角形的性质得到∠3=∠COD=∠DEO=60°,根据平行线的性质得到∠4=∠1,根据全等三角形的性质得到∠CBO=∠CDO=90°,于是得到结论;
    (3)先判断出△ABO≌△CDE得出AB=CD,即可判断出四边形ABCD是平行四边形,最后判断出CD=AD即可.
    【详解】
    (1)如图,连接OD,

    ∵CD是⊙O的切线,
    ∴OD⊥CD,
    ∴∠2+∠3=∠1+∠COD=90°,
    ∵DE=EC,
    ∴∠1=∠2,
    ∴∠3=∠COD,
    ∴DE=OE;
    (2)∵OD=OE,
    ∴OD=DE=OE,
    ∴∠3=∠COD=∠DEO=60°,
    ∴∠2=∠1=30°,
    ∵AB∥CD,
    ∴∠4=∠1,
    ∴∠1=∠2=∠4=∠OBA=30°,
    ∴∠BOC=∠DOC=60°,
    在△CDO与△CBO中,,
    ∴△CDO≌△CBO(SAS),
    ∴∠CBO=∠CDO=90°,
    ∴OB⊥BC,
    ∴BC是⊙O的切线;
    (3)∵OA=OB=OE,OE=DE=EC,
    ∴OA=OB=DE=EC,
    ∵AB∥CD,
    ∴∠4=∠1,
    ∴∠1=∠2=∠4=∠OBA=30°,
    ∴△ABO≌△CDE(AAS),
    ∴AB=CD,
    ∴四边形ABCD是平行四边形,
    ∴∠DAE=∠DOE=30°,
    ∴∠1=∠DAE,
    ∴CD=AD,
    ∴▱ABCD是菱形.
    【点睛】
    此题主要考查了切线的性质,同角的余角相等,等腰三角形的性质,平行四边形的判定和性质,菱形的判定,判断出△ABO≌△CDE是解本题的关键.
    24、(1),;(2).
    【解析】
    分析:(1)由已知求出A、E的坐标,即可得出m的值和一次函数函数的解析式;
    (2)由,得到,由,得到.设点坐标为,则点坐标为,代入反比例函数解析式即可得到结论.
    详解:(1)∵为的中点,
    ∴.
    ∵反比例函数图象过点,
    ∴.
    设图象经过、两点的一次函数表达式为:,
    ∴,
    解得,
    ∴.
    (2)∵,
    ∴.
    ∵,
    ∴,
    ∴.
    设点坐标为,则点坐标为.
    ∵两点在图象上,
    ∴,
    解得:,
    ∴,
    ∴,
    ∴.

    点睛:本题考查了矩形的性质以及反比例函数一次函数的解析式.解题的关键是求出点A、E、F的坐标.
    25、 (1)300;(2)见解析;(3)108°;(4)约有840名.
    【解析】
    (1)根据A种类人数及其占总人数百分比可得答案;
    (2)用总人数乘以B的百分比得出其人数,即可补全条形图;
    (3)用360°乘以C类人数占总人数的比例可得;
    (4)总人数乘以C、D两类人数占样本的比例可得答案.
    【详解】
    解:(1)本次被调查的学生的人数为69÷23%=300(人),
    故答案为:300;
    (2)喜欢B类校本课程的人数为300×20%=60(人),
    补全条形图如下:

    (3)扇形统计图中,C类所在扇形的圆心角的度数为360°×=108°,
    故答案为:108°;
    (4)∵2000×=840,
    ∴估计该校喜爱C,D两类校本课程的学生共有840名.
    【点睛】
    本题考查条形统计图、扇形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解题关键.条形统计图能清楚地表示出每个项目的数据.
    26、(1)详见解析;(2)BD=9.6.
    【解析】
    试题分析:(1)连接OB,由垂径定理可得BE=DE,OE⊥BD, ,再由圆周角定理可得 ,从而得到∠ OBE+∠ DBC=90°,即 ,命题得证.
    (2)由勾股定理求出OC,再由△OBC的面积求出BE,即可得出弦BD的长.
    试题解析:(1)证明:如下图所示,连接OB.
    ∵ E是弦BD的中点,∴ BE=DE,OE⊥ BD,,
    ∴∠ BOE=∠ A,∠ OBE+∠ BOE=90°.
    ∵∠ DBC=∠ A,∴∠ BOE=∠ DBC,
    ∴∠ OBE+∠ DBC=90°,∴∠ OBC=90°,即BC⊥OB,∴ BC是⊙ O的切线.

    (2)解:∵ OB=6,BC=8,BC⊥OB,∴ ,
    ∵ ,∴ ,
    ∴.
    点睛:本题主要考查圆中的计算问题,解题的关键在于清楚角度的转换方式和弦长的计算方法.
    27、(1),;(2)点的坐标为;(3)点的坐标为和
    【解析】
    (1)根据二次函数的对称轴公式,抛物线上的点代入,即可;
    (2)先求F的对称点,代入直线BE,即可;(3)构造新的二次函数,利用其性质求极值.
    【详解】
    解:(1)轴,,抛物线对称轴为直线
    点的坐标为
    解得或(舍去),
    (2)设点的坐标为对称轴为直线点关于直线的对称点的坐标为.
    直线经过点利用待定系数法可得直线的表达式为.
    因为点在上,即点的坐标为
    (3)存在点满足题意.设点坐标为,则
    作垂足为
    ①点在直线的左侧时,点的坐标为点的坐标为点的坐标为在中,时,取最小值.此时点的坐标为
    ②点在直线的右侧时,点的坐标为同理,时,取最小值.此时点的坐标为
    综上所述:满足题意得点的坐标为和
    考点:二次函数的综合运用.

    相关试卷

    2022年重点中学中考数学五模试卷含解析:

    这是一份2022年重点中学中考数学五模试卷含解析,共20页。试卷主要包含了考生必须保证答题卡的整洁,解分式方程时,去分母后变形为等内容,欢迎下载使用。

    2022年白山市重点中学中考数学五模试卷含解析:

    这是一份2022年白山市重点中学中考数学五模试卷含解析,共20页。试卷主要包含了下面的几何体中,主视图为圆的是,如图,直线与y轴交于点,今年春节某一天早7等内容,欢迎下载使用。

    2022届青海省重点中学中考数学五模试卷含解析:

    这是一份2022届青海省重点中学中考数学五模试卷含解析,共20页。试卷主要包含了考生必须保证答题卡的整洁,﹣3的相反数是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map