广东省2022届高三数学二模试卷及答案
展开高三数学二模试卷
一、单选题
1.已知集合,则( )
A. B. C. D.
2.定义在上的下列函数中,既是奇函数,又是增函数的是( )
A. B. C. D.
3.已知随机变量,若,则( )
A.0.7 B.0.4 C.0.3 D.0.2
4.某校安排高一年级(1)~(5)班共5个班去A,B,C,D四个劳动教育基地进行社会实践,每个班去一个基地,每个基地至少安排一个班,则高一(1)班被安排到A基地的排法总数为( )
A.24 B.36 C.60 D.240
5.若函数与图象的任意连续三个交点构成边长为4的等边三角形,则正实数( )
A. B.1 C. D.π
6.赵爽弦图(如图1)中的大正方形是由4个全等的直角三角形和中间的小正方形拼接而成的,若直角三角形的两条直角边长为a,b,斜边长为c,由大正方形面积等于4个直角三角形的面积与中间小正方形的面积之和可得勾股定理.仿照赵爽弦图构造如图2所示的菱形,它是由两对全等的直角三角形和中间的矩形拼接而成的,设直角三角形的斜边都为1,其中一对直角三角形含有锐角,另一对直角三角形含有锐角(位置如图2所示).借鉴勾股定理的推导思路可以得到结论( )
A.
B.
C.
D.
7.已知抛物线E:,圆F:,直线l:(t为实数)与抛物线E交于点A,与圆F交于B,C两点,且点B位于点C的右侧,则△FAB的周长可能为( )
A.4 B.5 C.6 D.7
8.存在函数使得对于都有,则函数可能为( )
A. B.
C. D.
二、多选题
9.已知复数z的共轭复数是,,i是虚数单位,则下列结论正确的是( )
A.
B.的虚部是0
C.
D.在复平面内对应的点在第四象限
10.吹气球时,记气球的半径r与体积V之间的函数关系为r(V),为r(V)的导函数.已知r(V)在上的图象如图所示,若,则下列结论正确的是( )
A.
B.
C.
D.存在,使得
11.在所有棱长都相等的正三棱柱中,点A是三棱柱的顶点,M,N、Q是所在棱的中点,则下列选项中直线AQ与直线MN垂直的是( )
A. B.
C. D.
12.如图,已知扇形OAB的半径为1,,点C、D分别为线段OA、OB上的动点,且,点E为上的任意一点,则下列结论正确的是( )
A.的最小值为0 B.的最小值为
C.的最大值为1 D.的最小值为0
三、填空题
13.已知双曲线 =1(a>0,b>0)的渐近线方程为y=± x,则它的离心率为 .
14.若直线和直线将圆的周长四等分,则 .
15.若函数的最大值为1,则常数的一个取值为 .
16.十字贯穿体(如图1)是美术素描学习中一种常见的教具.如图2,该十字贯穿体由两个全等的正四棱柱组合而成,且两个四棱柱的侧棱互相垂直,若底面正方形边长为2,则这两个正四棱柱公共部分所构成的几何体的内切球的体积为 .
四、解答题
17.已知递增等比数列的前n项和为,且满足,.
(1)求数列的通项公式.
(2)若数列满足,求数列的前15项和.
18.小李下班后驾车回家的路线有两条.路线1经过三个红绿灯路口,每个路口遇到红灯的概率都是;路线2经过两个红绿灯路口,第一个路口遇到红灯的概率是,第二个路口遇到红灯的概率是.假设两条路线全程绿灯时的驾车回家时长相同,且每个红绿灯路口是否遇到红灯相互独立.
(1)若小李下班后选择路线1驾车回家,求至少遇到一个红灯的概率.
(2)假设每遇到一个红灯驾车回家时长就会增加1min,为使小李下班后驾车回家时长的累计增加时间(单位:min)的期望最小,小李应选择哪条路线?请说明理由.
19.如图,已知△ABC内有一点P,满足.
(1)证明:.
(2)若,,求PC.
20.如图1,在△ABC中,,DE是△ABC的中位线,沿DE将△ADE进行翻折,使得△ACE是等边三角形(如图2),记AB的中点为F.
(1)证明:平面ABC.
(2)若,二面角D-AC-E为,求直线AB与平面ACD所成角的正弦值.
21.已知椭圆C:,点为椭圆的右焦点,过点F且斜率不为0的直线交椭圆于M,N两点,当与x轴垂直时,.
(1)求椭圆C的标准方程.
(2),分别为椭圆的左、右顶点,直线,分别与直线:交于P,Q两点,证明:四边形为菱形.
22.已知函数(且)的图象与x轴交于P,Q两点,且点P在点Q的左侧.
(1)求点P处的切线方程,并证明:时,.
(2)若关于x的方程(t为实数)有两个正实根,证明:.
答案解析部分
1.【答案】C
2.【答案】D
3.【答案】A
4.【答案】C
5.【答案】C
6.【答案】B
7.【答案】B
8.【答案】D
9.【答案】B,C
10.【答案】B,D
11.【答案】A,C
12.【答案】B,C,D
13.【答案】2
14.【答案】2
15.【答案】(答案不唯一,取,均可)
16.【答案】
17.【答案】(1)解:设的公比为q,则由,得.
整理得.
又,得.
联立得,消去,得.
解得或.
又因为为递增等比数列,
所以,.
所以.
(2)解:(方法一)当时,,则,,同理,列举得,,,,,,,.
记的前n项和为,则
.
所以数列的前15项和为92.
(方法二)由,
得,
记的前n项和为,则
.
所以数列的前15项和为92.
18.【答案】(1)解:设路线1遇到红灯的个数的随机变量为X,则,
所以至少遇到一个红灯的事件为,
由对立事件概率公式,
得,
所以若小李下班后选择路线1驾车回家,至少遇到一个红灯的概率为.
(2)解:设路线1累计增加时间的随机变量为,则,
所以,
设路线2第i个路口遇到红灯为事件(,2),则,,
设路线2累计增加时间的随机变量为,则的所有可能取值为0,1,2,则
,
,
,
所以.
因为,
所以为使小李下班后驾车回家时长的累计增加时间的期望最小,小李应选择路线1.
19.【答案】(1)证明:在△ABP中,由正弦定理得,
即,
要证明,只需证明,
在△ABP中,,
在△ABC中,,
所以,
所以,
所以.
(2)解:由(1)知,又因为,,
所以,
由已知得△ABC为等腰直角三角形,所以,
则,
所以在△PBC中,,
由正弦定理得,
即,
即.
由余弦定理得,
由题意知,
故解得,
所以.
20.【答案】(1)证明:如图,
取AC中点G,连接FG和EG,由已知得,且.
因为F,G分别为AB,AC的中点,所以,且
所以,且.
所以四边形DEGF是平行四边形.
所以.
因为翻折的,易知.
所以翻折后,.
又因为,EA,平面AEC,
所以平面AEC.
因为,
所以平面AEC.
因为平面AEC,所以.
因为ACE是等边三角形,点G是AC中点,所以
又因为,AC,平面ABC.
所以平面ABC.
因为,所以平面ABC.
(2)解:(方法一)如图,
过点E作,以E为原点,EH、EC,ED所在直线分别为x,y,z轴,建立空间直角坐标系E-xyz,设,则,,,,则,,,
因为平面AEC.所以是平面AEC的法向量,
设面ACD的法向量为,则
,即,解得.
取,得.
因为二面角D-AC-E为,所以,
解得,所以,.
记直线AB与平面ACD所成角为,
则,
所以直线AB与平面ACD所成角的正弦值为.
(方法二)如图,
连接DG,因为平面AEC,平面AEC,所以.
又因为,,DE,平面DEG.所以平面DEC.
因为EG,平面DEG,所以,,所以∠DGE是二面角D-AC-E的平面角,故.
由△ACE是边长为2的等边三角形,得,
在RtDGE中,,所以,.
过点F作,垂足为I,
因为平面DEGF,平面ACD,所以平面平面ACD.
又因为平面平面,平面DEGF,且,
所以平面ACD.
连接AI,则∠FAI即为直线AB与平面ACD所成的角.
在Rt△DFG中,,,得,由等面积法得,解得.
在RtAFG中,,,所以.
在RtFAI中,,
所以直线AB与平面ACD所成角的正弦值为.
21.【答案】(1)解:由题可知.
当与x轴垂直时,不妨设M的坐标为,
所以,
解得,.
所以椭圆C的标准方程为.
(2)证明:设的方程为,,,
联立得消去x,得,
易知恒成立,由韦达定理得,,
由直线的斜率为,得直线的方程为,
当时,,
由直线的斜率为,得直线的方程为,
当时,,
若四边形为菱形,则对角线相互垂直且平分,下面证,
因为,
代入韦达定理得
,
所以,即PQ与相互垂直平分,所以四边形为菱形.
22.【答案】(1)证明:令,得.
所以或.
即或.
因为点P在点Q的左侧,所以,.
因为,
所以,得点P处的切线方程为,即.
当时,,
因为,且,所以,所以,即.
所以,
所以.
(2)证明:不妨设,且只考虑的情形.
因为,所以.
所以点Q处的切线方程为,记,
令,,
设,则.
所以单调递增.
又因为,
所以,当时,;当时,.
所以在上单调递减,在上单调递增.
所以在时有极小值,也是最小值,
即,所以当时,.
设方程的根为,则.
易知单调递增,由,所以.
对于(1)中,设方程的根为,则.
易知单调递减,由(1)知,所以.
所以.
因为,易知时,,故;当时,,所以,
所以,
所以.
记,,则恒成立.
所以单调递增,因为,,
所以存在使得.
所以,当时.;当时,.
所以在上单调递减,在上单调递增.
因为,,由函数图象知当方程(t为实数)有两个正实根时,,
所以.
所以,
即.
广东省深圳市2022届高三数学二模试卷及答案: 这是一份广东省深圳市2022届高三数学二模试卷及答案,共9页。试卷主要包含了单选题,多选题,填空题,解答题等内容,欢迎下载使用。
广东省湛江市2022届高三数学二模试卷及答案: 这是一份广东省湛江市2022届高三数学二模试卷及答案,共10页。试卷主要包含了单选题,多选题,填空题,解答题等内容,欢迎下载使用。
广东省汕头市2022届高三数学二模试卷及答案: 这是一份广东省汕头市2022届高三数学二模试卷及答案,共10页。试卷主要包含了单选题,多选题,填空题,解答题等内容,欢迎下载使用。