高中数学人教A版 (2019)选择性必修 第三册7.4 二项分布与超几何分布同步训练题
展开7.4 二项分布与超几何分布(精练)
【题组一 超几何与二项分布概念的辨析】
1.(2021·全国·高二课时练习)(多选)关于超几何分布下列说法正确的是( )
A.超几何分布的模型是不放回抽样 B.超几何分布的总体里可以只有一类物品
C.超几何分布中的参数是,, D.超几何分布的总体往往由差异明显的两部分组成
2.(2021·全国·高二课时练习)(多选)下列随机变量中,服从超几何分布的有( )
A.在10件产品中有3件次品,一件一件地不放回地任意取出4件,记取到的次品数为X
B.从3台甲型彩电和2台乙型彩电中任取2台,记X表示所取的2台彩电中甲型彩电的台数
C.一名学生骑自行车上学,途中有6个交通岗,记此学生遇到红灯的数为随机变量X
D.从10名男生,5名女生中选3人参加植树活动,其中男生人数记为X
3.(2021·全国·高二课时练习)(多选)下列事件不是n重伯努利试验的是( )
A.运动员甲射击一次,“射中9环”与“射中8环”
B.甲、乙两运动员各射击一次,“甲射中10环”与“乙射中9环”
C.甲、乙两运动员各射击一次,“甲、乙都射中目标”与“甲、乙都没射中目标”
D.在相同的条件下,甲射击10次,5次击中目标
4.(2021·全国·)下列问题中的随机变量服从两点分布的是( )
A.抛掷一枚骰子,所得点数为随机变量X
B.某射手射击一次,击中目标的次数为随机变量X
C.从装有5个红球,3个白球的袋中取1个球,令随机变量
D.某医生做一次手术,手术成功的次数为随机变量X
5.(2021·全国·)(多选)下列选项中的随机变量服从两点分布的是( )
A.抛掷一枚骰子,所得点数
B.某射击手射击一次,击中目标的次数
C.从装有除颜色外其余均相同的5个红球、3个白球的袋中任取1个球,设
D.某医生做一次手术,手术成功的次数
6.(2021·全国·高二课时练习)下列问题中,哪些属于超几何分布问题,说明理由.
(1)抛掷三枚骰子,所得向上的数是6的骰子的个数记为X,求X的概率分布;
(2)有一批种子的发芽率为70%,任取10颗种子做发芽试验,把试验中发芽的种子的个数记为X,求X的概率分布;
(3)盒子中有红球3只,黄球4只,蓝球5只.任取3只球,把不是红色的球的个数记为X,求X的概率分布;
(4)某班级有男生25人,女生20人.选派4名学生参加学校组织的活动,班长必须参加,其中女生人数记为X,求X的概率分布;
(5)现有100台MP3播放器未经检测,抽取10台送检,把检验结果为不合格的MP3播放器的个数记为X,求X的概率分布.
7.(2021·全国·高二课时练习)分别指出下列随机变量服从什么分布,并用合适的符号表示:
(1)某班级共有30名学生,其中有10名学生戴眼镜,随机从这个班级中抽取5人,设抽到的不戴眼镜的人数为X;
(2)已知女性患色盲的概率为,任意抽取300名女性,设其中患色盲的人数为X;
(3)学校要从3名男教师和4名女教师中随机选出3人去支教,设抽取的人中男教师的人数为X.
8.(2021·全国·高二课时练习)分别指出下列随机变量服从什么分布:
(1)即将出生的100个新生婴儿中,男婴的个数X;
(2)已知某幼儿园有125个孩子,其中男孩有62个,从这些孩子中随机抽取10个,设抽到男孩的个数为X.
【题组二 二项分布的均值与方差】
1.(2021·江苏泰州·高二期末)(多选)设随机变量,则下列说法正确的有( )
A. B.
C.X的数学期望 D.X的方差
2.(2021·河北石家庄·高二期末)(多选)已知,则下列结论正确的有( )
A.若,则
B.若,则
C.
D.若,则
【题组三 二项分布】
1.(2021·湖北)小和小两个同学进行摸球游戏,甲、乙两个盒子中各装有6个大小和质地相同的球,其中甲盒子中有1个红球,2个黄球,3个蓝球,乙盒子中红球、黄球、蓝球均为2个,小同学在甲盒子中取球,小同学在乙盒子中取球.
(1)若两个同学各取一个球,求取出的两个球颜色不相同的概率;
(2)若两个同学第一次各取一个球,对比颜色后分别放入原来的盒子;第二次再各取一个球,对比颜色后再分别放入原来的盒子,这样重复取球三次.记球颜色相同的次数为随机变量,求的分布列和数学期望
2.(2021·全国·高二课时练习)已知计算机网络的服务器采用的时“一用两备”(即一台正常设备,两台备用设备)的配置,这三台设备中,只要有一台能正常工作,计算机网络就不会断掉,如果三台设备各自能正常工作的概率都为0.9,它们之间互不影响,其中能正常工作的设备数为X.
(1)写出X的分布列;
(2)求出计算机网络不会断掉的概率.
3.(2021·吉林·长春十一高)某网站用“分制”调查一社区人们的幸福度.现从调查人群中随机抽取名,茎叶图记录了他们的幸福度分数(以小数点前的一位数字为茎,小数点后的一位数字为叶):
(1)指出这组数据的众数和中位数;
(2)若幸福度不低于,则称该人的幸福度为“极幸福”.求从这人中随机选取人,至多有人是“极幸福”的概率;
(3)以这人的样本数据来估计整个社区的总体数据,若从该社区(人数很多)任选人,记表示抽到“极幸福”的人数,求的分布列及数学期望.
4.(2021·广东龙岗 )2021年8月3日,国务院印发了《全民健身计划(2021-2025)》,就促进全民健身更高水平发展、更好满足人民群众的健身和健康需求,提出5年目标和8个方面的主要任务.为此,深圳市政府颁发了《深圳建设国家体育消费试点城市实施方案》,进一步推动深圳市体育的高质量发展.为了响应全民健身和运动的需要,某单位举行了羽毛球趣味发球比赛,比赛规则如下:每位选手可以选择在区发球2次或者区发球3次,球落到指定区域内才能得分,在区发球时,每得分一次计2分,不得分记0分,在区发球时,每得分一次计3分,不得分记0分,得分高者胜出.已知选手甲在区和区每次发球得分的概率为和.
(1)如果选手甲以在区和区发球得分的期望值较高者作为选择发球区的标准,问选手甲应该选择在哪个区发球?
(2)求选手甲在区得分高于在区得分的概率.
5.(2021·全国·高二课时练习)一名学生每天骑自行车上学,从家到学校的途中有个交通岗,假设他在各交通岗遇到红灯的事件是相互独立的,并且概率都是.
(1)求这名学生在途中遇到红灯的次数的分布列和均值;
(2)求这名学生在首次遇到红灯或到达目的地停车前经过的路口数的分布列;
(3)求这名学生在途中至少遇到一次红灯的概率.
6.(2021·全国·高二课时练习)将一个半径适当的小球放入如图所示的容器最上方的入口处,小球将自由下落,小球在整个下落过程中它将3次遇到黑色障碍物,最后落入袋或袋中.已知小球每次遇到黑色障碍物时,向左、右两边下落的概率都是.
(1)求小球落入袋中的概率;
(2)在容器入口处依次放入2个小球,记落入袋中小球的个数为,试求的分布列.
【题组四 超几何分布】
1.(2020·北京八中高三期中)1.某食品厂为了检查一条自动包装流水线的生产情况,随即抽取该流水线上40件产品作为样本算出他们的重量(单位:克)重量的分组区间为,,…,由此得到样本的频率分布直方图,如图所示.
(1)根据频率分布直方图,求重量超过505克的产品数量.
(2)在上述抽取的40件产品中任取2件,设X为重量超过505克的产品数量,求X的分布列.
(3)从流水线上任取2件产品,求恰有1件产品的重量超过505克的概率.
2.(2021·全国·高二课时练习)从某批产品中,有放回地抽取产品二次,每次随机抽取件,假设事件“取出的件产品都是二等品”的概率.
(1)求从该批产品中任取件是二等品的概率;
(2)若该批产品共件,从中任意抽取件,表示取出的件产品中二等品的件数,求的分布列.
3.(2021·全国·高二课时练习)为庆祝建军节的到来,某校举行“强国强军”知识竞赛.该校某班经过层层筛选,还有最后一个参赛名额要在,两名学生中产生,该班委设计了一个选拔方案:,两名学生各自从6个问题中随机抽取3个问题作答.已知这6个问题中,学生能正确回答其中的4个问题,而学生能正确回答每个问题的概率均为.,两名学生对每个问题回答正确与否都是相互独立的.
(1)分别求,两名学生恰好答对2个问题的概率.
(2)设答对的题数为,答对的题数为,若让你投票决定参赛选手,你会选择哪名学生?请说明理由.
4.(2021·全国·高二课时练习)在一次购物抽奖活动中,假设10张奖券中有一等奖奖券1张,可获价值50元的奖品;有二等奖奖券3张,每张可获价值10元的奖品;其余6张没有奖品.
(1)顾客甲从10张奖券中任意抽取1张,求中奖次数的分布列;
(2)顾客乙从10张奖券中任意抽取2张.
①求顾客乙中奖的概率;
②设顾客乙获得的奖品总价值为元,求的分布列.
5.(2021·全国·高二单元测试)为活跃校园文化,丰富学生的课余生活,某高校社团举办了“校园音乐节”,某乐队准备从3首摇滚歌曲和5首校园民谣中随机选择4首进行演唱.
(1)求该乐队至少演唱1首摇滚歌曲的概率;
(2)假设演唱1首摇滚歌曲,观众与乐队的互动指数为a(a为常数),演唱1首校园民谣,观众与乐队的互动指数为2a,求观众与乐队的互动指数之和X的分布列.
6.(2021·山东潍坊·高二期末)某校为推进科技进校园活动组织了一次科技知识问答竞赛,组委会抽取了100名学生参加,得到的竞赛成绩作出如图所示频率分布直方图.已知成绩在的学生有20人.
(1)求a,b的值,并估计本次竞赛学生成绩的中位数(结果保留一位小数);
(2)从成绩在与学生中任取3人进行问卷调查.记这3名学生成绩在内的人数为,求的分布列与期望.
7.(2021·辽宁葫芦岛·高二期末)2021年5月30日清晨5时01分,天舟二号货运飞船在成功发射约8小时后,中国航天器的“浪漫之吻”再度在太空上演,天舟二号货运飞船与中国空间站天和核心舱顺利实现了快速交会对接.据航天科技集团五院的专家介绍,此次天舟货运飞船携带的物资可以供3名航天员在太空中生活3个月,这将创造中国航天员驻留太空时长新的记录.如果首次执行空间站的任务由3名航天员承担,在3名女性航天员(甲、乙、丙)和4名男性航天员(丁、戊、己、庚)共7名航天员中产生.
(1)求所选的3名航天员既有男航天员又有女航天员的概率;
(2)求所选的3名航天员中女航天员人数的分布列及数学期望.
8.(2021·安徽·蚌埠田家炳中学高二月考(理))年初,湖北出现由新型冠状病毒引发的肺炎.为防止病毒蔓延,各级政府相继启动重大突发公共卫生事件一级响应,全国人民团结一心抗击疫情.某社区组织了名社区居民参加防疫知识竞赛,他们的成绩全部在分至分之间,现将成绩按如下方式分成组:第一组,成绩大于等于分且小于分;第二组,成绩大于等于分且小于分;第六组,成绩大于等于分且小于等于分,据此绘制了如图所示的频率分布直方图.
(1)求社区居民成绩的众数及的值;
(2)我们将成绩大于等于分称为优秀,成绩小于分称为不合格.用分层抽样的方法从这个成绩中抽取个成绩继续分析,成绩不合格和优秀各抽了多少个?再从抽取的不合格成绩和优秀成绩中任选个成绩,记优秀成绩的个数为个,求的分布列和数学期望.
【题组五 二项分布与超几何分布的综合】
1.(2021·广东·普宁市第二中学高三月考)某种水果按照果径大小可分为四类:标准果、优质果、精品果、礼品果,某采购商从采购的一批水果中随机抽取100个,利用水果的等级分类标准得到的数据如下:
等级 | 标准果 | 优质果 | 精品果 | 礼品果 |
个数 | 10 | 30 | 40 | 20 |
(1)若将频率视为概率,从这100个水果中有放回地随机抽取3个,求恰好有2个水果是礼品果的概率;(结果用分数表示)
(2)用分层抽样的方法从这100个水果中抽取10个,再从抽取的10个水果中随机抽取2个,若表示抽到的精品果的数量,求的分布列和期望.
2.(2021·广东·华南师大附中南海实验高中高二期中)在一次招聘中,主考官要求应聘者从6道备选题中一次性随机抽取3道题,并独立完成所抽取的3道题.甲能正确完成其中的4道题,乙能正确完成每道题的概率为,且每道题完成与否互不影响.规定至少正确完成其中2道题便可过关.
(1)记所抽取的3道题中,甲答对的题数为X,求X的分布列和期望;
(2)记乙能答对的题数为Y,求Y的分布列、期望.
3.(2021·安徽·亳州二中高二期末(理))青年大学习是共青团中央组织的青年学习行动,共青团中央用习近平新时代中国特色社会主义思想武装全团、教育青年,把深入学习宣传贯彻党的十九大精神作为首要政治任务和核心业务,在全团部署实施“青年大学习”行动.某区为调在学生学习情况,对全区高中进行抽样调查,调查最近一周的周得分情况.如下茎叶图是抽查的A校和B校各30人得到的这周得分情况:
根据成绩分为如下等级:
成绩 (单位:分) | ||||
等级 | 不合格 | 合格 | 良好 | 优秀 |
(1)根据茎叶图判断A校和B校中的哪个学校完成学习的效果更好,并说明理由(不要求计算);
(2)现要从A校被抽查的成绩等级合格和不合格的8名同学中任选4人进行座谈,记其中所含不合格人数,求的分布列和期望;
(3)若将所统计的这60人的频率作为概率,在全区的高中学生中任意抽取4人参加知识竞赛,记其中所含成绩优秀人数,求的分布列、期望和方差.
4.(2021·广东·珠海市第二中学高二期中)甲乙两人参加某种选拔测试,在备选的10道题中,甲答对其中每道题的概率都是,乙能答对其中的8道题,规定每次考试都从备选的10道题中随机抽出4道题进行测试,只有选中的4个题目均答对才能入选.
(Ⅰ)求甲恰有2个题目答对的概率;
(Ⅱ)求乙答对的题目数的分布列;
(Ⅲ)试比较甲,乙两人总体解题能力水平,并说明理由.
5.(2021·重庆一中高二期末)2021年五一期间,某家具城举办了一次家具有奖促销活动,消费每超过1万元(含1万元),均可抽奖一次,抽奖方案有两种,顾客只能选择其中的一种.
方案一:从装有10个形状与大小完全相同的小球(其中红球2个,白球1个,黑球7个)的抽奖盒中,一次性摸出3个球,其中奖规则为:若摸到2个红球和1个白球,则打6折;若摸出2个红球和1个黑球,则打7.2折;若摸出1个白球2个黑球,则打9.6折:其余情况不打折;
方案二:从装有10个形状与大小完全相同的小球(其中红球2个,黑球8个)的抽奖盒中,有放回每次摸取1球,连摸3次,每摸到1次红球,立减200元.
(1)若一位顾客消费了1万元,且选择抽奖方案一,试求该顾客享受7.2折优惠的概率;
(2)若某顾客消费恰好满1万元,试分析该顾客选择哪种抽奖方案更合算,并说明理由.
【题组六 二项分布与超几何分布与其他知识综合】
1.(2021·安徽省泗县第一中学)某班级组织一场游戏活动,盒子中有红、蓝两种小球(除了颜色不同,形状、大小、质地均相同),其中红、蓝小球数量之比为2:1,每个小球被摸到的可能性相同.
(1)现在进行有放回的摸球活动,求在5次摸球中有3次都摸到红球的概率;
(2)游戏规定:如果摸到红球,则放回盒子,继续进行下一次摸球;如果摸到篮球,则游戏结束,规定摸球次数不超过次.若游戏结束时,随机变量表示摸到红球数量,求的分布列与数学期望.
2.(2021·山东·烟台二中三模)为纪念中国共产党成立100周年,加深青少年对党的历史、党的知识、党的理论和路线方针的认识,激发爱党爱国热情,坚定走新时代中国特色社会主义道路的信心,某校举办了党史知识竞赛.竞赛规则是:两人一组,每一轮竞赛中,小组两人分别答3道题,若答对题目不少于5道题,则获得一个积分.已知甲乙两名同学一组,甲同学和乙同学对每道题答对的概率分别是和,且每道题答对与否互不影响.
(1)若,,求甲乙同学这一组在一轮竞赛中获得一个积分的概率;
(2)若,且每轮比赛互不影响,若甲乙同学这一组想至少获得5个积分,那么理论上至少要进行多少轮竞赛?
3.(2021·全国·高三专题练习)目前某市居民使用天然气实行阶梯价格制度,从该市随机抽取10户调查同一年的天然气使用情况,得到统计表如下:
用气居民编号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
年用气量(立方米) | 95 | 106 | 112 | 161 | 210 | 227 | 256 | 313 | 325 | 457 |
(1)现要在这10户家庭中任意抽取3户,求抽到的年用气量超过228立方米而不超过348立方米的用户数的分布列与数学期望;
(2)若以表中抽到的10户作为样本估计全市居民的年用气情况,现从全市居民中抽取10户,其中恰有户年用气量不超过228立方米的概率为,求使取到最大值时,的值.
4.(2021·全国·高二专题练习)2020年1月15日教育部制定出台了《关于在部分高校开展基础学科招生改革试点工作的意见》(也称“强基计划”),《意见》宣布:2020年起不再组织开展高校自主招生工作,改为实行强基计划.强基计划主要选拔培养有志于服务国家重大战略需求且综合素质优秀或基础学科拔尖的学生.据悉强基计划的校考由试点高校自主命题,校考过程中通过笔试后才能进入面试环节.已知甲、乙两所大学的笔试环节都设有三门考试科目且每门科目是否通过相互独立.若某考生报考甲大学,每门科目通过的概率均为,该考生报考乙大学,每门科目通过的概率依次为,,,其中.
(1)若,分别求出该考生报考甲、乙两所大学在笔试环节恰好通过一门科目的概率;
(2)强基计划规定每名考生只能报考一所试点高校,若以笔试过程中通过科目数的数学期望为依据作出决策,当该考生更希望通过甲大学的笔试时,求的范围.
5.(2021·山东济南·二模)某企业对生产设备进行优化升级,升级后的设备控制系统由个相同的元件组成,每个元件正常工作的概率均为,各元件之间相互独立.当控制系统有不少于个元件正常工作时,设备正常运行,否则设备停止运行,记设备正常运行的概率为(例如:表示控制系统由3个元件组成时设备正常运行的概率;表示控制系统由5个元件组成时设备正常运行的概率).
(1)若每个元件正常工作的概率.
(i)当时,求控制系统中正常工作的元件个数的分布列和期望;
(ii)计算.
(2)已知设备升级前,单位时间的产量为件,每件产品的利润为1元,设备升级后,在正常运行状态下,单位时间的产量是原来的4倍,且出现了髙端产品,每件产品成为高端产品的概率为,每件髙端产品的利润是2元.请用表示出设备升级后单位时间内的利润(单位:元),在确保控制系统中元件总数为奇数的前提下,分析该设备能否通过增加控制系统中元件的个数来提高利润.
6.(2021·湖北)随着我国互联网的不断发展,自媒体业飞速发展起来,抖音、快手、微信视频号等等视频自媒体APP,几乎是全民参与.某中学社会调研社团研究抖音在生活中的普及程度,走向街头巷尾、公园,各行各业办公室,对市民进行调研,发现约有的人发过抖音小视频.为进一步研究,从这些被采访的人中随机抽取人进行调查,假设每个人被选到的可能性相等.
(1)记表示发过抖音视频的人数,求的分布列;
(2)随着研究人群范围的扩大,为提高效率,研究组在对某些行业人群集中调研时,先随机抽取一人,如果他发过抖音小视频,就不再对该群体中其他人进行调查,如果没有发过抖音小视频,则继续随机抽取,直到抽到一名发过抖音小视频的人为止,并且规定抽样的次数不超过次,(其中小于当次调查的总人数),在抽样结束时,抽到的没发过抖音视频的人数为,求的数学期望.
7.(2021·福建厦门)每天锻炼一小时,健康工作五十年,幸福生活一辈子.某公司组织全员每天进行体育锻炼,订制了主题为“百年风云”的系列纪念币奖励员工,该系列纪念币有,,,四种.每个员工每天自主选择“球类”和“田径”中的一项进行锻炼.锻炼结束后员工将随机等可能地获得一枚纪念币.
(1)某员工活动前两天获得,,则前四天恰好能集齐“百年风云”系列纪念币的概率是多少?
(2)通过抽调查发现:活动首日有的员工选择“球类”,其余的员工选择“田径”;在前一天选择“球类”的员工中,次日会有的员工继续选择“球类”,其余的选择“田径”;在前一天选择“田径”的员工中,次日会有的员工继续选择“田径”,其余的选择“球类”.用频率估计概率.记某员工第天选择“球类”的概率为.
①计算,,并求;
②该集团公司共有员工1400人,经过足够多天后,试估计该公司接下来每天各有多少员工参加“球类”和“田径”运动?
8.(2021·辽宁锦州)核酸检测是诊断新冠肺炎的重要依据,首先取病人的唾液或咽拭子的样本,再提取唾液或咽拭子样本里的遗传物质,如果有病毒,样本检测会呈现阳性,否则为阴性.根据统计发现,疑似病例核酸检测呈阳性的概率为().现有4例疑似病例,分别对其取样、检测,多个样本检测时,既可以逐个化验,也可以将若干个样本混合在一起化验.混合样本中只要有病毒,则混合样本化验结果就会呈阳性,若混合样本呈阳性,则将该组中备份的样本再逐个化验:若混合样本呈阴性,则判定该组各个样本均为阴性,无需再检验.现有以下三种方案:方案一:逐个化验;方案二:四个样本混合在一起化验;方案三:平均分成两组,每组两个样本混合在一起,再分组化验.在新冠肺炎爆发初期,由于检查能力不足,化验次数的期望值越小,则方案越“优”.
(1)若按方案一且,求4个疑似病例中恰有2例呈阳性的概率;
(2)若,现将该4例疑似病例样本进行化验,请问:方案一、二、三中哪个最“优”?
(3)若对4例疑似病例样本进行化验,且想让“方案二”比“方案一”更“优”,求的取值范围.
9.(2021·河南南阳·高二期末(理))某中学组织学生前往电子科技产业园,学习加工制造电子产品.该电子产品由A、B两个系统组成,其中A系统由3个电子元件组成,B系统由5个电子元件组成.各个电子元件能够正常工作的概率均为,且每个电子元件能否正常工作相互独立每个系统中有超过一半的电子元件正常工作,则该系统可以正常工作,否则就需要维修.
(1)当时,每个系统维修费用均为200元.设为该电子产品需要维修的总费用,求的分布列与数学期望;
(2)当该电子产品出现故障时,需要对该电子产品A,B两个系统进行检测.从A,B两个系统能够正常工作概率的大小判断,应优先检测哪个系统?
10.(2021·广东中山·高二期末)高尔顿板是英国生物统计学家高尔顿设计用来研究随机现象的模型,在一块木板上钉着若干排相互平行但相互错开的圆柱形小木块,小木块之间留有适当的空隙作为通道,前面挡有一块玻璃,让一个小球从高尔顿板上方的通道口落下,小球在下落的过程中与层层小木块碰撞,且等可能向左或向右滚下,最后掉入高尔顿板下方的某一球槽内.
如图所示的小木块中,上面7层为高尔顿板,最下面一层为改造的高尔顿板,小球从通道口落下,第一次与第2层中间的小木块碰撞,以的概率向左或向右滚下,依次经过7次与小木块碰撞,最后掉入编号为1,2…,6的球槽内.例如小球要掉入3号球槽,则在前6次碰撞中有2次向右4次向左滚到第7层的第3个空隙处,再以的概率向右滚下,或在前6次碰撞中有3次向右3次向左滚到第7层的第4个空隙处,再以的概率向左滚下.
(1)若进行一次高尔顿板试验,求小球落入第7层第6个空隙处的概率;
(2)小明同学在研究了高尔顿板后,利用该图中的高尔顿板来到社团文化节上进行盈利性“抽奖”活动,8元可以玩一次高尔顿板游戏,小球掉入号球槽得到的奖金为元,其中.
①求的分布列:
②高尔顿板游戏火爆进行,很多同学参加了游戏,你觉得小明同学能盈利吗?
人教A版 (2019)选择性必修 第二册5.2 导数的运算当堂达标检测题: 这是一份人教A版 (2019)选择性必修 第二册5.2 导数的运算当堂达标检测题,共8页。
2021学年2.4 圆的方程同步训练题: 这是一份2021学年2.4 圆的方程同步训练题,共9页。
选择性必修 第三册8.2 一元线性回归模型及其应用同步达标检测题: 这是一份选择性必修 第三册8.2 一元线性回归模型及其应用同步达标检测题,共19页。