所属成套资源:多地区中考数学真题按题型知识点分层分类汇编
山东省枣庄市三年(2020-2022)中考数学真题分类汇编-填空题
展开
这是一份山东省枣庄市三年(2020-2022)中考数学真题分类汇编-填空题,共18页。试卷主要包含了定理”等内容,欢迎下载使用。
山东省枣庄市三年(2020-2022)中考数学真题分类汇编-填空题
一.完全平方公式(共1小题)
1.(2020•枣庄)若a+b=3,a2+b2=7,则ab= .
二.一元一次方程的应用(共1小题)
2.(2021•枣庄)幻方是古老的数学问题,我国古代的《洛书》中记载了最早的幻方——九宫图.将数字1~9分别填入如图所示的幻方中,要求每一横行、每一竖行以及两条斜对角线上的数字之和都是15,则m的值为 .
三.二元一次方程组的解(共1小题)
3.(2021•枣庄)已知x,y满足方程组,则x+y的值为 .
四.二元一次方程组的应用(共1小题)
4.(2022•枣庄)《九章算术》是人类科学史上应用数学的“算经之首”,其书中卷八方程[七]中记载:“今有牛五、羊二,直金十两.牛二、羊五,直金八两.牛、羊各直金几何?”题目大意是:“5头牛、2只羊共值金10两.2头牛、5只羊共值金8两,每头牛、每只羊各值金多少两?”根据题意,可求得1头牛和1只羊共值金 两.
五.一元二次方程的解(共1小题)
5.(2020•枣庄)已知关于x的一元二次方程(a﹣1)x2﹣2x+a2﹣1=0有一个根为x=0,则a= .
六.根的判别式(共1小题)
6.(2021•枣庄)若等腰三角形的一边长是4,另两边的长是关于x的方程x2﹣6x+n=0的两个根,则n的值为 .
七.反比例函数与一次函数的交点问题(共1小题)
7.(2021•枣庄)如图,正比例函数y1=k1x(k1≠0)与反比例函数y2=(k2≠0)的图象相交于A,B两点,其中点A的横坐标为1.当k1x<时,x的取值范围是 .
八.抛物线与x轴的交点(共1小题)
8.(2022•枣庄)小明在学习“二次函数”内容后,进行了反思总结.如图,二次函数y=ax2+bx+c(a≠0)图象的一部分与x轴的一个交点坐标为(1,0),对称轴为直线x=﹣1,结合图象他得出下列结论:①ab>0且c>0;②a+b+c=0;③关于x的一元二次方程ax2+bx+c=0(a≠0)的两根分别为﹣3和1;④若点(﹣4,y1),(﹣2,y2),(3,y3)均在二次函数图象上,则y1<y2<y3;⑤3a+c<0,其中正确的结论有 .(填序号,多选、少选、错选都不得分)
九.平行线的性质(共1小题)
9.(2022•枣庄)光线在不同介质中传播速度不同,从一种介质射向另一种介质时会发生折射.如图,水面AB与水杯下沿CD平行,光线EF从水中射向空气时发生折射,光线变成FH,点G在射线EF上,已知∠HFB=20°,∠FED=45°,则∠GFH的度数为 .
一十.多边形(共1小题)
10.(2020•枣庄)各顶点都在方格纸的格点(横竖格子线的交错点)上的多边形称为格点多边形,它的面积S可用公式S=a+b﹣1(a是多边形内的格点数,b是多边形边界上的格点数)计算,这个公式称为“皮克(Pick)定理”.如图给出了一个格点五边形,则该五边形的面积S= .
一十一.正方形的性质(共1小题)
11.(2020•枣庄)如图,E,F是正方形ABCD的对角线AC上的两点,AC=8,AE=CF=2,则四边形BEDF的周长是 .
一十二.四边形综合题(共1小题)
12.(2021•枣庄)如图,∠BOD=45°,BO=DO,点A在OB上,四边形ABCD是矩形,连接AC,BD交于点E,连接OE交AD于点F.下列4个判断:①OE⊥BD;②∠ADB=30°;③DF=AF;④若点G是线段OF的中点,则△AEG为等腰直角三角形,其中,判断正确的是 .(填序号)
一十三.切线的性质(共1小题)
13.(2020•枣庄)如图,AB是⊙O的直径,PA切⊙O于点A,线段PO交⊙O于点C.连接BC,若∠P=36°,则∠B= .
一十四.弧长的计算(共1小题)
14.(2022•枣庄)在活动课上,“雄鹰组”用含30°角的直角三角尺设计风车.如图,∠C=90°,∠ABC=30°,AC=2,将直角三角尺绕点A逆时针旋转得到△AB′C′,使点C′落在AB边上,以此方法做下去……则B点通过一次旋转至B′所经过的路径长为 .(结果保留π)
一十五.作图—复杂作图(共1小题)
15.(2022•枣庄)如图,在矩形ABCD中,按以下步骤作图:①分别以点B和D为圆心,以大于BD的长为半径作弧,两弧相交于点E和F;②作直线EF分别与DC,DB,AB交于点M,O,N.若DM=5,CM=3,则MN= .
一十六.坐标与图形变化-旋转(共1小题)
16.(2021•枣庄)如图,在平面直角坐标系xOy中,△A′B′C′由△ABC绕点P旋转得到,则点P的坐标为 .
一十七.解直角三角形的应用(共2小题)
17.(2022•枣庄)北京冬奥会开幕式的巨型雪花状主火炬塔的设计,体现了环保低碳理念.如图所示,它的主体形状呈正六边形.若点A,F,B,D,C,E是正六边形的六个顶点,则tan∠ABE= .
18.(2020•枣庄)人字梯为现代家庭常用的工具(如图).若AB,AC的长都为2m,当α=50°时,人字梯顶端离地面的高度AD是 m.(结果精确到0.1m,参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.19)
山东省枣庄市三年(2020-2022)中考数学真题分类汇编-填空题
参考答案与试题解析
一.完全平方公式(共1小题)
1.(2020•枣庄)若a+b=3,a2+b2=7,则ab= 1 .
【解答】解:(a+b)2=32=9,
(a+b)2=a2+b2+2ab=9.
∵a2+b2=7,
∴2ab=2,
ab=1,
故答案为:1.
二.一元一次方程的应用(共1小题)
2.(2021•枣庄)幻方是古老的数学问题,我国古代的《洛书》中记载了最早的幻方——九宫图.将数字1~9分别填入如图所示的幻方中,要求每一横行、每一竖行以及两条斜对角线上的数字之和都是15,则m的值为 1 .
【解答】解:依题意,得:6+m+8=15,
解得:m=1.
故答案为:1.
三.二元一次方程组的解(共1小题)
3.(2021•枣庄)已知x,y满足方程组,则x+y的值为 ﹣2 .
【解答】解:方法一:,
①﹣②,得:2x+2y=﹣4,
∴x+y=﹣2,
故答案为:﹣2.
方法二:,
②×2,得:4x+2y=6③,
①﹣③,得:y=﹣7,
把y=﹣7代入②,得2x﹣7=3,
解得:x=5,
∴方程组的解为,
∴x+y=﹣2,
故答案为:﹣2.
四.二元一次方程组的应用(共1小题)
4.(2022•枣庄)《九章算术》是人类科学史上应用数学的“算经之首”,其书中卷八方程[七]中记载:“今有牛五、羊二,直金十两.牛二、羊五,直金八两.牛、羊各直金几何?”题目大意是:“5头牛、2只羊共值金10两.2头牛、5只羊共值金8两,每头牛、每只羊各值金多少两?”根据题意,可求得1头牛和1只羊共值金 两.
【解答】解:设每头牛x两,每只羊y两,
根据题意,可得,
∴7x+7y=18,
∴x+y=,
∴1头牛和1只羊共值金两,
故答案为:.
五.一元二次方程的解(共1小题)
5.(2020•枣庄)已知关于x的一元二次方程(a﹣1)x2﹣2x+a2﹣1=0有一个根为x=0,则a= ﹣1 .
【解答】解:把x=0代入(a﹣1)x2﹣2x+a2﹣1=0得a2﹣1=0,解得a=±1,
∵a﹣1≠0,
∴a=﹣1.
故答案为﹣1.
六.根的判别式(共1小题)
6.(2021•枣庄)若等腰三角形的一边长是4,另两边的长是关于x的方程x2﹣6x+n=0的两个根,则n的值为 8或9 .
【解答】解:当4为腰长时,将x=4代入x2﹣6x+n=0,得:42﹣6×4+n=0,
解得:n=8,
当n=8时,原方程为x2﹣6x+8=0,
解得:x1=2,x2=4,
∵2+4>4,
∴n=8符合题意;
当4为底边长时,关于x的方程x2﹣6x+n=0有两个相等的实数根,
∴Δ=(﹣6)2﹣4×1×n=0,
解得:n=9,
当n=9时,原方程为x2﹣6x+9=0,
解得:x1=x2=3,
∵3+3=6>4,
∴n=9符合题意.
∴n的值为8或9.
故答案为:8或9.
七.反比例函数与一次函数的交点问题(共1小题)
7.(2021•枣庄)如图,正比例函数y1=k1x(k1≠0)与反比例函数y2=(k2≠0)的图象相交于A,B两点,其中点A的横坐标为1.当k1x<时,x的取值范围是 0<x<1或x<﹣1 .
【解答】解:由正比例函数与反比例函数的对称性可得点B横坐标为﹣1,
由图象可得当k1x<时,x的取值范围是0<x<1或x<﹣1.
故答案为:0<x<1或x<﹣1.
八.抛物线与x轴的交点(共1小题)
8.(2022•枣庄)小明在学习“二次函数”内容后,进行了反思总结.如图,二次函数y=ax2+bx+c(a≠0)图象的一部分与x轴的一个交点坐标为(1,0),对称轴为直线x=﹣1,结合图象他得出下列结论:①ab>0且c>0;②a+b+c=0;③关于x的一元二次方程ax2+bx+c=0(a≠0)的两根分别为﹣3和1;④若点(﹣4,y1),(﹣2,y2),(3,y3)均在二次函数图象上,则y1<y2<y3;⑤3a+c<0,其中正确的结论有 ①②③ .(填序号,多选、少选、错选都不得分)
【解答】解:∵抛物线对称轴在y轴的左侧,
∴ab>0,
∵抛物线与y轴交点在x轴上方,
∴c>0,①正确;
∵抛物线经过(1,0),
∴a+b+c=0,②正确.
∵抛物线与x轴的一个交点坐标为(1,0),对称轴为直线x=﹣1,
∴另一个交点为(﹣3,0),
∴关于x的一元二次方程ax2+bx+c=0(a≠0)的两根分别为﹣3和1,③正确;
∵﹣1﹣(﹣2)<﹣1﹣(﹣4)<3﹣(﹣1),抛物线开口向下,
∴y2>y1>y3,④错误.
∵抛物线与x轴的一个交点坐标为(1,0),
∴a+b+c=0,
∵﹣=﹣1,
∴b=2a,
∴3a+c=0,⑤错误.
故答案为:①②③.
九.平行线的性质(共1小题)
9.(2022•枣庄)光线在不同介质中传播速度不同,从一种介质射向另一种介质时会发生折射.如图,水面AB与水杯下沿CD平行,光线EF从水中射向空气时发生折射,光线变成FH,点G在射线EF上,已知∠HFB=20°,∠FED=45°,则∠GFH的度数为 25° .
【解答】解:∵AB∥CD,
∴∠GFB=∠FED=45°.
∵∠HFB=20°,
∴∠GFH=∠GFB﹣∠HFB=45°﹣20°=25°.
故答案为:25°.
一十.多边形(共1小题)
10.(2020•枣庄)各顶点都在方格纸的格点(横竖格子线的交错点)上的多边形称为格点多边形,它的面积S可用公式S=a+b﹣1(a是多边形内的格点数,b是多边形边界上的格点数)计算,这个公式称为“皮克(Pick)定理”.如图给出了一个格点五边形,则该五边形的面积S= 6 .
【解答】解:a表示多边形内部的格点数,b表示多边形边界上的格点数,S表示多边形的面积,
通过图象可知a=4,b=6,
∴该五边形的面积S=4+×6﹣1=6,
故答案为:6.
一十一.正方形的性质(共1小题)
11.(2020•枣庄)如图,E,F是正方形ABCD的对角线AC上的两点,AC=8,AE=CF=2,则四边形BEDF的周长是 8 .
【解答】解:如图,连接BD交AC于点O,
∵四边形ABCD为正方形,
∴BD⊥AC,OD=OB=OA=OC,
∵AE=CF=2,
∴OA﹣AE=OC﹣CF,即OE=OF,
∴四边形BEDF为平行四边形,且BD⊥EF,
∴四边形BEDF为菱形,
∴DE=DF=BE=BF,
∵AC=BD=8,OE=OF==2,
由勾股定理得:DE===2,
∴四边形BEDF的周长=4DE=4×=8,
故答案为:8.
一十二.四边形综合题(共1小题)
12.(2021•枣庄)如图,∠BOD=45°,BO=DO,点A在OB上,四边形ABCD是矩形,连接AC,BD交于点E,连接OE交AD于点F.下列4个判断:①OE⊥BD;②∠ADB=30°;③DF=AF;④若点G是线段OF的中点,则△AEG为等腰直角三角形,其中,判断正确的是 ①③④ .(填序号)
【解答】解:①∵四边形ABCD是矩形,
∴EB=ED,
∵BO=DO,
∴OE⊥BD 故①正确;
②∵∠BOD=45°,BO=DO,
∴∠ABD=(180°﹣45°)=67.5°,
∴∠ADB=90°﹣27.5°=22.5°,故②错误;
③∵四边形ABCD是矩形,
∴∠OAD=∠BAD=90°,
∴∠ABD+∠ADB=90°,
∵OB=OD,BE=DE,
∴OE⊥BD,
∴∠BOE+∠OBE=90°,
∴∠BOE=∠BDA,
∵∠BOD=45°,∠OAD=90°,
∴∠ADO=45°,
∴AO=AD,
∴△AOF≌△ABD(ASA),
∴OF=BD,
∴AF=AB,
连接BF,如图1,
∴BF=AF,
∵BE=DE,OE⊥BD,
∴DF=BF,
∴DF=AF,故③正确;
④根据题意作出图形,如图2,
∵G是OF的中点,∠OAF=90°,
∴AG=OG,
∴∠AOG=∠OAG,
∵∠AOD=45°,OE平分∠AOD,
∴∠AOG=∠OAG=22.5°,
∴∠FAG=67.5°,∠ADB=∠AOF=22.5°,
∵四边形ABCD是矩形,
∴EA=ED,
∴∠EAD=∠EDA=22.5°,
∴∠EAG=90°,
∵∠AGE=∠AOG+∠OAG=45°,
∴∠AEG=45°,
∴AE=AG,
∴△AEG为等腰直角三角形,故④正确;
∴判断正确的是①③④.
故答案为:①③④.
一十三.切线的性质(共1小题)
13.(2020•枣庄)如图,AB是⊙O的直径,PA切⊙O于点A,线段PO交⊙O于点C.连接BC,若∠P=36°,则∠B= 27° .
【解答】解:∵PA切⊙O于点A,
∴∠OAP=90°,
∵∠P=36°,
∴∠AOP=54°,
∵=,
∴∠B=∠AOP=27°.
故答案为:27°.
一十四.弧长的计算(共1小题)
14.(2022•枣庄)在活动课上,“雄鹰组”用含30°角的直角三角尺设计风车.如图,∠C=90°,∠ABC=30°,AC=2,将直角三角尺绕点A逆时针旋转得到△AB′C′,使点C′落在AB边上,以此方法做下去……则B点通过一次旋转至B′所经过的路径长为 .(结果保留π)
【解答】解:∵∠C=90°,∠ABC=30°,AC=2,
∴AB=2AC=4,∠BAC=60°,
由旋转的性质得,∠BAB′=∠BAC=60°,
∴B点通过一次旋转至B′所经过的路径长为=,
故答案为:.
一十五.作图—复杂作图(共1小题)
15.(2022•枣庄)如图,在矩形ABCD中,按以下步骤作图:①分别以点B和D为圆心,以大于BD的长为半径作弧,两弧相交于点E和F;②作直线EF分别与DC,DB,AB交于点M,O,N.若DM=5,CM=3,则MN= 2 .
【解答】解:如图,连接BM.
由作图可知MN垂直平分线段BD,
∴BM=DM=5,
∵四边形ABCD是矩形,
∴∠C=90°,CD∥AB,
∴BC===4,
∴BD===4,
∴OB=OD=2,
∵∠MOD=90°,
∴OM===,
∵CD∥AB,
∴∠MDO=∠NBO,
在△MDO和△NBO中,
,
∴△MDO≌△BNO(ASA),
∴OM=ON=,
∴MN=2.
故答案为:2.
一十六.坐标与图形变化-旋转(共1小题)
16.(2021•枣庄)如图,在平面直角坐标系xOy中,△A′B′C′由△ABC绕点P旋转得到,则点P的坐标为 (1,﹣1) .
【解答】解:连接AA′、CC′,
作线段AA′的垂直平分线MN,作线段CC′的垂直平分线EF,
直线MN和直线EF的交点为P,点P就是旋转中心.
∵直线MN为:x=1,设直线CC′为y=kx+b,由题意:,
∴,
∴直线CC′为y=x+,
∵直线EF⊥CC′,经过CC′中点(,),
∴直线EF为y=﹣3x+2,
由得,
∴P(1,﹣1).
(本题可以用图象法,直接得出P坐标).
故答案为(1,﹣1).
一十七.解直角三角形的应用(共2小题)
17.(2022•枣庄)北京冬奥会开幕式的巨型雪花状主火炬塔的设计,体现了环保低碳理念.如图所示,它的主体形状呈正六边形.若点A,F,B,D,C,E是正六边形的六个顶点,则tan∠ABE= .
【解答】解:连接BC、AC,
∵点A,F,B,D,C,E是正六边形的六个顶点,
∴AB=BC=AC,BE垂直平分AC,
∴△ABC是等边三角形,
∴∠ABC=60°,
∵BE⊥AC,
∴∠ABE=∠ABC=30°,
∴tan∠ABE=tan30°=,
故答案为:.
18.(2020•枣庄)人字梯为现代家庭常用的工具(如图).若AB,AC的长都为2m,当α=50°时,人字梯顶端离地面的高度AD是 1.5 m.(结果精确到0.1m,参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.19)
【解答】解:∵AB=AC=2m,AD⊥BC,
∴∠ADC=90°,
∴AD=AC•sin50°=2×0.77≈1.5(m),
故答案为1.5.
相关试卷
这是一份山东省菏泽市三年(2020-2022)中考数学真题分类汇编-填空题,共15页。试卷主要包含了分解因式,因式分解,•的值是 ,的结果是 ,方程的解是 ,如图,在第一象限内的直线l等内容,欢迎下载使用。
这是一份山东省日照市三年(2020-2022)中考数学真题分类汇编-填空题,共13页。试卷主要包含了分解因式,《孙子算经》记载等内容,欢迎下载使用。
这是一份山东省济宁市三年(2020-2022)中考数学真题分类汇编-填空题,共13页。试卷主要包含了的值是 ,,使x>2时,y1>y2等内容,欢迎下载使用。