所属成套资源:多地区中考数学真题按题型知识点分层分类汇编
山东省枣庄市三年(2020-2022)中考数学真题分类汇编-选择题
展开
这是一份山东省枣庄市三年(2020-2022)中考数学真题分类汇编-选择题,共28页。
山东省枣庄市三年(2020-2022)中考数学真题分类汇编-选择题
一.数轴(共1小题)
1.(2021•枣庄)如图,数轴(单位长度为1)上有三个点A,B,C,若点A,B表示的数互为相反数,则图中点C对应的数是( )
A.﹣2 B.0 C.1 D.4
二.绝对值(共1小题)
2.(2020•枣庄)﹣的绝对值是( )
A.﹣ B.﹣2 C. D.2
三.倒数(共1小题)
3.(2021•枣庄)﹣5的倒数是( )
A.﹣5 B.5 C. D.
四.有理数的减法(共1小题)
4.(2020•枣庄)计算﹣﹣(﹣)的结果为( )
A.﹣ B. C.﹣ D.
五.科学记数法—表示较大的数(共1小题)
5.(2022•枣庄)2022年5月,神舟十三号搭载的1.2万粒作物种子顺利出舱.其中1.2万用科学记数法表示为( )
A.12×103 B.1.2×104 C.0.12×105 D.1.2×106
六.实数的性质(共1小题)
6.(2022•枣庄)实数﹣2023的绝对值是( )
A.2023 B.﹣2023 C. D.﹣
七.实数与数轴(共1小题)
7.(2020•枣庄)实数a,b在数轴上对应点的位置如图所示,下列判断正确的是( )
A.|a|<1 B.ab>0 C.a+b>0 D.1﹣a>1
八.完全平方公式(共2小题)
8.(2022•枣庄)下列运算正确的是( )
A.3a2﹣a2=3 B.a3÷a2=a
C.(﹣3ab2)2=﹣6a2b4 D.(a+b)2=a2+ab+b2
9.(2021•枣庄)下列计算正确的是( )
A.3a+2b=5ab B.(﹣2a)2=﹣4a2
C.(a+1)2=a2+2a+1 D.a3•a4=a12
九.完全平方公式的几何背景(共1小题)
10.(2020•枣庄)图(1)是一个长为2a,宽为2b(a>b)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空余的部分的面积是( )
A.ab B.(a+b)2 C.(a﹣b)2 D.a2﹣b2
一十.分式方程的解(共1小题)
11.(2020•枣庄)对于实数a、b,定义一种新运算“⊗”为:a⊗b=,这里等式右边是实数运算.例如:1⊗3=.则方程x⊗(﹣2)=﹣1的解是( )
A.x=4 B.x=5 C.x=6 D.x=7
一十一.函数值(共1小题)
12.(2022•枣庄)已知y1和y2均是以x为自变量的函数,当x=n时,函数值分别是N1和N2,若存在实数n,使得N1+N2=1,则称函数y1和y2是“和谐函数”.则下列函数y1和y2不是“和谐函数”的是( )
A.y1=x2+2x和y2=﹣x+1 B.y1=和y2=x+1
C.y1=﹣和y2=﹣x﹣1 D.y1=x2+2x和y2=﹣x﹣1
一十二.反比例函数图象上点的坐标特征(共1小题)
13.(2022•枣庄)如图,正方形ABCD的边长为5,点A的坐标为(4,0),点B在y轴上,若反比例函数y=(k≠0)的图象过点C,则k的值为( )
A.4 B.﹣4 C.﹣3 D.3
一十三.反比例函数与一次函数的交点问题(共1小题)
14.(2021•枣庄)在平面直角坐标系xOy中,直线AB垂直于x轴于点C(点C在原点的右侧),并分别与直线y=x和双曲线y=相交于点A,B,且AC+BC=4,则△OAB的面积为( )
A.2+或2﹣ B.2+2或2﹣2 C.2﹣ D.2+2
一十四.二次函数图象与系数的关系(共2小题)
15.(2021•枣庄)二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,对称轴为直线x=,且经过点(2,0).下列说法:①abc<0;②﹣2b+c=0;③4a+2b+c<0;④若(﹣,y1),(,y2)是抛物线上的两点,则y1<y2;⑤b+c>m(am+b)+c(其中m≠).正确的结论有( )
A.2个 B.3个 C.4个 D.5个
16.(2020•枣庄)如图,已知抛物线y=ax2+bx+c的对称轴为直线x=1.给出下列结论:
①ac<0;
②b2﹣4ac>0;
③2a﹣b=0;
④a﹣b+c=0.
其中,正确的结论有( )
A.1个 B.2个 C.3个 D.4个
一十五.专题:正方体相对两个面上的文字(共1小题)
17.(2022•枣庄)某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“亮”字所在面相对的面上的汉字是( )
A.青 B.春 C.梦 D.想
一十六.平行线的性质(共2小题)
18.(2021•枣庄)将一把直尺和一块含30°和60°角的三角板ABC按如图所示的位置放置,如果∠CDE=40°,那么∠BAF的大小为( )
A.10° B.15° C.20° D.25°
19.(2020•枣庄)一副直角三角板如图放置,点C在FD的延长线上,AB∥CF,∠F=∠ACB=90°,则∠DBC的度数为( )
A.10° B.15° C.18° D.30°
一十七.线段垂直平分线的性质(共1小题)
20.(2020•枣庄)如图,在△ABC中,AB的垂直平分线交AB于点D,交BC于点E,连接AE.若BC=6,AC=5,则△ACE的周长为( )
A.8 B.11 C.16 D.17
一十八.菱形的性质(共1小题)
21.(2021•枣庄)如图,四边形ABCD是菱形,对角线AC,BD相交于点O,AC=6,BD=6,点P是AC上一动点,点E是AB的中点,则PD+PE的最小值为( )
A.3 B.6 C.3 D.6
一十九.圆周角定理(共1小题)
22.(2022•枣庄)将量角器按如图所示的方式放置在三角形纸板上,使点C在半圆上.点A,B的读数分别为86°,30°,则∠ACB的度数是( )
A.28° B.30° C.36° D.56°
二十.扇形面积的计算(共1小题)
23.(2021•枣庄)如图,正方形ABCD的边长为2,O为对角线的交点,点E,F分别为BC,AD的中点.以C为圆心,2为半径作圆弧BD,再分别以E,F为圆心,1为半径作圆弧BO,OD,则图中阴影部分的面积为( )
A.π﹣1 B.π﹣3 C.π﹣2 D.4﹣π
二十一.轴对称图形(共1小题)
24.(2021•枣庄)将如图的七巧板的其中几块,拼成一个多边形,为轴对称图形的是( )
A. B.
C. D.
二十二.翻折变换(折叠问题)(共2小题)
25.(2021•枣庄)如图,三角形纸片ABC,AB=AC,∠BAC=90°,点E为AB中点,沿过点E的直线折叠,使点B与点A重合,折痕交BC于点F.已知EF=,则BC的长是( )
A. B.3 C.3 D.3
26.(2020•枣庄)如图,在矩形纸片ABCD中,AB=3,点E在边BC上,将△ABE沿直线AE折叠,点B恰好落在对角线AC上的点F处,若∠EAC=∠ECA,则AC的长是( )
A.3 B.4 C.5 D.6
二十三.图形的剪拼(共1小题)
27.(2021•枣庄)小明有一个呈等腰三角形的积木盒,现在积木盒中只剩下如图的九个空格,下面有四种积木的搭配,其中不能放入的有( )
A.搭配① B.搭配② C.搭配③ D.搭配④
二十四.中心对称图形(共1小题)
28.(2022•枣庄)剪纸文化是中国最古老的民间艺术之一,下列剪纸图案中,既是轴对称图形又是中心对称图形的是( )
A. B.
C. D.
二十五.坐标与图形变化-旋转(共2小题)
29.(2022•枣庄)如图,将△ABC先向右平移1个单位,再绕点P按顺时针方向旋转90°,得到△A′B′C′,则点B的对应点B′的坐标是( )
A.(4,0) B.(2,﹣2) C.(4,﹣1) D.(2,﹣3)
30.(2020•枣庄)如图,平面直角坐标系中,点B在第一象限,点A在x轴的正半轴上,∠AOB=∠B=30°,OA=2.将△AOB绕点O逆时针旋转90°,点B的对应点B'的坐标是( )
A.(﹣,3) B.(﹣3,) C.(﹣,2+) D.(﹣1,2+)
二十六.利用旋转设计图案(共1小题)
31.(2020•枣庄)如图的四个三角形中,不能由△ABC经过旋转或平移得到的是( )
A. B.
C. D.
二十七.方差(共1小题)
32.(2021•枣庄)为调动学生参与体育锻炼的积极性,某校组织了一分钟跳绳比赛活动,体育组随机抽取了10名参赛学生的成绩,将这组数据整理后制成统计表:
一分钟跳绳个数(个)
141
144
145
146
学生人数(名)
5
2
1
2
则关于这组数据的结论正确的是( )
A.平均数是144 B.众数是141
C.中位数是144.5 D.方差是5.4
二十八.列表法与树状图法(共2小题)
33.(2022•枣庄)在践行“安全在我心中,你我一起行动”主题手抄报评比活动中,共设置“交通安全、消防安全、饮食安全、防疫安全”四个主题内容,推荐两名学生参加评比,若他们每人从以上四个主题内容中随机选取一个,则两人恰好选中同一主题的概率是( )
A. B. C. D.
34.(2020•枣庄)不透明布袋中装有除颜色外没有其他区别的1个红球和2个白球,搅匀后从中摸出一个球,放回搅匀,再摸出一个球,两次都摸出白球的概率是( )
A. B. C. D.
山东省枣庄市三年(2020-2022)中考数学真题分类汇编-选择题
参考答案与试题解析
一.数轴(共1小题)
1.(2021•枣庄)如图,数轴(单位长度为1)上有三个点A,B,C,若点A,B表示的数互为相反数,则图中点C对应的数是( )
A.﹣2 B.0 C.1 D.4
【解答】解:因为点A,点B表示的数互为相反数,所以原点在线段AB中间,即在点A右边的第3格,得出点C在原点的右边第1格,所以点C对应的数是1.
故选:C.
二.绝对值(共1小题)
2.(2020•枣庄)﹣的绝对值是( )
A.﹣ B.﹣2 C. D.2
【解答】解:﹣的绝对值为.
故选:C.
三.倒数(共1小题)
3.(2021•枣庄)﹣5的倒数是( )
A.﹣5 B.5 C. D.
【解答】解:﹣5的倒数是﹣;
故选:D.
四.有理数的减法(共1小题)
4.(2020•枣庄)计算﹣﹣(﹣)的结果为( )
A.﹣ B. C.﹣ D.
【解答】解:﹣﹣(﹣)==﹣.
故选:A.
五.科学记数法—表示较大的数(共1小题)
5.(2022•枣庄)2022年5月,神舟十三号搭载的1.2万粒作物种子顺利出舱.其中1.2万用科学记数法表示为( )
A.12×103 B.1.2×104 C.0.12×105 D.1.2×106
【解答】解:1.2万=12000=1.2×104.
故选:B.
六.实数的性质(共1小题)
6.(2022•枣庄)实数﹣2023的绝对值是( )
A.2023 B.﹣2023 C. D.﹣
【解答】解:因为负数的绝对值等于它的相反数;
所以,﹣2023的绝对值等于2023.
故选:A.
七.实数与数轴(共1小题)
7.(2020•枣庄)实数a,b在数轴上对应点的位置如图所示,下列判断正确的是( )
A.|a|<1 B.ab>0 C.a+b>0 D.1﹣a>1
【解答】解:A、|a|>1,故本选项错误;
B、∵a<0,b>0,∴ab<0,故本选项错误;
C、a+b<0,故本选项错误;
D、∵a<0,∴1﹣a>1,故本选项正确;
故选:D.
八.完全平方公式(共2小题)
8.(2022•枣庄)下列运算正确的是( )
A.3a2﹣a2=3 B.a3÷a2=a
C.(﹣3ab2)2=﹣6a2b4 D.(a+b)2=a2+ab+b2
【解答】解:A、3a2﹣a2=2a2,故A错误,不符合题意;
B、a3÷a2=a,故B正确,符合题意;
C、(﹣3a3b)2=9a6b2,故C错误,不符合题意;
D、(a+b)2=a2+2ab+b2,故D不正确,不符合题意;
故选:B.
9.(2021•枣庄)下列计算正确的是( )
A.3a+2b=5ab B.(﹣2a)2=﹣4a2
C.(a+1)2=a2+2a+1 D.a3•a4=a12
【解答】解:A、3a与2b不是同类项,不能合并,原计算错误,故此选项不符合题意;
B、(﹣2a)2=4a2,原计算错误,故此选项不符合题意;
C、(a+1)2=a2+2a+1,原计算正确,故此选项符合题意;
D、a3•a4=a7,原计算错误,故此选项不符合题意;
故选:C.
九.完全平方公式的几何背景(共1小题)
10.(2020•枣庄)图(1)是一个长为2a,宽为2b(a>b)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空余的部分的面积是( )
A.ab B.(a+b)2 C.(a﹣b)2 D.a2﹣b2
【解答】解:中间部分的四边形是正方形,边长是a+b﹣2b=a﹣b,
则面积是(a﹣b)2.
故选:C.
一十.分式方程的解(共1小题)
11.(2020•枣庄)对于实数a、b,定义一种新运算“⊗”为:a⊗b=,这里等式右边是实数运算.例如:1⊗3=.则方程x⊗(﹣2)=﹣1的解是( )
A.x=4 B.x=5 C.x=6 D.x=7
【解答】解:根据题意,得=﹣1,
去分母得:1=2﹣(x﹣4),
解得:x=5,
经检验x=5是分式方程的解.
故选:B.
一十一.函数值(共1小题)
12.(2022•枣庄)已知y1和y2均是以x为自变量的函数,当x=n时,函数值分别是N1和N2,若存在实数n,使得N1+N2=1,则称函数y1和y2是“和谐函数”.则下列函数y1和y2不是“和谐函数”的是( )
A.y1=x2+2x和y2=﹣x+1 B.y1=和y2=x+1
C.y1=﹣和y2=﹣x﹣1 D.y1=x2+2x和y2=﹣x﹣1
【解答】解:A、令y1+y2=1,
则x2+2x﹣x+1=1,
整理得:x2+x=0,
解得:x1=0,x2=﹣1,
∴函数y1和y2是“和谐函数”,故A不符合题意;
B、令y1+y2=1,
则+x+1=1,
整理得:x2+1=0,
此方程无解,
∴函数y1和y2不是“和谐函数”,故B符合题意;
C、令y1+y2=1,
则﹣﹣x﹣1=1,
整理得:x2+2x+1=0,
解得:x1=﹣1,x2=﹣1,
∴函数y1和y2是“和谐函数”,故C不符合题意;
D、令y1+y2=1,
则x2+2x﹣x﹣1=1,
整理得:x2+x﹣2=0,
解得:x1=1,x2=﹣2,
∴函数y1和y2是“和谐函数”,故D不符合题意;
故选:B.
一十二.反比例函数图象上点的坐标特征(共1小题)
13.(2022•枣庄)如图,正方形ABCD的边长为5,点A的坐标为(4,0),点B在y轴上,若反比例函数y=(k≠0)的图象过点C,则k的值为( )
A.4 B.﹣4 C.﹣3 D.3
【解答】解:如图,过点C作CE⊥y轴于E,在正方形ABCD中,AB=BC,∠ABC=90°,
∴∠ABO+∠CBE=90°,
∵∠OAB+∠ABO=90°,
∴∠OAB=∠CBE,
∵点A的坐标为(4,0),
∴OA=4,
∵AB=5,
∴OB==3,
在△ABO和△BCE中,
,
∴△ABO≌△BCE(AAS),
∴OA=BE=4,CE=OB=3,
∴OE=BE﹣OB=4﹣3=1,
∴点C的坐标为(﹣3,1),
∵反比例函数y=(k≠0)的图象过点C,
∴k=xy=﹣3×1=﹣3,
故选:C.
一十三.反比例函数与一次函数的交点问题(共1小题)
14.(2021•枣庄)在平面直角坐标系xOy中,直线AB垂直于x轴于点C(点C在原点的右侧),并分别与直线y=x和双曲线y=相交于点A,B,且AC+BC=4,则△OAB的面积为( )
A.2+或2﹣ B.2+2或2﹣2 C.2﹣ D.2+2
【解答】解:设点C(x,0),
∵直线AB与直线y=x和双曲线y=相交于点A,B,
∴点A(x,x),点B(x,),
∴AC=x=OC,BC=,
∵AC+BC=4,
∴x+=4,
∴x=2±,
当x=2+时,AC=2+=OC,BC=2﹣,
∴AB=2,
∴△OAB的面积=×BA×OC=2+2;
当x=2﹣时,AC=2﹣=OC,BC=2+,
∴AB=2,
∴△OAB的面积=×BA×OC=2﹣2;
综上所述:△OAB的面积为2+2或2﹣2,
故选:B.
一十四.二次函数图象与系数的关系(共2小题)
15.(2021•枣庄)二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,对称轴为直线x=,且经过点(2,0).下列说法:①abc<0;②﹣2b+c=0;③4a+2b+c<0;④若(﹣,y1),(,y2)是抛物线上的两点,则y1<y2;⑤b+c>m(am+b)+c(其中m≠).正确的结论有( )
A.2个 B.3个 C.4个 D.5个
【解答】解:∵抛物线开口向下,且交y轴于正半轴,
∴a<0,c>0,
∵对称轴x=﹣=,即b=﹣a,
∴b>0,
∴abc<0,
故①正确;
∵二次函数y=ax2+bx+c(a≠0)的图象过点(2,0),
∴0=4a+2b+c,
故③不正确;
又可知b=﹣a,
∴0=﹣4b+2b+c,即﹣2b+c=0,
故②正确;
∵抛物线开口向下,对称轴是直线x=,且=1,=2,
∴y1>y2,
故选④不正确;
∵抛物线开口向下,对称轴是直线x=,
∴当x=时,抛物线y取得最大值ymax==,
当x=m时,ym=am2+bm+c=m(am+b)+c,且m≠,
∴ymax>ym,
故⑤正确,
综上,结论①②⑤正确,
故选:B.
16.(2020•枣庄)如图,已知抛物线y=ax2+bx+c的对称轴为直线x=1.给出下列结论:
①ac<0;
②b2﹣4ac>0;
③2a﹣b=0;
④a﹣b+c=0.
其中,正确的结论有( )
A.1个 B.2个 C.3个 D.4个
【解答】解:抛物线开口向下,a<0,对称轴为x=﹣=1,因此b>0,与y轴交于正半轴,因此c>0,
于是有:ac<0,因此①正确;
由x=﹣=1,得2a+b=0,因此③不正确,
抛物线与x轴有两个不同交点,因此b2﹣4ac>0,②正确,
由对称轴x=1,抛物线与x 轴的一个交点为(3,0),对称性可知另一个交点为(﹣1,0),因此a﹣b+c=0,故④正确,
综上所述,正确的结论有①②④,
故选:C.
一十五.专题:正方体相对两个面上的文字(共1小题)
17.(2022•枣庄)某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“亮”字所在面相对的面上的汉字是( )
A.青 B.春 C.梦 D.想
【解答】解:在原正方体中,与“亮”字所在面相对的面上的汉字是:想,
故选:D.
一十六.平行线的性质(共2小题)
18.(2021•枣庄)将一把直尺和一块含30°和60°角的三角板ABC按如图所示的位置放置,如果∠CDE=40°,那么∠BAF的大小为( )
A.10° B.15° C.20° D.25°
【解答】解:由题意知DE∥AF,
∴∠AFD=∠CDE=40°,
∵∠B=30°,
∴∠BAF=∠AFD﹣∠B=40°﹣30°=10°,
故选:A.
19.(2020•枣庄)一副直角三角板如图放置,点C在FD的延长线上,AB∥CF,∠F=∠ACB=90°,则∠DBC的度数为( )
A.10° B.15° C.18° D.30°
【解答】解:由题意可得:∠EDF=45°,∠ABC=30°,
∵AB∥CF,
∴∠ABD=∠EDF=45°,
∴∠DBC=45°﹣30°=15°.
故选:B.
一十七.线段垂直平分线的性质(共1小题)
20.(2020•枣庄)如图,在△ABC中,AB的垂直平分线交AB于点D,交BC于点E,连接AE.若BC=6,AC=5,则△ACE的周长为( )
A.8 B.11 C.16 D.17
【解答】解:∵DE垂直平分AB,
∴AE=BE,
∴△ACE的周长=AC+CE+AE
=AC+CE+BE
=AC+BC
=5+6
=11.
故选:B.
一十八.菱形的性质(共1小题)
21.(2021•枣庄)如图,四边形ABCD是菱形,对角线AC,BD相交于点O,AC=6,BD=6,点P是AC上一动点,点E是AB的中点,则PD+PE的最小值为( )
A.3 B.6 C.3 D.6
【解答】解:如图,连接DE,
在△DPE中,DP+PE>DE,
∴当点P在DE上时,PD+PE的最小值为DE的长,
∵四边形ABCD是菱形,
∴AO=CO=3,BO=DO=3,AC⊥BD,AB=AD,
∴tan∠ABO==,
∴∠ABO=60°,
∴△ABD是等边三角形,
∵点E是AB的中点,
∴DE⊥AB,
∵sin∠ABD=,
∴=,
∴DE=3,
故选:A.
一十九.圆周角定理(共1小题)
22.(2022•枣庄)将量角器按如图所示的方式放置在三角形纸板上,使点C在半圆上.点A,B的读数分别为86°,30°,则∠ACB的度数是( )
A.28° B.30° C.36° D.56°
【解答】解:连接OA,OB.
由题意,∠AOB=86°﹣30°=56°,
∴∠ACB=∠AOB=28°,
故选:A.
二十.扇形面积的计算(共1小题)
23.(2021•枣庄)如图,正方形ABCD的边长为2,O为对角线的交点,点E,F分别为BC,AD的中点.以C为圆心,2为半径作圆弧BD,再分别以E,F为圆心,1为半径作圆弧BO,OD,则图中阴影部分的面积为( )
A.π﹣1 B.π﹣3 C.π﹣2 D.4﹣π
【解答】解:连接BD,EF,如图,
∵正方形ABCD的边长为2,O为对角线的交点,
由题意可得:EF,BD经过点O,且EF⊥AD,EF⊥CB.
∵点E,F分别为BC,AD的中点,
∴FD=FO=EO=EB=1,
∴,OB=OD.
∴弓形OB=弓形OD.
∴阴影部分的面积等于弓形BD的面积.
∴S阴影=S扇形CBD﹣S△CBD==π﹣2.
故选:C.
二十一.轴对称图形(共1小题)
24.(2021•枣庄)将如图的七巧板的其中几块,拼成一个多边形,为轴对称图形的是( )
A. B.
C. D.
【解答】解:A.不是轴对称图形,故本选项不合题意;
B.不是轴对称图形,故本选项不合题意;
C.不是轴对称图形,故本选项不合题意;
D.是轴对称图形,故本选项符合题意;
故选:D.
二十二.翻折变换(折叠问题)(共2小题)
25.(2021•枣庄)如图,三角形纸片ABC,AB=AC,∠BAC=90°,点E为AB中点,沿过点E的直线折叠,使点B与点A重合,折痕交BC于点F.已知EF=,则BC的长是( )
A. B.3 C.3 D.3
【解答】解:在△ABC中,∠BAC=90°,AB=AC,
∴∠B=∠C=45°,
由折叠可知,EF⊥AB,BE=AE,AF=BF,
∴∠B=∠BAF=45°,
∴∠AFB=90°,即AF⊥BC,
∴点F是BC的中点,
∴BC=2BF,
在△ABF中,∠AFB=90°,BE=AE,
∴BE=EF=,
∴BF=,
∴BC=3.
故选:C.
26.(2020•枣庄)如图,在矩形纸片ABCD中,AB=3,点E在边BC上,将△ABE沿直线AE折叠,点B恰好落在对角线AC上的点F处,若∠EAC=∠ECA,则AC的长是( )
A.3 B.4 C.5 D.6
【解答】解:∵将△ABE沿直线AE折叠,点B恰好落在对角线AC上的点F处,
∴AF=AB,∠AFE=∠B=90°,
∴EF⊥AC,
∵∠EAC=∠ECA,
∴AE=CE,
∴AF=CF,
∴AC=2AB=6,
故选:D.
二十三.图形的剪拼(共1小题)
27.(2021•枣庄)小明有一个呈等腰三角形的积木盒,现在积木盒中只剩下如图的九个空格,下面有四种积木的搭配,其中不能放入的有( )
A.搭配① B.搭配② C.搭配③ D.搭配④
【解答】解:搭配④中,有10个小正方形,显然不符合9个小正方形的条件,
故选:D.
二十四.中心对称图形(共1小题)
28.(2022•枣庄)剪纸文化是中国最古老的民间艺术之一,下列剪纸图案中,既是轴对称图形又是中心对称图形的是( )
A. B.
C. D.
【解答】解:A.不是中心对称图形,是轴对称图形,故此选项不合题意;
B.不是中心对称图形,是轴对称图形,故此选项不合题意;
C.是中心对称图形,不是轴对称图形,故此选项不合题意;
D.既是轴对称图形又是中心对称图形,故此选项符合题意;
故选:D.
二十五.坐标与图形变化-旋转(共2小题)
29.(2022•枣庄)如图,将△ABC先向右平移1个单位,再绕点P按顺时针方向旋转90°,得到△A′B′C′,则点B的对应点B′的坐标是( )
A.(4,0) B.(2,﹣2) C.(4,﹣1) D.(2,﹣3)
【解答】解:作出旋转后的图形如下:
∴B'点的坐标为(4,﹣1),
故选:C.
30.(2020•枣庄)如图,平面直角坐标系中,点B在第一象限,点A在x轴的正半轴上,∠AOB=∠B=30°,OA=2.将△AOB绕点O逆时针旋转90°,点B的对应点B'的坐标是( )
A.(﹣,3) B.(﹣3,) C.(﹣,2+) D.(﹣1,2+)
【解答】解:如图,过点B′作B′H⊥y轴于H.
在Rt△A′B′H中,∵A′B′=2,∠B′A′H=60°,
∴A′H=A′B′cos60°=1,B′H=A′B′sin60°=,
∴OH=2+1=3,
∴B′(﹣,3),
故选:A.
二十六.利用旋转设计图案(共1小题)
31.(2020•枣庄)如图的四个三角形中,不能由△ABC经过旋转或平移得到的是( )
A. B.
C. D.
【解答】解:由题意,选项A,C,D可以通过平移,旋转得到,选项B可以通过翻折得到.
故选:B.
二十七.方差(共1小题)
32.(2021•枣庄)为调动学生参与体育锻炼的积极性,某校组织了一分钟跳绳比赛活动,体育组随机抽取了10名参赛学生的成绩,将这组数据整理后制成统计表:
一分钟跳绳个数(个)
141
144
145
146
学生人数(名)
5
2
1
2
则关于这组数据的结论正确的是( )
A.平均数是144 B.众数是141
C.中位数是144.5 D.方差是5.4
【解答】解:根据题目给出的数据,可得:
平均数为:,故A选项错误;
众数是:141,故B选项正确;
中位数是:,故C选项错误;
方差是:=4.4,故D选项错误;
故选:B.
二十八.列表法与树状图法(共2小题)
33.(2022•枣庄)在践行“安全在我心中,你我一起行动”主题手抄报评比活动中,共设置“交通安全、消防安全、饮食安全、防疫安全”四个主题内容,推荐两名学生参加评比,若他们每人从以上四个主题内容中随机选取一个,则两人恰好选中同一主题的概率是( )
A. B. C. D.
【解答】解:画树状图如图:
共有16种等可能的结果,两人恰好选中同一主题的结果有4种,
则两人恰好选中同一主题的概率为=.
故选:D.
34.(2020•枣庄)不透明布袋中装有除颜色外没有其他区别的1个红球和2个白球,搅匀后从中摸出一个球,放回搅匀,再摸出一个球,两次都摸出白球的概率是( )
A. B. C. D.
【解答】解:用列表法表示所有可能出现的情况如下:
共有9种等可能出现的结果,其中两次都是白球的有4种,
∴P(两次都是白球)=,
故选:A.
相关试卷
这是一份山东省菏泽市三年(2020-2022)中考数学真题分类汇编-01选择题,共18页。
这是一份山东省日照市三年(2020-2022)中考数学真题分类汇编-选择题,共29页。
这是一份山东省济宁市三年(2020-2022)中考数学真题分类汇编-选择题,共23页。