年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    江苏省2022年高考数学模拟题分类汇编-常用逻辑用语

    江苏省2022年高考数学模拟题分类汇编-常用逻辑用语第1页
    江苏省2022年高考数学模拟题分类汇编-常用逻辑用语第2页
    江苏省2022年高考数学模拟题分类汇编-常用逻辑用语第3页
    还剩11页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    江苏省2022年高考数学模拟题分类汇编-常用逻辑用语

    展开

    这是一份江苏省2022年高考数学模拟题分类汇编-常用逻辑用语,共14页。试卷主要包含了单选题,多选题,填空题等内容,欢迎下载使用。
    江苏省2022年高考数学模拟题分类汇编-常用逻辑用语 一、单选题1.(2022·江苏南通·模拟预测)函数有两个零点的一个充分不必要条件是(       Aa=3 Ba=2 Ca=1 Da=02.(2022·江苏扬州·模拟预测)已知直线,圆.相切的(       A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件3.(2022·江苏·徐州市第七中学模拟预测)在等比数列中,已知,则的(       A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件4.(2022·江苏江苏·三模)已知复数,则的(       A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件5.(2022·江苏·华罗庚中学三模)设是非零向量,则的(       A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件6.(2022·江苏·南京市宁海中学模拟预测)若命题时,是假命题,则的取值范围(       A BC D7.(2022·江苏·南京市第一中学三模)已知,则的(       A.充分不必要条件 B.充要条件C.必要不充分条件 D.既不充分也不必要条件8.(2022·江苏连云港·二模)若不等式的一个充分条件为,则实数的取值范围是(       A B C D9.(2022·江苏江苏·二模)已知等差数列的公差为,项和为,的(       A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件10.(2022·江苏·常州高级中学模拟预测)已知函数的定义域为,则是偶函数是偶函数的(       A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分又不必要条件11.(2022·江苏江苏·一模)在等比数列中,公比为.已知,则是数列单调递减的(       )条件A.充分不必要 B.必要不充分C.充要 D.既不充分又不必要12.(2022·江苏·模拟预测)设,则的(       A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件13.(2022·江苏·扬州中学模拟预测)方程表示椭圆的(       A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分又不必要条件14.(2022·江苏·南京市第五高级中学模拟预测)向量,则的( )条件A.充分不必要 B.必要不充分 C.充要 D.既不充分也不必要15.(2022·江苏·模拟预测)设,则为纯虚数的(       A.充分非必要条件 B.必要非充分条件C.充要条件 D.既非充分又非必要条件16.(2022·江苏苏州·模拟预测)下列有关命题的说法不正确的是(       A.命题,则的逆否命题为:若,则B的充分不必要条件C.若为假命题,则均为假命题D.对于命题,使得,则,均有17.(2022·江苏南京·模拟预测)给出下列四个说法,其中正确的是A.命题,则的否命题是,则B双曲线的离心率大于的充要条件C.命题的否定是D.命题中,若,则是锐角三角形的逆否命题是假命题18.(2022·江苏·阜宁县东沟中学模拟预测)已知数列是无穷数列,数列为等差数列的(       A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件 二、多选题19.(2022·江苏·南京师大附中模拟预测)已知点是坐标平面内一点,若在圆上存在两点,使得(其中为常数,且),则称点为圆倍分点”.则(       A.点不是圆“3倍分点B.在直线上,圆倍分点的轨迹长度为C.在圆上,恰有1个点是圆“2倍分点D.若:点是圆“1倍分点:点是圆“2倍分点,则的充分不必要条件20.(2022·江苏南京·三模)设aR,则下列说法正确的是(       ABa1”的充分不必要条件CP3”a2”的必要不充分条件Da3,+),使得P321.(2022·江苏·南京市雨花台中学模拟预测)下面命题正确的是(       A的充分不必要条件B.命题,则的否定是存在,则C.设,则的必要不充分条件D.设,则的必要不充分条件22.(2022·江苏·南京市宁海中学二模)下列命题正确的是(       A的充分不必要条件B的必要不充分条件C.命题的否定是,使得D.设函数的导数为,则处取得极值的充要条件 三、填空题23.(2022·江苏·南京师大附中模拟预测)命题的否定是___________.24.(2022·江苏·阜宁县东沟中学模拟预测)命题的否定为___________.25.(2022·江苏常州·模拟预测)命题的否定是__________
    参考答案:1A【分析】先因式分解得,再分类讨论求解当有两个零点时的值,再根据充分不必要条件的性质判断选项即可【详解】有两个零点,有两种情形:①1的零点,则,此时12共两个零点②1不是的零点,则判别式,即有两个零点的充分不必要条件故选:A2A【分析】利用点到直线的距离大于半径可得答案.【详解】直线与圆相切,则直线与圆相切的充分不必要条件.故选:A.3A【分析】直接利用等比数列的通项公式及其充分条件,必要条件的定义求解即可.【详解】公比的充分不必要条件.故选:A4A【分析】由求出即可得出.【详解】由,可得,解得0所以的充分不必要条件.故选:A.5B【分析】分别判断充分性和必要性成立情况得出结论.【详解】若,则,则.的必要而不充分条件;故选:B.6B【分析】全称命题的否定是特称命题,将问题转化为不等式能成立求参数的取值范围【详解】因为是假命题,则其否定为真命题而当时,取得最小值所以故选:B7B【分析】根据必要条件、充分条件的概念判断即可.【详解】解:由题意,由可得反之,,即,故所以的充要条件.故选:B8D【分析】求得不等式的解集为,结合题意,列出不等式组,即可求解.【详解】由不等式,可得,(不合题意)要使得的一个充分条件,则满足,解得.故选:D.9C【分析】根据等差数列前n项和公式化简可得d>0,由此即可判断求解.【详解】若的充要条件.故选:C.10A【分析】根据偶函数的图像性质,结合充分,必要条件的定义进行判断【详解】偶函数的图像关于轴对称,奇函数图像关于原点对称,根据这一特征,若是偶函数,则是偶函数,若是奇函数,也是偶函数,所以是偶函数是偶函数的充分不必要条件故选:A11C【分析】根据等比数列的单调性结合充分条件和必要条件的定义即可得出结论.【详解】解:时,所以数列单调递减,故充分性成立,若数列单调递减,则,即,故必要性成立,所以是数列单调递减的充要条件.故选:C.12B【分析】由充要条件的定义求解即可【详解】可得.易知当时,但由不能推出,(如时) ∴“的必要不充分条件,故选:B.13B【分析】根据充分条件、必要条件的定义和椭圆的标椎方程,判断可得出结论.【详解】解:充分性:当,方程表示圆,充分性不成立;必要性:若方程表示椭圆,则,必有,必要性成立,因此,方程表示椭圆的必要不充分条件.故选:B.14A【分析】由于,即可判定【详解】由题意,因此向量,则的充分不必要条件故选:A15B【分析】根据共轭复数的特征,复数的概念,以及充分条件与必要条件的判断方法,即可得出结果.【详解】对于复数,若,则不一定为纯虚数,可以为反之,若为纯虚数,则所以为纯虚数的必要非充分条件.故选:B.16C【分析】利用四种命题的逆否关系判断的正误;充分条件、必要条件判断的正误;复合命题的真假判断的正误;特称命题的否定判断的正误;【详解】对于,命题,则的逆否命题为,则正确;对于B:因为解得,故的充分不必要条件,故B正确;对于C:因为为假命题,则中至少有一个为假命题,故C错误.对于:对于命题,使得,则,均有满足特称命题的否定是全称命题,故正确.故选:C17D【解析】A选项:否命题应该对条件结论同时否定,说法不正确;B选项:双曲线的离心率大于,解得,所以说法不正确;C选项:否定应该是:,所以说法不正确;D选项:中,若,则是锐角三角形是假命题,所以其逆否命题也为假命题,所以说法正确.【详解】命题,则的否命题是,则,所以A选项不正确;双曲线的离心率大于,即,解得,则双曲线的离心率大于的充分不必要条件,所以B选项不正确;命题的否定是, 所以C选项不正确;命题中,若,则是锐角三角形, 在中,若,可能,此时三角形不是锐角三角形,所以这是一个假命题,所以其逆否命题也是假命题,所以该选项说法正确.故选:D【点睛】此题考查四个命题关系,充分条件与必要条件,含有一个量词的命题的否定,关键在于弄清逻辑关系,正确求解.18B【解析】后面可以推出前面,而前面需满足对任何的,都有成立才可以推出后面,由充分条件和必要条件的定义可得本题答案.【详解】若数列为等差数列成立,必有,而仅有成立,不能断定数列为等差数列成立,必须满足对任何的,都有成立才可以,故数列为等差数列的必要不充分条件.故选:B【点睛】本题主要考查充分条件和必要条件的判断,主要涉及到等差数列的定义,属于基础题.19BCD【分析】对倍分点这个概念理解以后,根据的不同取值,对题干进行讨论与验证,结合同角这一条件,运用余弦定理找到变量之间的关系即可进行判断.【详解】若满足,设,则有.如下图:中,由余弦定理得:中,由余弦定理得:解得是圆“3倍分点,故A错误;作弦的垂线垂足为,当在直线上时,如下图:是圆倍分点,设,则有.中,由余弦定理得:中,由余弦定理得:,解得.,解得与坐标轴得交点为则在直线上,圆倍分点的轨迹长度为,故B正确;在圆上取一点,若点是圆“2倍分点则有,设,则有如下图:中,由余弦定理得:中,由余弦定理得:解得,即,综上,所以在圆上,恰有1个点是圆“2倍分点,故C正确;.如下图:若点是圆“1倍分点则有中,由余弦定理得:中,由余弦定理得:,解得由上面的结论可知,若点是圆“2倍分点, 解得:点是圆“1倍分点:点是圆“2倍分点的充分不必要条件,故D正确.故选:BCD.【点睛】本题以圆为背景,考查了平面向量与解三角形知识,并且运用不等式对答案进行判断.20BC【分析】根据双勾函数的单调性,逐一分析,即可求解.【详解】解:A错误,当时,显然有P小于0B正确,时,,故充分性成立,而只需即可;C正确,可得,当成立的,故C正确;D错误,因为,故D错误;故选:BC.21AD【分析】根据充分条件、必要条件的判定方法,逐项判定,即可求解.【详解】对于A中,由,可得,所以充分性成立;反之:当时,可得,所以必要性不成立, 所以 的充分不必要条件,所以A正确;对于B中,命题,则的否定是存在,则,所以不正确;对于C中,设,由,可得成,即充分性成立,反之:由成立时,可能,即必要性不成立,所以的充分不必要条件,所以C不正确;对于D中,设,当时,可得,即充分性不成立,反之:由,可得成立,即必要性成立,所以的必要不充分条件,所以D正确.故选:AD.22AB【解析】根据定义法判断是否为充分、必要条件,由全称命题的否定是,否定结论,即可知正确的选项.【详解】A选项中,,但,故A正确;B选项中,当时有,而必有,故B正确;C选项中,否定命题为,使得,故C错误;D选项中,不一定有处取得极值,而处取得极值则,故D错误;故选:AB【点睛】本题考查了充分、必要条件的判断以及含特称量词命题的否定,属于简单题.23【分析】利用含有一个量词的命题的否定的定义求解.【详解】解:因为命题是全称量词命题,所以其否定是存在量词命题,即 故答案为:24【分析】对全称量词的否定用特称量词,直接写出.【详解】由全称量词命题的否定是特称(存在)量词命题,可得:命题的否定为”.故答案为:.25【分析】全称改存在,再否定结论即可【详解】命题的否定是故答案为:【点睛】本题考查全称命题的否定,属于基础题 

    相关试卷

    江苏省2022年高考数学模拟题分类汇编-集合:

    这是一份江苏省2022年高考数学模拟题分类汇编-集合,共15页。试卷主要包含了单选题等内容,欢迎下载使用。

    江苏省2022年高考数学模拟题分类汇编-对数函数:

    这是一份江苏省2022年高考数学模拟题分类汇编-对数函数,共19页。试卷主要包含了单选题,多选题,填空题,双空题等内容,欢迎下载使用。

    江苏省2022年高考数学模拟题分类汇编-指数函数:

    这是一份江苏省2022年高考数学模拟题分类汇编-指数函数,共20页。试卷主要包含了单选题,多选题,填空题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map