搜索
    上传资料 赚现金
    英语朗读宝

    四川省2022年各地区中考数学真题按题型分层分类汇编-08解答题(提升题)

    四川省2022年各地区中考数学真题按题型分层分类汇编-08解答题(提升题)第1页
    四川省2022年各地区中考数学真题按题型分层分类汇编-08解答题(提升题)第2页
    四川省2022年各地区中考数学真题按题型分层分类汇编-08解答题(提升题)第3页
    还剩43页未读, 继续阅读
    下载需要30学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    四川省2022年各地区中考数学真题按题型分层分类汇编-08解答题(提升题)

    展开

    这是一份四川省2022年各地区中考数学真题按题型分层分类汇编-08解答题(提升题),共46页。试卷主要包含了,B两点,分别连接OA,OB,,B两点,,与y轴交于点C等内容,欢迎下载使用。
    四川省2022年各地区中考数学真题按题型分层分类汇编-08解答题(提升题)
    一.反比例函数与一次函数的交点问题(共1小题)
    1.(2022•绵阳)如图,一次函数y=k1x+b与反比例函数y=在第一象限交于M(2,8)、N两点,NA垂直x轴于点A,O为坐标原点,四边形OANM的面积为38.
    (1)求反比例函数及一次函数的解析式;
    (2)点P是反比例函数第三象限内的图象上一动点,请简要描述使△PMN的面积最小时点P的位置(不需证明),并求出点P的坐标和△PMN面积的最小值.

    二.反比例函数综合题(共2小题)
    2.(2022•达州)如图,一次函数y=x+1与反比例函数y=的图象相交于A(m,2),B两点,分别连接OA,OB.
    (1)求这个反比例函数的表达式;
    (2)求△AOB的面积;
    (3)在平面内是否存在一点P,使以点O,B,A,P为顶点的四边形为平行四边形?若存在,请直接写出点P的坐标;若不存在,请说明理由.

    3.(2022•成都)如图,在平面直角坐标系xOy中,一次函数y=﹣2x+6的图象与反比例函数y=的图象相交于A(a,4),B两点.
    (1)求反比例函数的表达式及点B的坐标;
    (2)过点A作直线AC,交反比例函数图象于另一点C,连接BC,当线段AC被y轴分成长度比为1:2的两部分时,求BC的长;
    (3)我们把有两个内角是直角,且一条对角线垂直平分另一条对角线的四边形称为“完美筝形”.设P是第三象限内的反比例函数图象上一点,Q是平面内一点,当四边形ABPQ是完美筝形时,求P,Q两点的坐标.

    三.二次函数综合题(共5小题)
    4.(2022•内江)如图,抛物线y=ax2+bx+c与x轴交于A(﹣4,0),B(2,0),与y轴交于点C(0,2).
    (1)求这条抛物线所对应的函数的表达式;
    (2)若点D为该抛物线上的一个动点,且在直线AC上方,求点D到直线AC的距离的最大值及此时点D的坐标;
    (3)点P为抛物线上一点,连接CP,直线CP把四边形CBPA的面积分为1:5两部分,求点P的坐标.


    5.(2022•眉山)在平面直角坐标系中,抛物线y=﹣x2﹣4x+c与x轴交于点A,B(点A在点B的左侧),与y轴交于点C,且点A的坐标为(﹣5,0).

    (1)求点C的坐标;
    (2)如图1,若点P是第二象限内抛物线上一动点,求点P到直线AC距离的最大值;
    (3)如图2,若点M是抛物线上一点,点N是抛物线对称轴上一点,是否存在点M使以A,C,M,N为顶点的四边形是平行四边形?若存在,请直接写出点M的坐标;若不存在,请说明理由.

    6.(2022•达州)如图1,在平面直角坐标系中,已知二次函数y=ax2+bx+2的图象经过点A(﹣1,0),B(3,0),与y轴交于点C.
    (1)求该二次函数的表达式;
    (2)连接BC,在该二次函数图象上是否存在点P,使∠PCB=∠ABC?若存在,请求出点P的坐标;若不存在,请说明理由;
    (3)如图2,直线l为该二次函数图象的对称轴,交x轴于点E.若点Q为x轴上方二次函数图象上一动点,过点Q作直线AQ,BQ分别交直线l于点M,N,在点Q的运动过程中,EM+EN的值是否为定值?若是,请求出该定值;若不是,请说明理由.

    7.(2022•凉山州)在平面直角坐标系xOy中,已知抛物线y=﹣x2+bx+c经过点A(﹣1,0)和点B(0,3),顶点为C,点D在其对称轴上,且位于点C下方,将线段DC绕点D按顺时针方向旋转90°,点C落在抛物线上的点P处.
    (1)求抛物线的解析式;
    (2)求点P的坐标;
    (3)将抛物线平移,使其顶点落在原点O,这时点P落在点E的位置,在y轴上是否存在点M,使得MP+ME的值最小,若存在,求出点M的坐标;若不存在,请说明理由.

    8.(2022•自贡)已知二次函数y=ax2+bx+c(a≠0).
    (1)若a=﹣1,且函数图象经过(0,3),(2,﹣5)两点,求此二次函数的解析式,直接写出抛物线与x轴交点及顶点坐标;
    (2)在图①中画出(1)中函数的大致图象,并根据图象写出函数值y≥3时自变量x的取值范围;
    (3)若a+b+c=0且a>b>c,一元二次方程ax2+bx+c=0两根之差等于a﹣c,函数图象经过P(﹣c,y1),Q(1+3c,y2)两点,试比较y1、y2的大小.


    四.四边形综合题(共1小题)
    9.(2022•绵阳)如图,平行四边形ABCD中,DB=2,AB=4,AD=2,动点E、F同时从A点出发,点E沿着A→D→B的路线匀速运动,点F沿着A→B→D的路线匀速运动,当点E,F相遇时停止运动.
    (1)如图1,设点E的速度为1个单位每秒,点F的速度为4个单位每秒,当运动时间为秒时,设CE与DF交于点P,求线段EP与CP长度的比值;
    (2)如图2,设点E的速度为1个单位每秒,点F的速度为个单位每秒,运动时间为x秒,△AEF的面积为y,求y关于x的函数解析式,并指出当x为何值时,y的值最大,最大值为多少?
    (3)如图3,H在线段AB上且AH=HB,M为DF的中点,当点E、F分别在线段AD、AB上运动时,探究点E、F在什么位置能使EM=HM,并说明理由.


    五.切线的判定与性质(共1小题)
    10.(2022•德阳)如图,AB是⊙O的直径,CD是⊙O的弦,AB⊥CD,垂足是点H,过点C作直线分别与AB,AD的延长线交于点E,F,且∠ECD=2∠BAD.
    (1)求证:CF是⊙O的切线;
    (2)如果AB=10,CD=6,
    ①求AE的长;
    ②求△AEF的面积.

    六.圆的综合题(共5小题)
    11.(2022•绵阳)如图,AB为⊙O的直径,C为圆上的一点,D为劣弧的中点,过点D作⊙O的切线与AC的延长线交于点P,与AB的延长线交于点F,AD与BC交于点E.
    (1)求证:BC∥PF;
    (2)若⊙O的半径为,DE=1,求AE的长度;
    (3)在(2)的条件下,求△DCP的面积.

    12.(2022•达州)如图,在Rt△ABC中,∠C=90°,点O为AB边上一点,以OA为半径的⊙O与BC相切于点D,分别交AB,AC边于点E,F.
    (1)求证:AD平分∠BAC;
    (2)若BD=3,tan∠CAD=,求⊙O的半径.

    13.(2022•凉山州)如图,已知半径为5的⊙M经过x轴上一点C,与y轴交于A、B两点,连接AM、AC,AC平分∠OAM,AO+CO=6.
    (1)判断⊙M与x轴的位置关系,并说明理由;
    (2)求AB的长;
    (3)连接BM并延长交⊙M于点D,连接CD,求直线CD的解析式.

    14.(2022•成都)如图,在Rt△ABC中,∠ACB=90°,以BC为直径作⊙O,交AB边于点D,在上取一点E,使=,连接DE,作射线CE交AB边于点F.
    (1)求证:∠A=∠ACF;
    (2)若AC=8,cos∠ACF=,求BF及DE的长.

    15.(2022•泸州)如图,点C在以AB为直径的⊙O上,CD平分∠ACB交⊙O于点D,交AB于点E,过点D作⊙O的切线交CO的延长线于点F.
    (1)求证:FD∥AB;
    (2)若AC=2,BC=,求FD的长.

    七.几何变换综合题(共1小题)
    16.(2022•广元)在Rt△ABC中,AC=BC,将线段CA绕点C旋转α(0°<α<90°),得到线段CD,连接AD、BD.
    (1)如图1,将线段CA绕点C逆时针旋转α,则∠ADB的度数为    ;
    (2)将线段CA绕点C顺时针旋转α时
    ①在图2中依题意补全图形,并求∠ADB的度数;
    ②若∠BCD的平分线CE交BD于点F,交DA的延长线于点E,连结BE.用等式表示线段AD、CE、BE之间的数量关系,并证明.



    四川省2022年各地区中考数学真题按题型分层分类汇编-08解答题(提升题)
    参考答案与试题解析
    一.反比例函数与一次函数的交点问题(共1小题)
    1.(2022•绵阳)如图,一次函数y=k1x+b与反比例函数y=在第一象限交于M(2,8)、N两点,NA垂直x轴于点A,O为坐标原点,四边形OANM的面积为38.
    (1)求反比例函数及一次函数的解析式;
    (2)点P是反比例函数第三象限内的图象上一动点,请简要描述使△PMN的面积最小时点P的位置(不需证明),并求出点P的坐标和△PMN面积的最小值.

    【解答】解:(1)∵反比例函数y=过点M(2,8),
    ∴k2=2×8=16,
    ∴反比例函数的解析式为y=,
    设N(m,),
    ∵M(2,8),
    ∴S△OMB==8,
    ∵四边形OANM的面积为38,
    ∴四边形ABMN的面积为30,
    ∴(8+)•(m﹣2)=30,
    解得m1=8,m2=﹣(舍去),
    ∴N(8,2),
    ∵一次函数y=k1x+b的图象经过点M、N,
    ∴,解得,
    ∴一次函数的解析式为y=﹣x+10;
    (2)与直线MN平行,且在第三象限与反比例函数y=有唯一公共点P时,△PMN的面积最小,
    设与直线MN平行的直线的关系式为y=﹣x+n,当与y=在第三象限有唯一公共点时,
    有方程﹣x+n=(x<0)唯一解,
    即x2﹣nx+16=0有两个相等的实数根,
    ∴n2﹣4×1×16=0,
    解得n=﹣8或x=8(舍去),
    ∴与直线MN平行的直线的关系式为y=﹣x﹣8,
    ∴方程﹣x﹣8=的解为x=﹣4,
    经检验,x=﹣4是原方程的解,
    当x=﹣4时,y==﹣4,
    ∴点P(﹣4,﹣4),
    如图,过点P作AN的垂线,交NA的延长线于点Q,交y轴于点D,延长MB交PQ于点C,由题意得,
    PD=4,DQ=8,CD=2,MC=8+4=12,NQ=2+4=6,
    ∴S△PMN=S△MPC+S梯形MCQN﹣S△PNQ
    =×6×12+(12+6)×6﹣×12×6
    =36+54﹣36
    =54,
    答:点P(﹣4,﹣4),△PMN面积的最小值为54.

    二.反比例函数综合题(共2小题)
    2.(2022•达州)如图,一次函数y=x+1与反比例函数y=的图象相交于A(m,2),B两点,分别连接OA,OB.
    (1)求这个反比例函数的表达式;
    (2)求△AOB的面积;
    (3)在平面内是否存在一点P,使以点O,B,A,P为顶点的四边形为平行四边形?若存在,请直接写出点P的坐标;若不存在,请说明理由.

    【解答】解:(1)∵一次函数y=x+1经过点A(m,2),
    ∴m+1=2,
    ∴m=1,
    ∴A(1,2),
    ∵反比例函数y=经过点(1,2),
    ∴k=2,
    ∴反比例函数的解析式为y=;

    (2)由题意,得,
    解得或,
    ∴B(﹣2,﹣1),
    ∵C(0,1),
    ∴S△AOB=S△AOC+S△BOC=×1×2+×1×1=1.5;

    (3)有三种情形,如图所示,满足条件的点P的坐标为(﹣3,﹣3)或(﹣1,1)或(3,3).

    3.(2022•成都)如图,在平面直角坐标系xOy中,一次函数y=﹣2x+6的图象与反比例函数y=的图象相交于A(a,4),B两点.
    (1)求反比例函数的表达式及点B的坐标;
    (2)过点A作直线AC,交反比例函数图象于另一点C,连接BC,当线段AC被y轴分成长度比为1:2的两部分时,求BC的长;
    (3)我们把有两个内角是直角,且一条对角线垂直平分另一条对角线的四边形称为“完美筝形”.设P是第三象限内的反比例函数图象上一点,Q是平面内一点,当四边形ABPQ是完美筝形时,求P,Q两点的坐标.

    【解答】解:(1)∵一次函数y=﹣2x+6的图象过点A,
    ∴4=﹣2a+6,
    ∴a=1,
    ∴点A(1,4),
    ∵反比例函数y=的图象过点A(1,4),
    ∴k=1×4=4;
    ∴反比例函数的解析式为:y=,
    联立方程组可得:,
    解得:,,
    ∴点B(2,2);
    (2)如图,过点A作AE⊥y轴于E,过点C作CF⊥y轴于F,

    ∴AE∥CF,
    ∴△AEH∽△CFH,
    ∴,
    当=时,则CF=2AE=2,
    ∴点C(﹣2,﹣2),
    ∴BC==4,
    当=2时,则CF=AE=,
    ∴点C(﹣,﹣8),
    ∴BC==,
    综上所述:BC的长为4或;
    (3)如图,当∠AQP=∠ABP=90°时,设直线AB与y轴交于点E,过点B作BF⊥y轴于F,设BP与y轴的交点为N,连接BQ,AP交于点H,

    ∵直线y=﹣2x+6与y轴交于点E,
    ∴点E(0,6),
    ∵点B(2,2),
    ∴BF=OF=2,
    ∴EF=4,
    ∵∠ABP=90°,
    ∴∠ABF+∠FBN=90°=∠ABF+∠BEF,
    ∴∠BEF=∠FBN,
    又∵∠EFB=∠ABN=90°,
    ∴△EBF∽△BNF,
    ∴,
    ∴FN==1,
    ∴点N(0,1),
    ∴直线BN的解析式为:y=x+1,
    联立方程组得:,
    解得:,,
    ∴点P(﹣4,﹣1),
    ∴直线AP的解析式为:y=x+3,
    ∵AP垂直平分BQ,
    ∴设BQ的解析式为y=﹣x+4,
    ∴x+3=﹣x+4,
    ∴x=,
    ∴点H(,),
    ∵点H是BQ的中点,点B(2,2),
    ∴点Q(﹣1,5).
    三.二次函数综合题(共5小题)
    4.(2022•内江)如图,抛物线y=ax2+bx+c与x轴交于A(﹣4,0),B(2,0),与y轴交于点C(0,2).
    (1)求这条抛物线所对应的函数的表达式;
    (2)若点D为该抛物线上的一个动点,且在直线AC上方,求点D到直线AC的距离的最大值及此时点D的坐标;
    (3)点P为抛物线上一点,连接CP,直线CP把四边形CBPA的面积分为1:5两部分,求点P的坐标.


    【解答】解:(1)∵抛物线y=ax2+bx+c与x轴交于A(﹣4,0),B(2,0),与y轴交于点C(0,2).
    ∴,
    解得:,
    ∴抛物线的解析式为y=﹣x2﹣x+2;

    (2)过点D作DH⊥AB于H,交直线AC于点G,过点D作DE⊥AC于E,如图.

    设直线AC的解析式为y=kx+t,
    则,
    解得:,
    ∴直线AC的解析式为y=x+2.
    设点D的横坐标为m,则点G的横坐标也为m,
    ∴DH=﹣m2﹣m+2,GH=m+2
    ∴DG=﹣m2﹣m+2﹣m﹣2=﹣m2﹣m,
    ∵DE⊥AC,DH⊥AB,
    ∴∠EDG+DGE=AGH+∠CAO=90°,
    ∵∠DGE=∠AGH,
    ∴∠EDG=∠CAO,
    ∴cos∠EDG=cos∠CAO==,
    ∴,
    ∴DE=DG=(﹣m2﹣m)=﹣(m2+4m)=﹣(m+2)2+,
    ∴当m=﹣2时,点D到直线AC的距离取得最大值.
    此时yD=﹣×(﹣2)2﹣×(﹣2)+2=2,
    即点D的坐标为(﹣2,2);

    (3)如图,设直线CP交x轴于点E,

    直线CP把四边形CBPA的面积分为1:5两部分,
    又∵S△PCB:S△PCA=EB×(yC﹣yP):AE×(yC﹣yP)=BE:AE,
    则BE:AE=1:5或5:1
    则AE=5或1,
    即点E的坐标为(1,0)或(﹣3,0),
    将点E的坐标代入直线CP的表达式:y=nx+2,
    解得:n=﹣2或,
    故直线CP的表达式为:y=﹣2x+2或y=x+2,
    联立方程组或,
    解得:x=6或﹣(不合题意值已舍去),
    故点P的坐标为(6,﹣10)或(﹣,﹣).
    5.(2022•眉山)在平面直角坐标系中,抛物线y=﹣x2﹣4x+c与x轴交于点A,B(点A在点B的左侧),与y轴交于点C,且点A的坐标为(﹣5,0).

    (1)求点C的坐标;
    (2)如图1,若点P是第二象限内抛物线上一动点,求点P到直线AC距离的最大值;
    (3)如图2,若点M是抛物线上一点,点N是抛物线对称轴上一点,是否存在点M使以A,C,M,N为顶点的四边形是平行四边形?若存在,请直接写出点M的坐标;若不存在,请说明理由.

    【解答】解:(1)∵点A(﹣5,0)在抛物线y=﹣x2﹣4x+c的图象上,
    ∴0=﹣52﹣4×5+c
    ∴c=5,
    ∴点C的坐标为(0,5);
    (2)过P作PE⊥AC于点E,过点P作PF⊥x轴交AC于点H,如图1:
    ∵A(﹣5,0),C(0,5)
    ∴OA=OC,
    ∴△AOC是等腰直角三角形,
    ∴∠CAO=45°,
    ∵PF⊥x轴,
    ∴∠AHF=45°=∠PHE,
    ∴△PHE是等腰直角三角形,
    ∴,
    ∴当PH最大时,PE最大,
    设直线AC解析式为y=kx+5,
    将A(﹣5,0)代入得0=5k+5,
    ∴k=1,
    ∴直线AC解析式为y=x+5,
    设P(m,﹣m2﹣4m+5),(﹣5<m<0),则H(m,m+5),
    ∴,
    ∵a=﹣1<0,
    ∴当时,PH最大为,
    ∴此时PE最大为,即点P到直线AC的距离值最大;
    (3)存在,理由如下:
    ∵y=﹣x2﹣4x+5=﹣(x+2)2+9,
    ∴抛物线的对称轴为直线x=﹣2,
    设点N的坐标为(﹣2,m),点M的坐标为(x,﹣x2﹣4x+5),
    分三种情况:①当AC为平行四边形对角线时,

    解得,
    ∴点M的坐标为(﹣3,8);
    ②当AM为平行四边形对角线时,

    解得,
    ∴点M的坐标为(3,﹣16);
    ③当AN为平行四边形对角线时,

    解得,
    ∴点M的坐标为(﹣7,﹣16);
    综上,点M的坐标为:(﹣3,8)或(3,﹣16)或(﹣7,﹣16).

    6.(2022•达州)如图1,在平面直角坐标系中,已知二次函数y=ax2+bx+2的图象经过点A(﹣1,0),B(3,0),与y轴交于点C.
    (1)求该二次函数的表达式;
    (2)连接BC,在该二次函数图象上是否存在点P,使∠PCB=∠ABC?若存在,请求出点P的坐标;若不存在,请说明理由;
    (3)如图2,直线l为该二次函数图象的对称轴,交x轴于点E.若点Q为x轴上方二次函数图象上一动点,过点Q作直线AQ,BQ分别交直线l于点M,N,在点Q的运动过程中,EM+EN的值是否为定值?若是,请求出该定值;若不是,请说明理由.

    【解答】解:(1)∵抛物线y=ax2+bx+2经过点A(﹣1,0),B(3,0),
    ∴,
    解得:
    ∴该二次函数的表达式为y=x2+x+2;
    (2)存在,理由如下:
    如图1,当点P在BC上方时,
    ∵∠PCB=∠ABC,
    ∴CP∥AB,即CP∥x轴,
    ∴点P与点C关于抛物线对称轴对称,
    ∵y=x2+x+2,
    ∴抛物线对称轴为直线x=﹣=1,
    ∵C(0,2),
    ∴P(2,2);
    当点P在BC下方时,设CP交x轴于点D(m,0),
    则OD=m,DB=3﹣m,
    ∵∠PCB=∠ABC,
    ∴CD=BD=3﹣m,
    在Rt△COD中,OC2+OD2=CD2,
    ∴22+m2=(3﹣m)2,
    解得:m=,
    ∴D(,0),
    设直线CD的解析式为y=kx+d,则,
    解得:,
    ∴直线CD的解析式为y=x+2,
    联立,得,
    解得:(舍去),,
    ∴P(,﹣),
    综上所述,点P的坐标为(2,2)或(,﹣);
    (3)由(2)知:抛物线y=x2+x+2的对称轴为直线x=1,
    ∴E(1,0),
    设Q(t,t2+t+2),且﹣1<t<3,
    设直线AQ的解析式为y=ex+f,则,
    解得:,
    ∴直线AQ的解析式为y=(t+2)x﹣t+2,
    当x=1时,y=﹣t+4,
    ∴M(1,﹣t+4),
    同理可得直线BQ的解析式为y=(﹣t﹣)x+2t+2,
    当x=1时,y=t+,
    ∴N(1,t+),
    ∴EM=﹣t+4,EN=t+,
    ∴EM+EN=﹣t+4+t+=,
    故EM+EN的值为定值.

    7.(2022•凉山州)在平面直角坐标系xOy中,已知抛物线y=﹣x2+bx+c经过点A(﹣1,0)和点B(0,3),顶点为C,点D在其对称轴上,且位于点C下方,将线段DC绕点D按顺时针方向旋转90°,点C落在抛物线上的点P处.
    (1)求抛物线的解析式;
    (2)求点P的坐标;
    (3)将抛物线平移,使其顶点落在原点O,这时点P落在点E的位置,在y轴上是否存在点M,使得MP+ME的值最小,若存在,求出点M的坐标;若不存在,请说明理由.

    【解答】解:(1)把A(﹣1,0)和点B(0,3)代入y=﹣x2+bx+c,
    得,
    解得:,
    ∴抛物线解析式为y=﹣x2+2x+3;

    (2)∵y=﹣(x﹣1)2+4,
    ∴C(1,4),抛物线的对称轴为直线x=1,
    如图,设CD=t,则D(1,4﹣t),

    ∵线段DC绕点D按顺时针方向旋转90°,点C落在抛物线上的点P处,
    ∴∠PDC=90°,DP=DC=t,
    ∴P(1+t,4﹣t),
    把P(1+t,4﹣t)代入y=﹣x2+2x+3得:
    ﹣(1+t)2+2(1+t)+3=4﹣t,
    整理得t2﹣t=0,
    解得:t1=0(舍去),t2=1,
    ∴P(2,3);

    (3)∵P点坐标为(2,3),顶点C坐标为(1,4),将抛物线平移,使其顶点落在原点O,这时点P落在点E的位置,
    ∴E点坐标为(1,﹣1),
    ∴点E关于y轴的对称点F(﹣1,﹣1),
    连接PF交y轴于M,则MP+ME=MP+MF=PF的值最小,

    设直线PF的解析式为y=kx+n,
    ∴,
    解得:,
    ∴直线PF的解析式为y=x+,
    ∴点M的坐标为(0,).
    8.(2022•自贡)已知二次函数y=ax2+bx+c(a≠0).
    (1)若a=﹣1,且函数图象经过(0,3),(2,﹣5)两点,求此二次函数的解析式,直接写出抛物线与x轴交点及顶点坐标;
    (2)在图①中画出(1)中函数的大致图象,并根据图象写出函数值y≥3时自变量x的取值范围;
    (3)若a+b+c=0且a>b>c,一元二次方程ax2+bx+c=0两根之差等于a﹣c,函数图象经过P(﹣c,y1),Q(1+3c,y2)两点,试比较y1、y2的大小.


    【解答】解:(1)由题意可得:,
    解得:,
    ∴抛物线的解析式为:y=﹣x2﹣2x+3=﹣(x+1)2+4,
    ∴顶点坐标为(﹣1,4),
    当y=0时,则0=﹣x2﹣2x+3,
    ∴x1=1,x2=﹣3,
    ∴抛物线与x轴的交点坐标为(1,0),(﹣3,0);
    (2)如图,

    当y=3时,3=﹣x2﹣2x+3,
    ∴x1=0,x2=﹣2,
    由图象可得:当﹣2≤x≤0时,y≥3;
    (3)∵a+b+c=0且a>b>c,
    ∴a>0,c<0,b=﹣a﹣c,一元二次方程ax2+bx+c=0必有一根为x=1,
    ∵一元二次方程ax2+bx+c=0两根之差等于a﹣c,
    ∴方程的另一个根为1+c﹣a,
    ∴抛物线y=ax2+bx+c的对称轴为:直线x=1+,
    ∴﹣=1+,
    ∴a+c=﹣a2+ac+2a,
    ∴(a﹣1)(a﹣c)=0,
    ∵a>c,
    ∴a=1,P(﹣c,y1),Q(1+3c,y2),
    ∴b=﹣1﹣c,
    ∴抛物线解析式为:y=x2﹣(1+c)x+c,
    ∴当x=﹣c时,则y1=(﹣c)2﹣(1+c)(﹣c)+c=2c2+c﹣,
    当x=1+3c时,则y2=(1+3c)2﹣(1+c)(1+3c)+c=6c2+3c,
    ∴y2﹣y1=(6c2+3c)﹣(2c2+c﹣)=4(c+)2﹣,
    ∵b>c,
    ∴﹣1﹣c>c,
    ∴c<﹣,
    ∴4(c+)2﹣>0,
    ∴y2>y1.
    四.四边形综合题(共1小题)
    9.(2022•绵阳)如图,平行四边形ABCD中,DB=2,AB=4,AD=2,动点E、F同时从A点出发,点E沿着A→D→B的路线匀速运动,点F沿着A→B→D的路线匀速运动,当点E,F相遇时停止运动.
    (1)如图1,设点E的速度为1个单位每秒,点F的速度为4个单位每秒,当运动时间为秒时,设CE与DF交于点P,求线段EP与CP长度的比值;
    (2)如图2,设点E的速度为1个单位每秒,点F的速度为个单位每秒,运动时间为x秒,△AEF的面积为y,求y关于x的函数解析式,并指出当x为何值时,y的值最大,最大值为多少?
    (3)如图3,H在线段AB上且AH=HB,M为DF的中点,当点E、F分别在线段AD、AB上运动时,探究点E、F在什么位置能使EM=HM,并说明理由.


    【解答】解:(1)延长DF交CB的延长线于G,
    ∵平行四边形ABCD中,
    ∴CG∥AD,
    ∴∠A=∠GBF,
    ∴△AFD∽△BFG,
    ∴=,
    ∵运动时间为秒,
    ∴AF=,
    ∵AB=4,
    ∴BF=,
    ∵AD=2,
    ∴BG=1,
    ∴CG=3,
    ∵AD∥CG,
    ∴=,
    ∵AE=,
    ∴ED=,
    ∴=;
    (2)当0≤x≤2时,E点在AD上,F点在AB上,
    由题意可知,AE=x,AF=x,
    ∵DB=2,AB=4,AD=2,
    ∴△ABD是直角三角形,且∠A=60°,
    过点E作EH⊥AB交于H,
    ∴EH=AE•sin60°=x,
    ∴y=×AF×EH=×x×x=x2;
    此时当x=2时,y有最大值3;
    当2≤x≤时,E点在BD上,F点在AB上,
    过点E作EN⊥AB交于N,过点D作DM⊥AB交于M,
    ∵AD+DE=x,AD=2,
    ∴DE=x﹣2,
    ∵BD=2,
    ∴BE=2﹣x+2,
    在Rt△ABD中,DM=,
    ∵EN∥DM,
    ∴=,
    ∴=,
    ∴EN=1+﹣x,
    ∴y=×AF×EN=×(x)×(1+﹣x)=﹣x2+x+x;
    此时当x=时,y有最大值2+;
    当≤x≤2时,过点E作EQ⊥AB交于Q,过点F作FP⊥AB交于P,
    ∴AB+BF=x,DA+DE=x,
    ∵AB=4,AD=2,
    ∴BE=2﹣x+2,BF=x﹣4,
    ∵PF∥DM,
    ∴=,即=,
    ∴PF=x﹣2,
    ∵EQ∥DM,
    ∴=,即=,
    ∴EQ=+1﹣x,
    ∴y=×AB×(EQ﹣PF)=×4×(+1﹣x﹣x+2)=6+2﹣x﹣x;
    此时当x=时,y有最大值2+;
    综上所述:当0≤x≤2时,y=x2;当2≤x≤时,y=﹣x2+x+x;当≤x≤2时,y=6+2﹣x﹣x;y的最大值为2+;
    (3)连接DH,
    ∵AH=HB,AB=4,
    ∴AH=1,
    ∴DH⊥AB,
    ∵M是DF的中点,
    ∴HM=DM=MF,
    ∵EM=HM,
    ∴EM=DF,
    ∴△EDF是直角三角形,
    ∴EF⊥AD,
    ∵AD⊥BD,
    ∴EF∥BD.





    五.切线的判定与性质(共1小题)
    10.(2022•德阳)如图,AB是⊙O的直径,CD是⊙O的弦,AB⊥CD,垂足是点H,过点C作直线分别与AB,AD的延长线交于点E,F,且∠ECD=2∠BAD.
    (1)求证:CF是⊙O的切线;
    (2)如果AB=10,CD=6,
    ①求AE的长;
    ②求△AEF的面积.

    【解答】(1)证明:连接OC,如图,

    ∵AB是⊙O的直径,AB⊥CD,
    ∴,
    ∴∠CAB=∠DAB.
    ∵∠COB=2∠CAB,
    ∴∠COB=2∠BAD.
    ∵∠ECD=2∠BAD,
    ∴∠ECD=∠COB.
    ∵AB⊥CD,
    ∴∠COB+∠OCH=90°,
    ∴∠OCH+∠ECD=90°,
    ∴∠OCE=90°.
    ∴OC⊥CF.
    ∵OC是⊙O的半径,
    ∴CF是⊙O的切线;
    (2)解:①∵AB=10,
    ∴OA=OB=OC=5,
    ∵AB是⊙O的直径,AB⊥CD,
    ∴CH=DH=CD=3.
    ∴OH==4,
    ∵OC⊥CF,CH⊥OE,
    ∴△OCH∽△OEC,
    ∴,
    ∴,
    ∴OE=.
    ∴AE=OA+OE=5+=;
    ②过点F作FG⊥AB,交AB的延长线于点G,如图,

    ∵∠OCF=∠FGE=90°,∠CEO=∠GEF,
    ∴△OCE∽△FGE.
    ∴,
    设FG=4k,则FE=5k,
    ∴EG==3k,
    ∵DH⊥AB,FG⊥AB,
    ∴DH∥FG.
    ∴,
    ∴,
    解得:k=.
    ∴FG=4k=5.
    ∴△AEF的面积=×AE•FG=.
    六.圆的综合题(共5小题)
    11.(2022•绵阳)如图,AB为⊙O的直径,C为圆上的一点,D为劣弧的中点,过点D作⊙O的切线与AC的延长线交于点P,与AB的延长线交于点F,AD与BC交于点E.
    (1)求证:BC∥PF;
    (2)若⊙O的半径为,DE=1,求AE的长度;
    (3)在(2)的条件下,求△DCP的面积.

    【解答】(1)证明:连接OD,如图,

    ∵D为劣弧的中点,
    ∴,
    ∴OD⊥BC.
    ∵PF是⊙O的切线,
    ∴OD⊥PF,
    ∴BC∥PF;
    (2)连接OD,BD,如图,

    设AE=x,则AD=1+x.
    ∵D为劣弧的中点,
    ∴,
    ∴CD=BD,∠DCB=∠CAD.
    ∵∠CDE=∠ADC,
    ∴△CDE∽△ADC,
    ∴,
    ∴CD2=DE•AD=1×(1+x)=1+x.
    ∴BD2=1+x.
    ∵AB为⊙O的直径,
    ∴∠ADB=90°,
    ∴AD2+BD2=AB2.
    ∵⊙O的半径为,
    ∴AB=2.
    ∴,
    解得:x=3或x=﹣6(不合题意,舍去),
    ∴AE=3.
    (3)连接OD,BD,设OD与BC交于点H,如图,

    由(2)知:AE=3,AD=AE+DE=4,DB==2,
    ∵∠ADB=90°,
    ∴cos∠DAB==.
    ∵OA=OD,
    ∴∠DAB=∠ADO,
    ∴cos∠ADO=cos∠DAB=.
    ∵OH⊥BC,
    ∴BH=CH,cos∠ADO=,
    ∴DH=DE×=.
    ∴OH=OD﹣DH=﹣=.
    ∴BH==,
    ∴CH=BH=.
    ∵AB为⊙O的直径,
    ∴∠ACB=90°,
    由(1)知:OD⊥PD,OH⊥BC,
    ∴四边形CHDP为矩形,
    ∴∠P=90°,CP=DH=,DP=CH=,
    ∴△DCP的面积=CP•DP=.
    12.(2022•达州)如图,在Rt△ABC中,∠C=90°,点O为AB边上一点,以OA为半径的⊙O与BC相切于点D,分别交AB,AC边于点E,F.
    (1)求证:AD平分∠BAC;
    (2)若BD=3,tan∠CAD=,求⊙O的半径.

    【解答】(1)证明:连接OD.
    ∵BC是⊙O的切线,OD是⊙O半径,D是切点,
    ∴OD⊥BC,
    ∴∠ODB=∠C=90°,
    ∴OD∥AC,
    ∴∠ODA=∠CAD,
    ∵OD=OA,
    ∴∠ODA=∠OAD,
    ∴∠OAD=∠CAD,
    ∴AD平分∠BAC;

    (2)解:连接DE,过点D作DT⊥AB于点T,
    ∵AE是直径,
    ∴∠ADE=90°,
    ∵tan∠CAD=tan∠DAE=,
    ∴=,
    设DE=k,AD=2k,则AE=k,
    ∵•DE•AD=•AE•DT,
    ∴DT=k,
    ∴OT===k,
    ∵tan∠DOT==,
    ∴=,
    ∴k=,
    ∴OD=k=,
    ∴⊙O的半径为.

    13.(2022•凉山州)如图,已知半径为5的⊙M经过x轴上一点C,与y轴交于A、B两点,连接AM、AC,AC平分∠OAM,AO+CO=6.
    (1)判断⊙M与x轴的位置关系,并说明理由;
    (2)求AB的长;
    (3)连接BM并延长交⊙M于点D,连接CD,求直线CD的解析式.

    【解答】解:(1)猜测⊙M与x轴相切,理由如下:
    如图,连接OM,
    ∵AC平分∠OAM,
    ∴∠OAC=∠CAM,
    又∵MC=AM,
    ∴∠CAM=∠ACM,
    ∴∠OAC=∠ACM,
    ∴OA∥MC,
    ∵OA⊥x轴,
    ∴MC⊥x轴,
    ∵CM是半径,
    ∴⊙M与x轴相切.
    (2)如图,过点M作MN⊥y轴于点N,
    ∴AN=BN=AB,
    ∵∠MCO=∠AOC=∠MNA=90°,
    ∴四边形MNOC是矩形,
    ∴NM=OC,MC=ON=5,
    设AO=m,则OC=6﹣m,
    ∴AN=5﹣m,
    在Rt△ANM中,由勾股定理可知,AM2=AN2+MN2,
    ∴52=(5﹣m)2+(6﹣m)2,
    解得m=2或m=9(舍去),
    ∴AN=3,
    ∴AB=6.
    (3)如图,连接AD与CM交于点E,
    ∵BD是直径,
    ∴∠BAD=90°,
    ∴AD∥x轴,
    ∴AD⊥MC,
    由勾股定理可得AD=8,
    ∴D(8,﹣2).
    由(2)可得C(4,0),
    设直线CD的解析式为:y=kx+b,
    ∴,解得.
    ∴直线CD的解析式为:y=﹣x+2.

    14.(2022•成都)如图,在Rt△ABC中,∠ACB=90°,以BC为直径作⊙O,交AB边于点D,在上取一点E,使=,连接DE,作射线CE交AB边于点F.
    (1)求证:∠A=∠ACF;
    (2)若AC=8,cos∠ACF=,求BF及DE的长.

    【解答】(1)证明:∵=,
    ∴∠BCF=∠FBC,
    ∵∠ACB=90°,
    ∴∠A+∠FBC=90°,∠ACF+∠BCF=90°,
    ∴∠A=∠ACF;

    (2)解:连接CD.
    ∵∠A=∠ACF,∠FBC=∠BCF,
    ∴AF=FC=FB,
    ∴cos∠A=cos∠ACF==,
    ∵AC=8,
    ∴AB=10,BC=6,
    ∵BC是直径,
    ∴∠CDB=90°,
    ∴CD⊥AB,
    ∵S△ABC=•AC•BC=•AB•CD,
    ∴CD==,
    ∴BD===,
    ∵BF=AF=5,
    ∴DF=BF﹣BD=5﹣=,
    ∵∠DEF+∠DEC=180°,∠DEC+∠B=180°,
    ∴∠DEF=∠B=∠BCF,
    ∴DE∥CB,
    ∴△DEF∽△BCF,
    ∴=,
    ∴=,
    ∴DE=.

    15.(2022•泸州)如图,点C在以AB为直径的⊙O上,CD平分∠ACB交⊙O于点D,交AB于点E,过点D作⊙O的切线交CO的延长线于点F.
    (1)求证:FD∥AB;
    (2)若AC=2,BC=,求FD的长.

    【解答】(1)证明:连接OD.
    ∵DF是⊙O的切线,
    ∴OD⊥DF,
    ∵CD平分∠ACB,
    ∴=,
    ∴OD⊥AB,
    ∴AB∥DF;

    (2)解:过点C作CH⊥AB于点H.
    ∵AB是直径,
    ∴∠ACB=90°,
    ∵BC=,AC=2,
    ∴AB===5,
    ∵S△ABC=•AC•BC=•AB•CH,
    ∴CH==2,
    ∴BH==1,
    ∴OH=OB﹣BH=﹣1=,
    ∵DF∥AB,
    ∴∠COH=∠F,
    ∵∠CHO=∠ODF=90°,
    ∴△CHO∽△ODF,
    ∴=,
    ∴=,
    ∴DF=.

    七.几何变换综合题(共1小题)
    16.(2022•广元)在Rt△ABC中,AC=BC,将线段CA绕点C旋转α(0°<α<90°),得到线段CD,连接AD、BD.
    (1)如图1,将线段CA绕点C逆时针旋转α,则∠ADB的度数为  135° ;
    (2)将线段CA绕点C顺时针旋转α时
    ①在图2中依题意补全图形,并求∠ADB的度数;
    ②若∠BCD的平分线CE交BD于点F,交DA的延长线于点E,连结BE.用等式表示线段AD、CE、BE之间的数量关系,并证明.


    【解答】解:(1)在Rt△ABC中,AC=BC,将线段CA绕点C旋转α(0°<α<90°),
    ∴CD=CA=CB,∠ACD=α,
    ∴∠BCD=90°﹣α,
    ∵CD=CA,CD=CB,
    ∴∠ADC==90°﹣,∠BDC==45°+,
    ∴∠ADB=∠ADC+∠BDC=90°﹣+45°+=135°,
    故答案为:135°;

    (2)①依题意补全图形如图,

    由旋转得:CD=CA=CB,∠ACD=α,
    ∴∠BCD=90°+α,
    ∵CD=CA,CD=CB,
    ∴∠ADC==90°﹣,∠BDC==45°﹣,
    ∴∠ADB=∠ADC﹣∠BDC=90°﹣﹣45°+=45°;
    ②CE=2BE﹣AD.
    证明:过点C作CG∥BD,交EB的延长线于点G,

    ∵BC=CD,CE平分∠BCD,
    ∴CE垂直平分BD,
    ∴BE=DE,∠EFB=90°,
    由①知,∠ADB=45°,
    ∴∠EBD=∠EDB=45°,
    ∴∠FEB=45°,
    ∵BD∥CG,
    ∴∠ECG=∠EFB=90°,∠G=∠EBD=45°,
    ∴EC=CG,EG=EC,
    ∵∠ACE=90°﹣∠ECB,∠BCG=90°﹣∠ECB,
    ∴∠ACE=∠BCG,
    ∵AC=BC,
    ∴△ACE≌△BCG(SAS),
    ∴AE=BG,
    ∵EG=EB+BG=EB+AE=EB+ED﹣AD=2EB﹣AD,
    ∴CE=2BE﹣AD.

    相关试卷

    黑龙江省各地区2022年中考数学真题按题型分层分类汇编-08解答题(提升题):

    这是一份黑龙江省各地区2022年中考数学真题按题型分层分类汇编-08解答题(提升题),共31页。试卷主要包含了,连接AD,BC,BD,,与y轴交于点C,综合与探究等内容,欢迎下载使用。

    湖北省各地区2022年中考数学真题按题型分层分类汇编-08解答题(提升题):

    这是一份湖北省各地区2022年中考数学真题按题型分层分类汇编-08解答题(提升题),共27页。试卷主要包含了问题提出等内容,欢迎下载使用。

    四川省2022年各地区中考数学真题按题型分层分类汇编-05填空题(提升题):

    这是一份四川省2022年各地区中考数学真题按题型分层分类汇编-05填空题(提升题),共40页。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map