所属成套资源:多地区中考数学真题按题型知识点分层分类汇编
四川省2022年各地区中考数学真题按题型分层分类汇编-08解答题(提升题)
展开
这是一份四川省2022年各地区中考数学真题按题型分层分类汇编-08解答题(提升题),共46页。试卷主要包含了,B两点,分别连接OA,OB,,B两点,,与y轴交于点C等内容,欢迎下载使用。
四川省2022年各地区中考数学真题按题型分层分类汇编-08解答题(提升题)
一.反比例函数与一次函数的交点问题(共1小题)
1.(2022•绵阳)如图,一次函数y=k1x+b与反比例函数y=在第一象限交于M(2,8)、N两点,NA垂直x轴于点A,O为坐标原点,四边形OANM的面积为38.
(1)求反比例函数及一次函数的解析式;
(2)点P是反比例函数第三象限内的图象上一动点,请简要描述使△PMN的面积最小时点P的位置(不需证明),并求出点P的坐标和△PMN面积的最小值.
二.反比例函数综合题(共2小题)
2.(2022•达州)如图,一次函数y=x+1与反比例函数y=的图象相交于A(m,2),B两点,分别连接OA,OB.
(1)求这个反比例函数的表达式;
(2)求△AOB的面积;
(3)在平面内是否存在一点P,使以点O,B,A,P为顶点的四边形为平行四边形?若存在,请直接写出点P的坐标;若不存在,请说明理由.
3.(2022•成都)如图,在平面直角坐标系xOy中,一次函数y=﹣2x+6的图象与反比例函数y=的图象相交于A(a,4),B两点.
(1)求反比例函数的表达式及点B的坐标;
(2)过点A作直线AC,交反比例函数图象于另一点C,连接BC,当线段AC被y轴分成长度比为1:2的两部分时,求BC的长;
(3)我们把有两个内角是直角,且一条对角线垂直平分另一条对角线的四边形称为“完美筝形”.设P是第三象限内的反比例函数图象上一点,Q是平面内一点,当四边形ABPQ是完美筝形时,求P,Q两点的坐标.
三.二次函数综合题(共5小题)
4.(2022•内江)如图,抛物线y=ax2+bx+c与x轴交于A(﹣4,0),B(2,0),与y轴交于点C(0,2).
(1)求这条抛物线所对应的函数的表达式;
(2)若点D为该抛物线上的一个动点,且在直线AC上方,求点D到直线AC的距离的最大值及此时点D的坐标;
(3)点P为抛物线上一点,连接CP,直线CP把四边形CBPA的面积分为1:5两部分,求点P的坐标.
5.(2022•眉山)在平面直角坐标系中,抛物线y=﹣x2﹣4x+c与x轴交于点A,B(点A在点B的左侧),与y轴交于点C,且点A的坐标为(﹣5,0).
(1)求点C的坐标;
(2)如图1,若点P是第二象限内抛物线上一动点,求点P到直线AC距离的最大值;
(3)如图2,若点M是抛物线上一点,点N是抛物线对称轴上一点,是否存在点M使以A,C,M,N为顶点的四边形是平行四边形?若存在,请直接写出点M的坐标;若不存在,请说明理由.
6.(2022•达州)如图1,在平面直角坐标系中,已知二次函数y=ax2+bx+2的图象经过点A(﹣1,0),B(3,0),与y轴交于点C.
(1)求该二次函数的表达式;
(2)连接BC,在该二次函数图象上是否存在点P,使∠PCB=∠ABC?若存在,请求出点P的坐标;若不存在,请说明理由;
(3)如图2,直线l为该二次函数图象的对称轴,交x轴于点E.若点Q为x轴上方二次函数图象上一动点,过点Q作直线AQ,BQ分别交直线l于点M,N,在点Q的运动过程中,EM+EN的值是否为定值?若是,请求出该定值;若不是,请说明理由.
7.(2022•凉山州)在平面直角坐标系xOy中,已知抛物线y=﹣x2+bx+c经过点A(﹣1,0)和点B(0,3),顶点为C,点D在其对称轴上,且位于点C下方,将线段DC绕点D按顺时针方向旋转90°,点C落在抛物线上的点P处.
(1)求抛物线的解析式;
(2)求点P的坐标;
(3)将抛物线平移,使其顶点落在原点O,这时点P落在点E的位置,在y轴上是否存在点M,使得MP+ME的值最小,若存在,求出点M的坐标;若不存在,请说明理由.
8.(2022•自贡)已知二次函数y=ax2+bx+c(a≠0).
(1)若a=﹣1,且函数图象经过(0,3),(2,﹣5)两点,求此二次函数的解析式,直接写出抛物线与x轴交点及顶点坐标;
(2)在图①中画出(1)中函数的大致图象,并根据图象写出函数值y≥3时自变量x的取值范围;
(3)若a+b+c=0且a>b>c,一元二次方程ax2+bx+c=0两根之差等于a﹣c,函数图象经过P(﹣c,y1),Q(1+3c,y2)两点,试比较y1、y2的大小.
四.四边形综合题(共1小题)
9.(2022•绵阳)如图,平行四边形ABCD中,DB=2,AB=4,AD=2,动点E、F同时从A点出发,点E沿着A→D→B的路线匀速运动,点F沿着A→B→D的路线匀速运动,当点E,F相遇时停止运动.
(1)如图1,设点E的速度为1个单位每秒,点F的速度为4个单位每秒,当运动时间为秒时,设CE与DF交于点P,求线段EP与CP长度的比值;
(2)如图2,设点E的速度为1个单位每秒,点F的速度为个单位每秒,运动时间为x秒,△AEF的面积为y,求y关于x的函数解析式,并指出当x为何值时,y的值最大,最大值为多少?
(3)如图3,H在线段AB上且AH=HB,M为DF的中点,当点E、F分别在线段AD、AB上运动时,探究点E、F在什么位置能使EM=HM,并说明理由.
五.切线的判定与性质(共1小题)
10.(2022•德阳)如图,AB是⊙O的直径,CD是⊙O的弦,AB⊥CD,垂足是点H,过点C作直线分别与AB,AD的延长线交于点E,F,且∠ECD=2∠BAD.
(1)求证:CF是⊙O的切线;
(2)如果AB=10,CD=6,
①求AE的长;
②求△AEF的面积.
六.圆的综合题(共5小题)
11.(2022•绵阳)如图,AB为⊙O的直径,C为圆上的一点,D为劣弧的中点,过点D作⊙O的切线与AC的延长线交于点P,与AB的延长线交于点F,AD与BC交于点E.
(1)求证:BC∥PF;
(2)若⊙O的半径为,DE=1,求AE的长度;
(3)在(2)的条件下,求△DCP的面积.
12.(2022•达州)如图,在Rt△ABC中,∠C=90°,点O为AB边上一点,以OA为半径的⊙O与BC相切于点D,分别交AB,AC边于点E,F.
(1)求证:AD平分∠BAC;
(2)若BD=3,tan∠CAD=,求⊙O的半径.
13.(2022•凉山州)如图,已知半径为5的⊙M经过x轴上一点C,与y轴交于A、B两点,连接AM、AC,AC平分∠OAM,AO+CO=6.
(1)判断⊙M与x轴的位置关系,并说明理由;
(2)求AB的长;
(3)连接BM并延长交⊙M于点D,连接CD,求直线CD的解析式.
14.(2022•成都)如图,在Rt△ABC中,∠ACB=90°,以BC为直径作⊙O,交AB边于点D,在上取一点E,使=,连接DE,作射线CE交AB边于点F.
(1)求证:∠A=∠ACF;
(2)若AC=8,cos∠ACF=,求BF及DE的长.
15.(2022•泸州)如图,点C在以AB为直径的⊙O上,CD平分∠ACB交⊙O于点D,交AB于点E,过点D作⊙O的切线交CO的延长线于点F.
(1)求证:FD∥AB;
(2)若AC=2,BC=,求FD的长.
七.几何变换综合题(共1小题)
16.(2022•广元)在Rt△ABC中,AC=BC,将线段CA绕点C旋转α(0°<α<90°),得到线段CD,连接AD、BD.
(1)如图1,将线段CA绕点C逆时针旋转α,则∠ADB的度数为 ;
(2)将线段CA绕点C顺时针旋转α时
①在图2中依题意补全图形,并求∠ADB的度数;
②若∠BCD的平分线CE交BD于点F,交DA的延长线于点E,连结BE.用等式表示线段AD、CE、BE之间的数量关系,并证明.
四川省2022年各地区中考数学真题按题型分层分类汇编-08解答题(提升题)
参考答案与试题解析
一.反比例函数与一次函数的交点问题(共1小题)
1.(2022•绵阳)如图,一次函数y=k1x+b与反比例函数y=在第一象限交于M(2,8)、N两点,NA垂直x轴于点A,O为坐标原点,四边形OANM的面积为38.
(1)求反比例函数及一次函数的解析式;
(2)点P是反比例函数第三象限内的图象上一动点,请简要描述使△PMN的面积最小时点P的位置(不需证明),并求出点P的坐标和△PMN面积的最小值.
【解答】解:(1)∵反比例函数y=过点M(2,8),
∴k2=2×8=16,
∴反比例函数的解析式为y=,
设N(m,),
∵M(2,8),
∴S△OMB==8,
∵四边形OANM的面积为38,
∴四边形ABMN的面积为30,
∴(8+)•(m﹣2)=30,
解得m1=8,m2=﹣(舍去),
∴N(8,2),
∵一次函数y=k1x+b的图象经过点M、N,
∴,解得,
∴一次函数的解析式为y=﹣x+10;
(2)与直线MN平行,且在第三象限与反比例函数y=有唯一公共点P时,△PMN的面积最小,
设与直线MN平行的直线的关系式为y=﹣x+n,当与y=在第三象限有唯一公共点时,
有方程﹣x+n=(x<0)唯一解,
即x2﹣nx+16=0有两个相等的实数根,
∴n2﹣4×1×16=0,
解得n=﹣8或x=8(舍去),
∴与直线MN平行的直线的关系式为y=﹣x﹣8,
∴方程﹣x﹣8=的解为x=﹣4,
经检验,x=﹣4是原方程的解,
当x=﹣4时,y==﹣4,
∴点P(﹣4,﹣4),
如图,过点P作AN的垂线,交NA的延长线于点Q,交y轴于点D,延长MB交PQ于点C,由题意得,
PD=4,DQ=8,CD=2,MC=8+4=12,NQ=2+4=6,
∴S△PMN=S△MPC+S梯形MCQN﹣S△PNQ
=×6×12+(12+6)×6﹣×12×6
=36+54﹣36
=54,
答:点P(﹣4,﹣4),△PMN面积的最小值为54.
二.反比例函数综合题(共2小题)
2.(2022•达州)如图,一次函数y=x+1与反比例函数y=的图象相交于A(m,2),B两点,分别连接OA,OB.
(1)求这个反比例函数的表达式;
(2)求△AOB的面积;
(3)在平面内是否存在一点P,使以点O,B,A,P为顶点的四边形为平行四边形?若存在,请直接写出点P的坐标;若不存在,请说明理由.
【解答】解:(1)∵一次函数y=x+1经过点A(m,2),
∴m+1=2,
∴m=1,
∴A(1,2),
∵反比例函数y=经过点(1,2),
∴k=2,
∴反比例函数的解析式为y=;
(2)由题意,得,
解得或,
∴B(﹣2,﹣1),
∵C(0,1),
∴S△AOB=S△AOC+S△BOC=×1×2+×1×1=1.5;
(3)有三种情形,如图所示,满足条件的点P的坐标为(﹣3,﹣3)或(﹣1,1)或(3,3).
3.(2022•成都)如图,在平面直角坐标系xOy中,一次函数y=﹣2x+6的图象与反比例函数y=的图象相交于A(a,4),B两点.
(1)求反比例函数的表达式及点B的坐标;
(2)过点A作直线AC,交反比例函数图象于另一点C,连接BC,当线段AC被y轴分成长度比为1:2的两部分时,求BC的长;
(3)我们把有两个内角是直角,且一条对角线垂直平分另一条对角线的四边形称为“完美筝形”.设P是第三象限内的反比例函数图象上一点,Q是平面内一点,当四边形ABPQ是完美筝形时,求P,Q两点的坐标.
【解答】解:(1)∵一次函数y=﹣2x+6的图象过点A,
∴4=﹣2a+6,
∴a=1,
∴点A(1,4),
∵反比例函数y=的图象过点A(1,4),
∴k=1×4=4;
∴反比例函数的解析式为:y=,
联立方程组可得:,
解得:,,
∴点B(2,2);
(2)如图,过点A作AE⊥y轴于E,过点C作CF⊥y轴于F,
∴AE∥CF,
∴△AEH∽△CFH,
∴,
当=时,则CF=2AE=2,
∴点C(﹣2,﹣2),
∴BC==4,
当=2时,则CF=AE=,
∴点C(﹣,﹣8),
∴BC==,
综上所述:BC的长为4或;
(3)如图,当∠AQP=∠ABP=90°时,设直线AB与y轴交于点E,过点B作BF⊥y轴于F,设BP与y轴的交点为N,连接BQ,AP交于点H,
∵直线y=﹣2x+6与y轴交于点E,
∴点E(0,6),
∵点B(2,2),
∴BF=OF=2,
∴EF=4,
∵∠ABP=90°,
∴∠ABF+∠FBN=90°=∠ABF+∠BEF,
∴∠BEF=∠FBN,
又∵∠EFB=∠ABN=90°,
∴△EBF∽△BNF,
∴,
∴FN==1,
∴点N(0,1),
∴直线BN的解析式为:y=x+1,
联立方程组得:,
解得:,,
∴点P(﹣4,﹣1),
∴直线AP的解析式为:y=x+3,
∵AP垂直平分BQ,
∴设BQ的解析式为y=﹣x+4,
∴x+3=﹣x+4,
∴x=,
∴点H(,),
∵点H是BQ的中点,点B(2,2),
∴点Q(﹣1,5).
三.二次函数综合题(共5小题)
4.(2022•内江)如图,抛物线y=ax2+bx+c与x轴交于A(﹣4,0),B(2,0),与y轴交于点C(0,2).
(1)求这条抛物线所对应的函数的表达式;
(2)若点D为该抛物线上的一个动点,且在直线AC上方,求点D到直线AC的距离的最大值及此时点D的坐标;
(3)点P为抛物线上一点,连接CP,直线CP把四边形CBPA的面积分为1:5两部分,求点P的坐标.
【解答】解:(1)∵抛物线y=ax2+bx+c与x轴交于A(﹣4,0),B(2,0),与y轴交于点C(0,2).
∴,
解得:,
∴抛物线的解析式为y=﹣x2﹣x+2;
(2)过点D作DH⊥AB于H,交直线AC于点G,过点D作DE⊥AC于E,如图.
设直线AC的解析式为y=kx+t,
则,
解得:,
∴直线AC的解析式为y=x+2.
设点D的横坐标为m,则点G的横坐标也为m,
∴DH=﹣m2﹣m+2,GH=m+2
∴DG=﹣m2﹣m+2﹣m﹣2=﹣m2﹣m,
∵DE⊥AC,DH⊥AB,
∴∠EDG+DGE=AGH+∠CAO=90°,
∵∠DGE=∠AGH,
∴∠EDG=∠CAO,
∴cos∠EDG=cos∠CAO==,
∴,
∴DE=DG=(﹣m2﹣m)=﹣(m2+4m)=﹣(m+2)2+,
∴当m=﹣2时,点D到直线AC的距离取得最大值.
此时yD=﹣×(﹣2)2﹣×(﹣2)+2=2,
即点D的坐标为(﹣2,2);
(3)如图,设直线CP交x轴于点E,
直线CP把四边形CBPA的面积分为1:5两部分,
又∵S△PCB:S△PCA=EB×(yC﹣yP):AE×(yC﹣yP)=BE:AE,
则BE:AE=1:5或5:1
则AE=5或1,
即点E的坐标为(1,0)或(﹣3,0),
将点E的坐标代入直线CP的表达式:y=nx+2,
解得:n=﹣2或,
故直线CP的表达式为:y=﹣2x+2或y=x+2,
联立方程组或,
解得:x=6或﹣(不合题意值已舍去),
故点P的坐标为(6,﹣10)或(﹣,﹣).
5.(2022•眉山)在平面直角坐标系中,抛物线y=﹣x2﹣4x+c与x轴交于点A,B(点A在点B的左侧),与y轴交于点C,且点A的坐标为(﹣5,0).
(1)求点C的坐标;
(2)如图1,若点P是第二象限内抛物线上一动点,求点P到直线AC距离的最大值;
(3)如图2,若点M是抛物线上一点,点N是抛物线对称轴上一点,是否存在点M使以A,C,M,N为顶点的四边形是平行四边形?若存在,请直接写出点M的坐标;若不存在,请说明理由.
【解答】解:(1)∵点A(﹣5,0)在抛物线y=﹣x2﹣4x+c的图象上,
∴0=﹣52﹣4×5+c
∴c=5,
∴点C的坐标为(0,5);
(2)过P作PE⊥AC于点E,过点P作PF⊥x轴交AC于点H,如图1:
∵A(﹣5,0),C(0,5)
∴OA=OC,
∴△AOC是等腰直角三角形,
∴∠CAO=45°,
∵PF⊥x轴,
∴∠AHF=45°=∠PHE,
∴△PHE是等腰直角三角形,
∴,
∴当PH最大时,PE最大,
设直线AC解析式为y=kx+5,
将A(﹣5,0)代入得0=5k+5,
∴k=1,
∴直线AC解析式为y=x+5,
设P(m,﹣m2﹣4m+5),(﹣5<m<0),则H(m,m+5),
∴,
∵a=﹣1<0,
∴当时,PH最大为,
∴此时PE最大为,即点P到直线AC的距离值最大;
(3)存在,理由如下:
∵y=﹣x2﹣4x+5=﹣(x+2)2+9,
∴抛物线的对称轴为直线x=﹣2,
设点N的坐标为(﹣2,m),点M的坐标为(x,﹣x2﹣4x+5),
分三种情况:①当AC为平行四边形对角线时,
,
解得,
∴点M的坐标为(﹣3,8);
②当AM为平行四边形对角线时,
,
解得,
∴点M的坐标为(3,﹣16);
③当AN为平行四边形对角线时,
,
解得,
∴点M的坐标为(﹣7,﹣16);
综上,点M的坐标为:(﹣3,8)或(3,﹣16)或(﹣7,﹣16).
6.(2022•达州)如图1,在平面直角坐标系中,已知二次函数y=ax2+bx+2的图象经过点A(﹣1,0),B(3,0),与y轴交于点C.
(1)求该二次函数的表达式;
(2)连接BC,在该二次函数图象上是否存在点P,使∠PCB=∠ABC?若存在,请求出点P的坐标;若不存在,请说明理由;
(3)如图2,直线l为该二次函数图象的对称轴,交x轴于点E.若点Q为x轴上方二次函数图象上一动点,过点Q作直线AQ,BQ分别交直线l于点M,N,在点Q的运动过程中,EM+EN的值是否为定值?若是,请求出该定值;若不是,请说明理由.
【解答】解:(1)∵抛物线y=ax2+bx+2经过点A(﹣1,0),B(3,0),
∴,
解得:
∴该二次函数的表达式为y=x2+x+2;
(2)存在,理由如下:
如图1,当点P在BC上方时,
∵∠PCB=∠ABC,
∴CP∥AB,即CP∥x轴,
∴点P与点C关于抛物线对称轴对称,
∵y=x2+x+2,
∴抛物线对称轴为直线x=﹣=1,
∵C(0,2),
∴P(2,2);
当点P在BC下方时,设CP交x轴于点D(m,0),
则OD=m,DB=3﹣m,
∵∠PCB=∠ABC,
∴CD=BD=3﹣m,
在Rt△COD中,OC2+OD2=CD2,
∴22+m2=(3﹣m)2,
解得:m=,
∴D(,0),
设直线CD的解析式为y=kx+d,则,
解得:,
∴直线CD的解析式为y=x+2,
联立,得,
解得:(舍去),,
∴P(,﹣),
综上所述,点P的坐标为(2,2)或(,﹣);
(3)由(2)知:抛物线y=x2+x+2的对称轴为直线x=1,
∴E(1,0),
设Q(t,t2+t+2),且﹣1<t<3,
设直线AQ的解析式为y=ex+f,则,
解得:,
∴直线AQ的解析式为y=(t+2)x﹣t+2,
当x=1时,y=﹣t+4,
∴M(1,﹣t+4),
同理可得直线BQ的解析式为y=(﹣t﹣)x+2t+2,
当x=1时,y=t+,
∴N(1,t+),
∴EM=﹣t+4,EN=t+,
∴EM+EN=﹣t+4+t+=,
故EM+EN的值为定值.
7.(2022•凉山州)在平面直角坐标系xOy中,已知抛物线y=﹣x2+bx+c经过点A(﹣1,0)和点B(0,3),顶点为C,点D在其对称轴上,且位于点C下方,将线段DC绕点D按顺时针方向旋转90°,点C落在抛物线上的点P处.
(1)求抛物线的解析式;
(2)求点P的坐标;
(3)将抛物线平移,使其顶点落在原点O,这时点P落在点E的位置,在y轴上是否存在点M,使得MP+ME的值最小,若存在,求出点M的坐标;若不存在,请说明理由.
【解答】解:(1)把A(﹣1,0)和点B(0,3)代入y=﹣x2+bx+c,
得,
解得:,
∴抛物线解析式为y=﹣x2+2x+3;
(2)∵y=﹣(x﹣1)2+4,
∴C(1,4),抛物线的对称轴为直线x=1,
如图,设CD=t,则D(1,4﹣t),
∵线段DC绕点D按顺时针方向旋转90°,点C落在抛物线上的点P处,
∴∠PDC=90°,DP=DC=t,
∴P(1+t,4﹣t),
把P(1+t,4﹣t)代入y=﹣x2+2x+3得:
﹣(1+t)2+2(1+t)+3=4﹣t,
整理得t2﹣t=0,
解得:t1=0(舍去),t2=1,
∴P(2,3);
(3)∵P点坐标为(2,3),顶点C坐标为(1,4),将抛物线平移,使其顶点落在原点O,这时点P落在点E的位置,
∴E点坐标为(1,﹣1),
∴点E关于y轴的对称点F(﹣1,﹣1),
连接PF交y轴于M,则MP+ME=MP+MF=PF的值最小,
设直线PF的解析式为y=kx+n,
∴,
解得:,
∴直线PF的解析式为y=x+,
∴点M的坐标为(0,).
8.(2022•自贡)已知二次函数y=ax2+bx+c(a≠0).
(1)若a=﹣1,且函数图象经过(0,3),(2,﹣5)两点,求此二次函数的解析式,直接写出抛物线与x轴交点及顶点坐标;
(2)在图①中画出(1)中函数的大致图象,并根据图象写出函数值y≥3时自变量x的取值范围;
(3)若a+b+c=0且a>b>c,一元二次方程ax2+bx+c=0两根之差等于a﹣c,函数图象经过P(﹣c,y1),Q(1+3c,y2)两点,试比较y1、y2的大小.
【解答】解:(1)由题意可得:,
解得:,
∴抛物线的解析式为:y=﹣x2﹣2x+3=﹣(x+1)2+4,
∴顶点坐标为(﹣1,4),
当y=0时,则0=﹣x2﹣2x+3,
∴x1=1,x2=﹣3,
∴抛物线与x轴的交点坐标为(1,0),(﹣3,0);
(2)如图,
当y=3时,3=﹣x2﹣2x+3,
∴x1=0,x2=﹣2,
由图象可得:当﹣2≤x≤0时,y≥3;
(3)∵a+b+c=0且a>b>c,
∴a>0,c<0,b=﹣a﹣c,一元二次方程ax2+bx+c=0必有一根为x=1,
∵一元二次方程ax2+bx+c=0两根之差等于a﹣c,
∴方程的另一个根为1+c﹣a,
∴抛物线y=ax2+bx+c的对称轴为:直线x=1+,
∴﹣=1+,
∴a+c=﹣a2+ac+2a,
∴(a﹣1)(a﹣c)=0,
∵a>c,
∴a=1,P(﹣c,y1),Q(1+3c,y2),
∴b=﹣1﹣c,
∴抛物线解析式为:y=x2﹣(1+c)x+c,
∴当x=﹣c时,则y1=(﹣c)2﹣(1+c)(﹣c)+c=2c2+c﹣,
当x=1+3c时,则y2=(1+3c)2﹣(1+c)(1+3c)+c=6c2+3c,
∴y2﹣y1=(6c2+3c)﹣(2c2+c﹣)=4(c+)2﹣,
∵b>c,
∴﹣1﹣c>c,
∴c<﹣,
∴4(c+)2﹣>0,
∴y2>y1.
四.四边形综合题(共1小题)
9.(2022•绵阳)如图,平行四边形ABCD中,DB=2,AB=4,AD=2,动点E、F同时从A点出发,点E沿着A→D→B的路线匀速运动,点F沿着A→B→D的路线匀速运动,当点E,F相遇时停止运动.
(1)如图1,设点E的速度为1个单位每秒,点F的速度为4个单位每秒,当运动时间为秒时,设CE与DF交于点P,求线段EP与CP长度的比值;
(2)如图2,设点E的速度为1个单位每秒,点F的速度为个单位每秒,运动时间为x秒,△AEF的面积为y,求y关于x的函数解析式,并指出当x为何值时,y的值最大,最大值为多少?
(3)如图3,H在线段AB上且AH=HB,M为DF的中点,当点E、F分别在线段AD、AB上运动时,探究点E、F在什么位置能使EM=HM,并说明理由.
【解答】解:(1)延长DF交CB的延长线于G,
∵平行四边形ABCD中,
∴CG∥AD,
∴∠A=∠GBF,
∴△AFD∽△BFG,
∴=,
∵运动时间为秒,
∴AF=,
∵AB=4,
∴BF=,
∵AD=2,
∴BG=1,
∴CG=3,
∵AD∥CG,
∴=,
∵AE=,
∴ED=,
∴=;
(2)当0≤x≤2时,E点在AD上,F点在AB上,
由题意可知,AE=x,AF=x,
∵DB=2,AB=4,AD=2,
∴△ABD是直角三角形,且∠A=60°,
过点E作EH⊥AB交于H,
∴EH=AE•sin60°=x,
∴y=×AF×EH=×x×x=x2;
此时当x=2时,y有最大值3;
当2≤x≤时,E点在BD上,F点在AB上,
过点E作EN⊥AB交于N,过点D作DM⊥AB交于M,
∵AD+DE=x,AD=2,
∴DE=x﹣2,
∵BD=2,
∴BE=2﹣x+2,
在Rt△ABD中,DM=,
∵EN∥DM,
∴=,
∴=,
∴EN=1+﹣x,
∴y=×AF×EN=×(x)×(1+﹣x)=﹣x2+x+x;
此时当x=时,y有最大值2+;
当≤x≤2时,过点E作EQ⊥AB交于Q,过点F作FP⊥AB交于P,
∴AB+BF=x,DA+DE=x,
∵AB=4,AD=2,
∴BE=2﹣x+2,BF=x﹣4,
∵PF∥DM,
∴=,即=,
∴PF=x﹣2,
∵EQ∥DM,
∴=,即=,
∴EQ=+1﹣x,
∴y=×AB×(EQ﹣PF)=×4×(+1﹣x﹣x+2)=6+2﹣x﹣x;
此时当x=时,y有最大值2+;
综上所述:当0≤x≤2时,y=x2;当2≤x≤时,y=﹣x2+x+x;当≤x≤2时,y=6+2﹣x﹣x;y的最大值为2+;
(3)连接DH,
∵AH=HB,AB=4,
∴AH=1,
∴DH⊥AB,
∵M是DF的中点,
∴HM=DM=MF,
∵EM=HM,
∴EM=DF,
∴△EDF是直角三角形,
∴EF⊥AD,
∵AD⊥BD,
∴EF∥BD.
五.切线的判定与性质(共1小题)
10.(2022•德阳)如图,AB是⊙O的直径,CD是⊙O的弦,AB⊥CD,垂足是点H,过点C作直线分别与AB,AD的延长线交于点E,F,且∠ECD=2∠BAD.
(1)求证:CF是⊙O的切线;
(2)如果AB=10,CD=6,
①求AE的长;
②求△AEF的面积.
【解答】(1)证明:连接OC,如图,
∵AB是⊙O的直径,AB⊥CD,
∴,
∴∠CAB=∠DAB.
∵∠COB=2∠CAB,
∴∠COB=2∠BAD.
∵∠ECD=2∠BAD,
∴∠ECD=∠COB.
∵AB⊥CD,
∴∠COB+∠OCH=90°,
∴∠OCH+∠ECD=90°,
∴∠OCE=90°.
∴OC⊥CF.
∵OC是⊙O的半径,
∴CF是⊙O的切线;
(2)解:①∵AB=10,
∴OA=OB=OC=5,
∵AB是⊙O的直径,AB⊥CD,
∴CH=DH=CD=3.
∴OH==4,
∵OC⊥CF,CH⊥OE,
∴△OCH∽△OEC,
∴,
∴,
∴OE=.
∴AE=OA+OE=5+=;
②过点F作FG⊥AB,交AB的延长线于点G,如图,
∵∠OCF=∠FGE=90°,∠CEO=∠GEF,
∴△OCE∽△FGE.
∴,
设FG=4k,则FE=5k,
∴EG==3k,
∵DH⊥AB,FG⊥AB,
∴DH∥FG.
∴,
∴,
解得:k=.
∴FG=4k=5.
∴△AEF的面积=×AE•FG=.
六.圆的综合题(共5小题)
11.(2022•绵阳)如图,AB为⊙O的直径,C为圆上的一点,D为劣弧的中点,过点D作⊙O的切线与AC的延长线交于点P,与AB的延长线交于点F,AD与BC交于点E.
(1)求证:BC∥PF;
(2)若⊙O的半径为,DE=1,求AE的长度;
(3)在(2)的条件下,求△DCP的面积.
【解答】(1)证明:连接OD,如图,
∵D为劣弧的中点,
∴,
∴OD⊥BC.
∵PF是⊙O的切线,
∴OD⊥PF,
∴BC∥PF;
(2)连接OD,BD,如图,
设AE=x,则AD=1+x.
∵D为劣弧的中点,
∴,
∴CD=BD,∠DCB=∠CAD.
∵∠CDE=∠ADC,
∴△CDE∽△ADC,
∴,
∴CD2=DE•AD=1×(1+x)=1+x.
∴BD2=1+x.
∵AB为⊙O的直径,
∴∠ADB=90°,
∴AD2+BD2=AB2.
∵⊙O的半径为,
∴AB=2.
∴,
解得:x=3或x=﹣6(不合题意,舍去),
∴AE=3.
(3)连接OD,BD,设OD与BC交于点H,如图,
由(2)知:AE=3,AD=AE+DE=4,DB==2,
∵∠ADB=90°,
∴cos∠DAB==.
∵OA=OD,
∴∠DAB=∠ADO,
∴cos∠ADO=cos∠DAB=.
∵OH⊥BC,
∴BH=CH,cos∠ADO=,
∴DH=DE×=.
∴OH=OD﹣DH=﹣=.
∴BH==,
∴CH=BH=.
∵AB为⊙O的直径,
∴∠ACB=90°,
由(1)知:OD⊥PD,OH⊥BC,
∴四边形CHDP为矩形,
∴∠P=90°,CP=DH=,DP=CH=,
∴△DCP的面积=CP•DP=.
12.(2022•达州)如图,在Rt△ABC中,∠C=90°,点O为AB边上一点,以OA为半径的⊙O与BC相切于点D,分别交AB,AC边于点E,F.
(1)求证:AD平分∠BAC;
(2)若BD=3,tan∠CAD=,求⊙O的半径.
【解答】(1)证明:连接OD.
∵BC是⊙O的切线,OD是⊙O半径,D是切点,
∴OD⊥BC,
∴∠ODB=∠C=90°,
∴OD∥AC,
∴∠ODA=∠CAD,
∵OD=OA,
∴∠ODA=∠OAD,
∴∠OAD=∠CAD,
∴AD平分∠BAC;
(2)解:连接DE,过点D作DT⊥AB于点T,
∵AE是直径,
∴∠ADE=90°,
∵tan∠CAD=tan∠DAE=,
∴=,
设DE=k,AD=2k,则AE=k,
∵•DE•AD=•AE•DT,
∴DT=k,
∴OT===k,
∵tan∠DOT==,
∴=,
∴k=,
∴OD=k=,
∴⊙O的半径为.
13.(2022•凉山州)如图,已知半径为5的⊙M经过x轴上一点C,与y轴交于A、B两点,连接AM、AC,AC平分∠OAM,AO+CO=6.
(1)判断⊙M与x轴的位置关系,并说明理由;
(2)求AB的长;
(3)连接BM并延长交⊙M于点D,连接CD,求直线CD的解析式.
【解答】解:(1)猜测⊙M与x轴相切,理由如下:
如图,连接OM,
∵AC平分∠OAM,
∴∠OAC=∠CAM,
又∵MC=AM,
∴∠CAM=∠ACM,
∴∠OAC=∠ACM,
∴OA∥MC,
∵OA⊥x轴,
∴MC⊥x轴,
∵CM是半径,
∴⊙M与x轴相切.
(2)如图,过点M作MN⊥y轴于点N,
∴AN=BN=AB,
∵∠MCO=∠AOC=∠MNA=90°,
∴四边形MNOC是矩形,
∴NM=OC,MC=ON=5,
设AO=m,则OC=6﹣m,
∴AN=5﹣m,
在Rt△ANM中,由勾股定理可知,AM2=AN2+MN2,
∴52=(5﹣m)2+(6﹣m)2,
解得m=2或m=9(舍去),
∴AN=3,
∴AB=6.
(3)如图,连接AD与CM交于点E,
∵BD是直径,
∴∠BAD=90°,
∴AD∥x轴,
∴AD⊥MC,
由勾股定理可得AD=8,
∴D(8,﹣2).
由(2)可得C(4,0),
设直线CD的解析式为:y=kx+b,
∴,解得.
∴直线CD的解析式为:y=﹣x+2.
14.(2022•成都)如图,在Rt△ABC中,∠ACB=90°,以BC为直径作⊙O,交AB边于点D,在上取一点E,使=,连接DE,作射线CE交AB边于点F.
(1)求证:∠A=∠ACF;
(2)若AC=8,cos∠ACF=,求BF及DE的长.
【解答】(1)证明:∵=,
∴∠BCF=∠FBC,
∵∠ACB=90°,
∴∠A+∠FBC=90°,∠ACF+∠BCF=90°,
∴∠A=∠ACF;
(2)解:连接CD.
∵∠A=∠ACF,∠FBC=∠BCF,
∴AF=FC=FB,
∴cos∠A=cos∠ACF==,
∵AC=8,
∴AB=10,BC=6,
∵BC是直径,
∴∠CDB=90°,
∴CD⊥AB,
∵S△ABC=•AC•BC=•AB•CD,
∴CD==,
∴BD===,
∵BF=AF=5,
∴DF=BF﹣BD=5﹣=,
∵∠DEF+∠DEC=180°,∠DEC+∠B=180°,
∴∠DEF=∠B=∠BCF,
∴DE∥CB,
∴△DEF∽△BCF,
∴=,
∴=,
∴DE=.
15.(2022•泸州)如图,点C在以AB为直径的⊙O上,CD平分∠ACB交⊙O于点D,交AB于点E,过点D作⊙O的切线交CO的延长线于点F.
(1)求证:FD∥AB;
(2)若AC=2,BC=,求FD的长.
【解答】(1)证明:连接OD.
∵DF是⊙O的切线,
∴OD⊥DF,
∵CD平分∠ACB,
∴=,
∴OD⊥AB,
∴AB∥DF;
(2)解:过点C作CH⊥AB于点H.
∵AB是直径,
∴∠ACB=90°,
∵BC=,AC=2,
∴AB===5,
∵S△ABC=•AC•BC=•AB•CH,
∴CH==2,
∴BH==1,
∴OH=OB﹣BH=﹣1=,
∵DF∥AB,
∴∠COH=∠F,
∵∠CHO=∠ODF=90°,
∴△CHO∽△ODF,
∴=,
∴=,
∴DF=.
七.几何变换综合题(共1小题)
16.(2022•广元)在Rt△ABC中,AC=BC,将线段CA绕点C旋转α(0°<α<90°),得到线段CD,连接AD、BD.
(1)如图1,将线段CA绕点C逆时针旋转α,则∠ADB的度数为 135° ;
(2)将线段CA绕点C顺时针旋转α时
①在图2中依题意补全图形,并求∠ADB的度数;
②若∠BCD的平分线CE交BD于点F,交DA的延长线于点E,连结BE.用等式表示线段AD、CE、BE之间的数量关系,并证明.
【解答】解:(1)在Rt△ABC中,AC=BC,将线段CA绕点C旋转α(0°<α<90°),
∴CD=CA=CB,∠ACD=α,
∴∠BCD=90°﹣α,
∵CD=CA,CD=CB,
∴∠ADC==90°﹣,∠BDC==45°+,
∴∠ADB=∠ADC+∠BDC=90°﹣+45°+=135°,
故答案为:135°;
(2)①依题意补全图形如图,
由旋转得:CD=CA=CB,∠ACD=α,
∴∠BCD=90°+α,
∵CD=CA,CD=CB,
∴∠ADC==90°﹣,∠BDC==45°﹣,
∴∠ADB=∠ADC﹣∠BDC=90°﹣﹣45°+=45°;
②CE=2BE﹣AD.
证明:过点C作CG∥BD,交EB的延长线于点G,
∵BC=CD,CE平分∠BCD,
∴CE垂直平分BD,
∴BE=DE,∠EFB=90°,
由①知,∠ADB=45°,
∴∠EBD=∠EDB=45°,
∴∠FEB=45°,
∵BD∥CG,
∴∠ECG=∠EFB=90°,∠G=∠EBD=45°,
∴EC=CG,EG=EC,
∵∠ACE=90°﹣∠ECB,∠BCG=90°﹣∠ECB,
∴∠ACE=∠BCG,
∵AC=BC,
∴△ACE≌△BCG(SAS),
∴AE=BG,
∵EG=EB+BG=EB+AE=EB+ED﹣AD=2EB﹣AD,
∴CE=2BE﹣AD.
相关试卷
这是一份黑龙江省各地区2022年中考数学真题按题型分层分类汇编-08解答题(提升题),共31页。试卷主要包含了,连接AD,BC,BD,,与y轴交于点C,综合与探究等内容,欢迎下载使用。
这是一份湖北省各地区2022年中考数学真题按题型分层分类汇编-08解答题(提升题),共27页。试卷主要包含了问题提出等内容,欢迎下载使用。
这是一份四川省2022年各地区中考数学真题按题型分层分类汇编-05填空题(提升题),共40页。