![八年级数学苏科版上册学案第1单元《1.2全等三角形》第1页](http://img-preview.51jiaoxi.com/2/3/13461720/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
苏科版八年级上册1.2 全等三角形学案
展开
这是一份苏科版八年级上册1.2 全等三角形学案,共3页。学案主要包含了学习目标,学习重难点,学习过程,达标检测等内容,欢迎下载使用。
全等三角形 【学习目标】一、知识目标1.会利用全等三角形的特征进行三角形全等的判断。2.与相似三角形的识别进行比较,掌握识别全等三角形应有三个部分(边或角)分别对应相等。二、过程性目标回忆相似三角形的识别,通过作图等方法进行探索,掌握识别全等三角形应有三个部分(边或角)分别对应相等。三、情感态度目标经历探索三角形全等的条件的过程,体会如何探索研究问题,培养学生合作的精神,让学生体验分类的思想。【学习重难点】重点:培养学生探索问题的能力。难点:掌握探索问题的方法。【学习过程】一、问题探究我们知道:若两个三角形的边、角分别对应相等,则这两个三角形全等。那么我们能不能找到一些较为简便的方法,用来识别三角形的全等呢?有没有类似于相似三角形的识别方法呢?二、探究归纳要识别三角形的全等需要找出三角形边和角的相等条件。让我们从最简单的开始,探究识别三角形的全等的条件。请同学们按照下面的条件作出图形。1.如果只知道两个三角形有一条边对应相等,那么这两个三角形一定会全等吗?如果只知道两个三角形有一个角对应相等,那么这两个三角形一定会全等吗?2.如果两个三角形有两个相等的部分(边或角),那么有几种可能的情况?这两个三角形一定会全等吗?分别按照下面的条件,用刻度尺或量角器画三角形,并和周围的同学比较一下,所画的图形是否全等。(1) 三角形的一个内角为60°,一条边为3cm;(2) 三角形的两个内角分别为30°和70°;(3)三角形的两条边分别为3cm和5cm。 结论:通过作图发现,如果只知道两个三角形有一个或两个对应相等的部分(边或角),那么这两个三角形不一定全等(甚至形状都不相同)。因此,两个三角形需要有三个部分(边或角)分别对应相等, 这两个三角形才可能是全等的。3.思考:如果两个三角形有三个部分(边或角)分别对应相等,那么有哪几种可能的情况呢?三、实践应用例1 已知△MNP≌△ABC,且△MNP是不等边三角形,∠MPN=35°, ∠CAB=40°,那么△ABC一定是_____角三角形,在△ABC中,与∠MPN相等的角是______,在△MNP中,∠_____=40°,在△ABC中,∠ABC=_______°。分析由△MNP≌△ABC可知,∠MPN与∠ACB是对应角,∠CAB与∠PMN是对应角,∠MNP与∠ABC是对应角,利用全等三角形的特征与三角形内角和定理求出另外几个角的度数,从而可判定它们的形状。 利用△MNP≌△ABC中字母的排列顺序,知∠MPN的对应角是∠ACB,∠CAB的对应角是∠PMN,根据三角形的内角和为180°和全等三角形的对应角相等,得 ∠ABC=180°-∠ACB-∠CAB=180°-∠MPN-∠CAB=180°-35°-40°=105°。解 钝角,∠ACB,∠PMN(或者∠NMP),105°。 例2 如图,△ABC是等腰三角形,AD是底边上的中线,△ABD和△ACD全等吗?试根据等腰三角形的有关知识说明理由。解 由题意可得因为AB=AC,所以∠B=∠C;又因为AD是等腰三角形底边上的中线,所以AD⊥BC,并且AD平分∠BAC,即BD=CD,∠BDA=∠CDA,∠BAD=∠CAD;又因为AD是公共边,所以△ABD和△ACD全等。四、交流反思1.只知道两个三角形有一个或两个对应相等的部分(边或角),那么这两个三角形不一定全等(甚至形状都不相同)。2.两个三角形需要有三个部分(边或角)分别对应相等, 这两个三角形才可能是全等的。【达标检测】1.如图,点O是平行四边形ABCD的对角线的交点,△AOB绕O旋转180°,可以与△________重合,这说明△AOB≌△________。这两个三角形的对应边是AO与________,OB与________,BA与________;对应角是∠AOB与________,∠OBA与________,∠BAO与________。2.如图,△ABC是等腰三角形,AD是顶角的平分线,△ABD与△ACD全等吗?试说明理由。
相关学案
这是一份苏科版八年级上册1.2 全等三角形导学案及答案,共3页。学案主要包含了学习目标,学习重点,学习难点,学习过程等内容,欢迎下载使用。
这是一份初中数学苏科版八年级上册1.2 全等三角形导学案及答案,共4页。学案主要包含了学习目标,学习重难点,学习过程,达标检测等内容,欢迎下载使用。
这是一份初中数学苏科版八年级上册1.2 全等三角形学案,共4页。学案主要包含了学习目标,学习重难点,学习过程,达标检测等内容,欢迎下载使用。