![广东省东莞市2022年中考数学模拟题精(一模)选分层分类汇编-03填空题(提升题)第1页](http://img-preview.51jiaoxi.com/2/3/13462459/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![广东省东莞市2022年中考数学模拟题精(一模)选分层分类汇编-03填空题(提升题)第2页](http://img-preview.51jiaoxi.com/2/3/13462459/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![广东省东莞市2022年中考数学模拟题精(一模)选分层分类汇编-03填空题(提升题)第3页](http://img-preview.51jiaoxi.com/2/3/13462459/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
广东省东莞市2022年中考数学模拟题精(一模)选分层分类汇编-03填空题(提升题)
展开
这是一份广东省东莞市2022年中考数学模拟题精(一模)选分层分类汇编-03填空题(提升题),共14页。试卷主要包含了正方形ABCD的边长为4等内容,欢迎下载使用。
广东省东莞市2022年中考数学模拟题精(一模)选分层分类汇编-03填空题(提升题)一.分式的化简求值(共1小题)1.(2022•东莞市一模)已知a2﹣a﹣2=0,则代数式﹣的值为 .二.反比例函数系数k的几何意义(共1小题)2.(2022•东莞市校级一模)如图,点A是反比例函数y=(x<0)的图象上的一点,点B在x轴的负半轴上且AO=AB,若△ABO的面积为4,则k的值为 .三.二次函数图象与几何变换(共1小题)3.(2022•东莞市一模)将抛物线y=2x2向右平移1个单位,所得抛物线的解析式为 .四.勾股定理(共1小题)4.(2021•新兴县一模)若直角三角形两边分别是3和4,则第三边是 .五.矩形的性质(共1小题)5.(2022•东莞市校级一模)如图,在矩形ABCD中,AB=6,AD=5,点P在AD上,点Q在BC上,且AP=CQ,连接CP,QD,则PC+DQ的最小值为 .六.矩形的判定与性质(共1小题)6.(2022•东莞市校级一模)如图,在△ABC中,AC=3,BC=4,AB=5,点P在AB上(不与A,B重合),过P作PE⊥AC,PF⊥BC,垂足分别是E,F,连接EF,M为EF的中点,则CM的最小值为 .七.正方形的性质(共2小题)7.(2022•东莞市校级一模)如图,在边长为4的正方形ABCD中,点E、F分别是边BC、CD上的动点.且BE=CF,连接BF、DE,则BF+DE的最小值为 .8.(2022•东莞市一模)正方形ABCD的边长为4.E为AD的中点,连接CE,过点B作BF⊥CE交CD于点F,垂足为G,则EG= .八.切线的性质(共1小题)9.(2022•东莞市校级一模)如图,已知AB是⊙O的直径,P为BA延长线上一点,PC切⊙O于C,若⊙O的半径是4cm,∠P=30°,图中阴影部分的面积是 .九.扇形面积的计算(共1小题)10.(2022•东莞市校级一模)如图,等腰直角三角形ABC,AB=AC,BC=4,AD⊥BC,以A为圆心,AD为半径作圆弧,阴影部分的面积等于 (结果保留π).一十.作图—基本作图(共1小题)11.(2022•东莞市一模)如图,在△ABC中,已知sin∠A=,AC=12,AB=8.(1)用没有刻度的直尺和圆规过点C作CD⊥AB交AB的延长线于点D.(保留作图痕迹,不写作法)(2)求△ABC的面积.一十一.轴对称的性质(共1小题)12.(2022•东莞市一模)如图,在Rt△ABC中,∠ABC=90°,∠ACB=30°,BC=2,△ADC与△ABC关于AC对称,点E、F分别是边DC、BC上的任意一点,且DE=CF,BE、DF相交于点P,则CP的最小值为 .一十二.相似三角形的性质(共1小题)13.(2022•东莞市校级一模)已知相似△ABC与△DEF的相似比为1:3,若△ABC的面积为2米2,则△DEF的面积为 .一十三.特殊角的三角函数值(共1小题)14.(2022•东莞市一模)在△ABC中∠A、∠C均为锐角,且有,则△ABC的形状为 .一十四.解直角三角形(共1小题)15.(2022•东莞市一模)在Rt△ABC中,∠C=90°,cosA=,AC=2,那么BC= .
广东省东莞市2022年中考数学模拟题精(一模)选分层分类汇编-03填空题(提升题)参考答案与试题解析一.分式的化简求值(共1小题)1.(2022•东莞市一模)已知a2﹣a﹣2=0,则代数式﹣的值为 ﹣ .【解答】解:已知等式变形得:a2﹣a=2,﹣=﹣=﹣=﹣=﹣.故答案为﹣.二.反比例函数系数k的几何意义(共1小题)2.(2022•东莞市校级一模)如图,点A是反比例函数y=(x<0)的图象上的一点,点B在x轴的负半轴上且AO=AB,若△ABO的面积为4,则k的值为 ﹣4 .【解答】解:过点A作AC⊥x轴,设点A(x,y),∵OA=AB,∴OC=BC,∴点B(2x,0),∵顶点A在反比例函数y=(x<0)的图象上,∴xy=k,∵△OAB的面积为4,∴OB•AC=4,即×2|x|×y=4,∴xy=﹣4,即k=﹣4.故答案为:﹣4.三.二次函数图象与几何变换(共1小题)3.(2022•东莞市一模)将抛物线y=2x2向右平移1个单位,所得抛物线的解析式为 y=2(x﹣1)2 .【解答】解:由“左加右减”的原则可知,将抛物线y=2x2右平移1个单位,所得函数解析式为:y=2(x﹣1)2.故答案为:y=2(x﹣1)2.四.勾股定理(共1小题)4.(2021•新兴县一模)若直角三角形两边分别是3和4,则第三边是 5或 .【解答】解:设第三边为x,(1)若4是直角边,则第三边x是斜边,由勾股定理得:32+42=x2,∴x=5;(2)若4是斜边,则第三边x为直角边,由勾股定理得:32+x2=42,∴x=;∴第三边的长为5或.故答案为:5或.五.矩形的性质(共1小题)5.(2022•东莞市校级一模)如图,在矩形ABCD中,AB=6,AD=5,点P在AD上,点Q在BC上,且AP=CQ,连接CP,QD,则PC+DQ的最小值为 13 .【解答】解:如图,连接BP,∵四边形ABCD是矩形,∴AD∥BC,AD=BC,∵AP=CQ,∴AD﹣AP=BC﹣CQ,∴DP=QB,DP∥BQ,∴四边形DPBQ是平行四边形,∴PB∥DQ,PB=DQ,∴PC+QD=PC+PB,∴PC+QD的最小值转化为PC+PB的最小值,如图,在BA的延长线上截取AE=AB=6,连接PE,CE,∵PA⊥BE,∴PA是BE的垂直平分线,∴PB=PE,∴PC+PB=PC+PE,∴PC+QD=PC+PB=PC+PE≥CE,∵BE=2AB=12,BC=AD=5,∴CE==13.∴PC+PB的最小值为13.∴PC+DQ的最小值为13.故答案为:13.六.矩形的判定与性质(共1小题)6.(2022•东莞市校级一模)如图,在△ABC中,AC=3,BC=4,AB=5,点P在AB上(不与A,B重合),过P作PE⊥AC,PF⊥BC,垂足分别是E,F,连接EF,M为EF的中点,则CM的最小值为 1.2 .【解答】解:∵AC=3,BC=4,AB=5,∴AC2+BC2=25=AB2,∴△ABC是直角三角形且∠ACB=90°,又∵PE⊥AC,PF⊥BC,∴四边形CEPF是矩形,如图,连接CP,则CP=EF,∵M为EF的中点,∠ECF=90°,∴Rt△CEF中,CM=EF,∴CM=CP,如图,当CP⊥AB时,CP最短,此时,×AC×BC=×AB×CP,∴CP==,∴CM=CP=1.2,即CM的最小值为1.2.故答案为:1.2.七.正方形的性质(共2小题)7.(2022•东莞市校级一模)如图,在边长为4的正方形ABCD中,点E、F分别是边BC、CD上的动点.且BE=CF,连接BF、DE,则BF+DE的最小值为 4 .【解答】解:连接AE,如图1,∵四边形ABCD是正方形,∴AB=BC,∠ABE=∠BCF=90°.又BE=CF,∴△ABE≌△BCF(SAS).∴AE=BF.所以BF+DE最小值等于AE+DE最小值.作点A关于BC的对称点H点,如图2,连接BH,则A、B、H三点共线,连接DH,DH与BC的交点即为所求的E点.根据对称性可知AE=HE,所以AE+DE=DH.在Rt△ADH中,DH===4,∴BF+DE最小值为4.故答案为:4.8.(2022•东莞市一模)正方形ABCD的边长为4.E为AD的中点,连接CE,过点B作BF⊥CE交CD于点F,垂足为G,则EG= .【解答】解:∵四边形ABCD是正方形,∴AD=CD=BC,∠BCD=∠ADC=90°,∴∠DCE+∠DEC=90°,∵BF⊥CE,∴∠DCE+∠CFB=90°,∴∠BFC=∠DEC,∴△BFC≌△CED(AAS),∴DE=CF=2,CE=BF,∴BF=,∴CE=2,∵S△BFC=×BC×CF=×BF×CG,∴4×2=2CG,∴CG=,∴EG=,故答案为:.八.切线的性质(共1小题)9.(2022•东莞市校级一模)如图,已知AB是⊙O的直径,P为BA延长线上一点,PC切⊙O于C,若⊙O的半径是4cm,∠P=30°,图中阴影部分的面积是 8﹣(cm2) .【解答】解:∵⊙O的半径是4cm,∴AB=8cm,则OC=AB=4cm,∵直角△OCP中,∠P=30°,∴OP=2OC=8,∴CP=,∴S△OCP=OC•CP=×4×4=8(cm2),S扇形OCA==(cm2),则阴影部分的面积=8﹣(cm2).故答案为:8﹣(cm2).九.扇形面积的计算(共1小题)10.(2022•东莞市校级一模)如图,等腰直角三角形ABC,AB=AC,BC=4,AD⊥BC,以A为圆心,AD为半径作圆弧,阴影部分的面积等于 4﹣π (结果保留π).【解答】解:∵△ABC是等腰直角三角形,∴∠BAC=90°,AB=AC,∵AD⊥BC,∴AD是BC边上的中线,∴AD===2,∴S阴影=S△ABC﹣S扇形AEF==4﹣π.故答案为:4﹣π.一十.作图—基本作图(共1小题)11.(2022•东莞市一模)如图,在△ABC中,已知sin∠A=,AC=12,AB=8.(1)用没有刻度的直尺和圆规过点C作CD⊥AB交AB的延长线于点D.(保留作图痕迹,不写作法)(2)求△ABC的面积.【解答】解:(1)如图,即为所作的图形;(2)在Rt△ACD中,sin∠A==,AC=12,∴CD=12×=9,∴△ABC的面积=AB•CD=×8×9=36.一十一.轴对称的性质(共1小题)12.(2022•东莞市一模)如图,在Rt△ABC中,∠ABC=90°,∠ACB=30°,BC=2,△ADC与△ABC关于AC对称,点E、F分别是边DC、BC上的任意一点,且DE=CF,BE、DF相交于点P,则CP的最小值为 .【解答】解:如图1,连接BD,Rt△ABC中,∠ABC=90°,∠ACB=30°,BC=2,∴AB=,AC=,∵△ADC与△ABC关于AC对称,∴BC=DC,∠ACD=∠ACB=30°,∴∠BCD=60°,∴△BDC是等边三角形,∴BD=CD,∠BDC=∠BCD=60°,∵DE=CF,∴△BDE≌△DCF(SAS),∴∠BED=∠DFC,∵∠BED+∠PEC=180°,∴∠PEC+∠DFC=180°,∴∠DCF+∠EPF=∠DCF+∠BPD=180°,∵∠DCF=60°,∴∠BPD=120°,由于点P在运动中保持∠BPD=120°,如图2,∴点P的运动路径为:以A为圆心,AB为半径的120°的弧,连接AC与圆弧的交点即为点P,此时CP的长度最小,∴CP=AC﹣AP=﹣=,则线段CP的最小值为;故答案为:.一十二.相似三角形的性质(共1小题)13.(2022•东莞市校级一模)已知相似△ABC与△DEF的相似比为1:3,若△ABC的面积为2米2,则△DEF的面积为 18米2 .【解答】解:∵相似△ABC与△DEF的相似比为1:3,∴相似△ABC与△DEF的面积比为1:9,∴=,即=,解得S△DEF=18(米2).故答案为:18米2.一十三.特殊角的三角函数值(共1小题)14.(2022•东莞市一模)在△ABC中∠A、∠C均为锐角,且有,则△ABC的形状为 等边三角形 .【解答】解:由题意得,tanB=,sinA=,则∠A=60°,∠B=60°,∠C=180°﹣60°﹣60°=60°.故△ABC为等边三角形.故答案为:等边三角形.一十四.解直角三角形(共1小题)15.(2022•东莞市一模)在Rt△ABC中,∠C=90°,cosA=,AC=2,那么BC= 4 .【解答】解:∵∠C=90°,∴cosA==,∵AC=2,∴AB=6,∴BC===4.故答案为:4.
相关试卷
这是一份广东省东莞市2022年中考数学模拟题精(一模)选分层分类汇编-02填空题(基础题),共22页。试卷主要包含了2022= ,3= 等内容,欢迎下载使用。
这是一份广东省东莞市2022年中考数学模拟题(一模)精选分层分类汇编-06解答题(提升题),共42页。试卷主要包含了,交y轴于点B,两点,与y轴交于点C,顶点为E,,连接AC,BC,如图,已知直线AB等内容,欢迎下载使用。
这是一份广东省东莞市2022年中考数学模拟题(一模)精选分层分类汇编-04解答题(基础题),共36页。试卷主要包含了﹣1,计算,﹣2,﹣1﹣tan45°,其中x=2sin60°,先化简再求值,÷,其中x=4,÷,其中x是方程x2=x的解等内容,欢迎下载使用。
![英语朗读宝](http://img.51jiaoxi.com/images/ed4b79351ae3a39596034d4bbb94b742.jpg)