搜索
    上传资料 赚现金
    英语朗读宝

    湖北省各地区2022年中考数学真题按题型分层分类汇编-05填空题(提升题)

    湖北省各地区2022年中考数学真题按题型分层分类汇编-05填空题(提升题)第1页
    湖北省各地区2022年中考数学真题按题型分层分类汇编-05填空题(提升题)第2页
    湖北省各地区2022年中考数学真题按题型分层分类汇编-05填空题(提升题)第3页
    还剩16页未读, 继续阅读
    下载需要30学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    湖北省各地区2022年中考数学真题按题型分层分类汇编-05填空题(提升题)

    展开

    这是一份湖北省各地区2022年中考数学真题按题型分层分类汇编-05填空题(提升题),共19页。试卷主要包含了两点,且1<m<2,    等内容,欢迎下载使用。
    湖北省各地区2022年中考数学真题按题型分层分类汇编-05填空题(提升题)
    一.反比例函数与一次函数的交点问题(共2小题)
    1.(2022•鄂州)如图,已知直线y=2x与双曲线y=(k为大于零的常数,且x>0)交于点A,若OA=,则k的值为    .

    2.(2022•随州)如图,在平面直角坐标系中,直线y=x+1与x轴,y轴分别交于点A,B,与反比例函数y=的图象在第一象限交于点C,若AB=BC,则k的值为    .

    二.二次函数的性质(共1小题)
    3.(2022•荆门)如图,函数y=的图象由抛物线的一部分和一条射线组成,且与直线y=m(m为常数)相交于三个不同的点A(x1,y1),B(x2,y2),C(x3,y3)(x1<x2<x3).设t=,则t的取值范围是    .

    三.二次函数图象与系数的关系(共1小题)
    4.(2022•武汉)已知抛物线y=ax2+bx+c(a,b,c是常数)开口向下,过A(﹣1,0),B(m,0)两点,且1<m<2.下列四个结论:
    ①b>0;
    ②若m=,则3a+2c<0;
    ③若点M(x1,y1),N(x2,y2)在抛物线上,x1<x2,且x1+x2>1,则y1>y2;
    ④当a≤﹣1时,关于x的一元二次方程ax2+bx+c=1必有两个不相等的实数根.
    其中正确的是    (填写序号).
    四.等边三角形的性质(共1小题)
    5.(2022•鄂州)如图,在边长为6的等边△ABC中,D、E分别为边BC、AC上的点,AD与BE相交于点P,若BD=CE=2,则△ABP的周长为    .

    五.含30度角的直角三角形(共1小题)
    6.(2022•十堰)【阅读材料】如图①,四边形ABCD中,AB=AD,∠B+∠D=180°,点E,F分别在BC,CD上,若∠BAD=2∠EAF,则EF=BE+DF.

    【解决问题】如图②,在某公园的同一水平面上,四条道路围成四边形ABCD.已知CD=CB=100m,∠D=60°,∠ABC=120°,∠BCD=150°,道路AD,AB上分别有景点M,N,且DM=100m,BN=50(﹣1)m,若在M,N之间修一条直路,则路线M→N的长比路线M→A→N的长少    m(结果取整数,参考数据:≈1.7).

    六.矩形的性质(共1小题)
    7.(2022•十堰)“美丽乡村”建设使我市农村住宅旧貌变新颜,如图所示为一农村民居侧面截图,屋坡AF,AG分别架在墙体的点B,C处,且AB=AC,侧面四边形BDEC为矩形.若测得∠FBD=55°,则∠A=   °.

    七.切线的判定(共1小题)
    8.(2022•湖北)如图,点P是⊙O上一点,AB是一条弦,点C是上一点,与点D关于AB对称,AD交⊙O于点E,CE与AB交于点F,且BD∥CE.给出下面四个结论:
    ①CD平分∠BCE;②BE=BD;③AE2=AF•AB;④BD为⊙O的切线.
    其中所有正确结论的序号是    .

    八.三角形的内切圆与内心(共1小题)
    9.(2022•恩施州)如图,在Rt△ABC中,∠C=90°,AC=4,BC=3,⊙O为Rt△ABC的内切圆,则图中阴影部分的面积为(结果保留π)    .

    九.翻折变换(折叠问题)(共1小题)
    10.(2022•十堰)如图,扇形AOB中,∠AOB=90°,OA=2,点C为OB上一点,将扇形AOB沿AC折叠,使点B的对应点B'落在射线AO上,则图中阴影部分的面积为    .

    一十.相似三角形的判定与性质(共1小题)
    11.(2022•随州)如图1,在矩形ABCD中,AB=8,AD=6,E,F分别为AB,AD的中点,连接EF.如图2,将△AEF绕点A逆时针旋转角θ(0°<θ<90°),使EF⊥AD,连接BE并延长交DF于点H.则∠BHD的度数为    ,DH的长为    .


    一十一.解直角三角形的应用(共1小题)
    12.(2022•荆门)如图,一艘海轮位于灯塔P的北偏东45°方向,距离灯塔100海里的A处,它沿正南方向以50海里/小时的速度航行t小时后,到达位于灯塔P的南偏东30°方向上的点B处,则t=   小时.


    湖北省各地区2022年中考数学真题按题型分层分类汇编-04填空题(提升题)
    参考答案与试题解析
    一.反比例函数与一次函数的交点问题(共2小题)
    1.(2022•鄂州)如图,已知直线y=2x与双曲线y=(k为大于零的常数,且x>0)交于点A,若OA=,则k的值为  2 .

    【解答】解:设A(x,y),
    ∵点A在直线y=2x上,且OA=,
    ∴A点坐标为( 1,2),
    ∵点A在双曲线y=(x>0)上,
    ∴2=k,
    故答案为:2.
    2.(2022•随州)如图,在平面直角坐标系中,直线y=x+1与x轴,y轴分别交于点A,B,与反比例函数y=的图象在第一象限交于点C,若AB=BC,则k的值为  2 .

    【解答】解:过点C作CH⊥x轴于点H.

    ∵直线y=x+1与x轴,y轴分别交于点A,B,
    ∴A(﹣1,0),B(0,1),
    ∴OA=OB=1,
    ∵OB∥CH,
    ∴==1,
    ∴OA=OH=1,
    ∴CH=2OB=2,
    ∴C(1,2),
    ∵点C在y=上,
    ∴k=2,
    故答案为:2.
    二.二次函数的性质(共1小题)
    3.(2022•荆门)如图,函数y=的图象由抛物线的一部分和一条射线组成,且与直线y=m(m为常数)相交于三个不同的点A(x1,y1),B(x2,y2),C(x3,y3)(x1<x2<x3).设t=,则t的取值范围是  <t<1 .

    【解答】解:由二次函数y=x2﹣2x+3(x<2)可知:图象开口向上,对称轴为x=1,
    ∴当x=1时函数有最小值为2,x1+x2=2,
    由一次函数y=﹣x+(x≥2)可知当x=2时有最大值3,当y=2时x=,
    ∵直线y=m(m为常数)相交于三个不同的点A(x1,y1),B(x2,y2),C(x3,y3)(x1<x2<x3),
    ∴y1=y2=y3=m,2<m<3,
    ∴2<x3<,
    ∴t==,
    ∴<t<1.
    故答案为:<t<1.
    三.二次函数图象与系数的关系(共1小题)
    4.(2022•武汉)已知抛物线y=ax2+bx+c(a,b,c是常数)开口向下,过A(﹣1,0),B(m,0)两点,且1<m<2.下列四个结论:
    ①b>0;
    ②若m=,则3a+2c<0;
    ③若点M(x1,y1),N(x2,y2)在抛物线上,x1<x2,且x1+x2>1,则y1>y2;
    ④当a≤﹣1时,关于x的一元二次方程ax2+bx+c=1必有两个不相等的实数根.
    其中正确的是  ①③④ (填写序号).
    【解答】解:∵对称轴x=>0,
    ∴对称轴在y轴右侧,
    ∴﹣>0,
    ∵a<0,
    ∴b>0,
    故①正确;
    当m=时,对称轴x=﹣=,
    ∴b=﹣,
    当x=﹣1时,a﹣b+c=0,
    ∴c=0,
    ∴3a+2c=0,故②错误;
    由题意,抛物线的对称轴直线x=h,0<h<0.5,
    ∵点M(x1,y1),N(x2,y2)在抛物线上,x1<x2,且x1+x2>1,
    ∴点M到对称轴的距离<点N到对称轴的距离,
    ∴y1>y2,故③正确;
    设抛物线的解析式为y=a(x+1)(x﹣m),
    方程a(x+1)(x﹣m)=1,
    整理得,ax2+a(1﹣m)x﹣am﹣1=0,
    Δ=[a(1﹣m)]2﹣4a(﹣am﹣1)
    =a2(m+1)2+4a,
    ∵1<m<2,a≤﹣1,
    ∴Δ>0,
    ∴关于x的一元二次方程ax2+bx+c=1必有两个不相等的实数根.故④正确,
    故答案为:①③④.
    四.等边三角形的性质(共1小题)
    5.(2022•鄂州)如图,在边长为6的等边△ABC中,D、E分别为边BC、AC上的点,AD与BE相交于点P,若BD=CE=2,则△ABP的周长为   .

    【解答】解:∵△ABC是等边三角形,
    ∴AB=BC,∠ABD=∠C=60°,
    在△ABD和△BCE中,

    ∴△ABD≌△BCE(SAS),
    ∴∠BAD=∠CBE,
    ∴∠APE=∠ABP+∠BAD=∠ABP+∠CBE=∠ABD=60°,
    ∴∠APB=120°,
    在CB上取一点F使CF=CE=2,则BF=BC﹣CF=4,
    ∴∠C=60°,
    ∴△CEF是等边三角形,
    ∴∠BFE=120°,
    即∠APB=∠BFE,
    ∴△APB∽△BFE,
    ∴==2,
    设BP=x,则AP=2x,
    作BH⊥AD延长线于H,

    ∵∠BPD=∠APE=60°,
    ∴∠PBH=30°,
    ∴PH=,BH=,
    ∴AH=AP+PH=2x+=x,
    在Rt△ABH中,AH2+BH2=AB2,
    即(x)2+(x)2=62,
    解得x=或﹣(舍去),
    ∴AP=,BP=,
    ∴△ABP的周长为AB+AP+BP=6++=6+=,
    故答案为:.
    五.含30度角的直角三角形(共1小题)
    6.(2022•十堰)【阅读材料】如图①,四边形ABCD中,AB=AD,∠B+∠D=180°,点E,F分别在BC,CD上,若∠BAD=2∠EAF,则EF=BE+DF.

    【解决问题】如图②,在某公园的同一水平面上,四条道路围成四边形ABCD.已知CD=CB=100m,∠D=60°,∠ABC=120°,∠BCD=150°,道路AD,AB上分别有景点M,N,且DM=100m,BN=50(﹣1)m,若在M,N之间修一条直路,则路线M→N的长比路线M→A→N的长少  370 m(结果取整数,参考数据:≈1.7).

    【解答】解:解法一:如图,延长DC,AB交于点G,过点N作NH⊥AD于H,

    ∵∠D=60°,∠ABC=120°,∠BCD=150°,
    ∴∠A=360°﹣60°﹣120°﹣150°=30°,
    ∴∠G=90°,
    ∴AD=2DG,
    Rt△CGB中,∠BCG=180°﹣150°=30°,
    ∴BG=BC=50,CG=50,
    ∴DG=CD+CG=100+50,
    ∴AD=2DG=200+100,AG=DG=150+100,
    ∵DM=100,
    ∴AM=AD﹣DM=200+100﹣100=100+100,
    ∵BG=50,BN=50(﹣1),
    ∴AN=AG﹣BG﹣BN=150+100﹣50﹣50(﹣1)=150+50,
    Rt△ANH中,∵∠A=30°,
    ∴NH=AN=75+25,AH=NH=75+75,
    由勾股定理得:MN===50(+1),
    ∴AM+AN﹣MN=100+100+150+50﹣50(+1)=200+100≈370(m).
    答:路线M→N的长比路线M→A→N的长少370m.
    解法二:如图,延长DC,AB交于点G,连接CN,CM,则∠G=90°,

    ∵CD=DM,∠D=60°,
    ∴△BCM是等边三角形,
    ∴∠DCM=60°,
    由解法一可知:CG=50,GN=BG+BN=50+50(﹣1)=50,
    ∴△CGN是等腰直角三角形,
    ∴∠GCN=45°,
    ∴∠BCN=45°﹣30°=15°,
    ∴∠MCN=150°﹣60°﹣15°=75°=∠BCD,
    由【阅读材料】的结论得:MN=DM+BN=100+50(﹣1)=50+50,
    ∵AM+AN﹣MN=100+100+150+50﹣50(+1)=200+100≈370(m).
    答:路线M→N的长比路线M→A→N的长少370m.
    故答案为:370.
    六.矩形的性质(共1小题)
    7.(2022•十堰)“美丽乡村”建设使我市农村住宅旧貌变新颜,如图所示为一农村民居侧面截图,屋坡AF,AG分别架在墙体的点B,C处,且AB=AC,侧面四边形BDEC为矩形.若测得∠FBD=55°,则∠A= 110 °.

    【解答】解:∵四边形BDEC为矩形,
    ∴∠DBC=90°,
    ∵∠FBD=55°,
    ∴∠ABC=180°﹣∠DBC﹣∠FBD=35°,
    ∵AB=AC,
    ∴∠ABC=∠ACB=35°,
    ∴∠A=180°﹣∠ABC﹣∠ACB=110°,
    故答案为:110.
    七.切线的判定(共1小题)
    8.(2022•湖北)如图,点P是⊙O上一点,AB是一条弦,点C是上一点,与点D关于AB对称,AD交⊙O于点E,CE与AB交于点F,且BD∥CE.给出下面四个结论:
    ①CD平分∠BCE;②BE=BD;③AE2=AF•AB;④BD为⊙O的切线.
    其中所有正确结论的序号是  ①②④ .

    【解答】解:∵点C与点D关于AB对称,
    ∴AB是CD的垂直平分线,
    ∴AD=AC,BD=BC,
    ∴∠BCD=∠BDC,
    ∵BD∥CE,
    ∴∠BDC=∠DCE,
    ∴∠DCE=∠BCD,
    ∴CD平分∠BCE;
    故①正确;
    ∵四边形ACBE是⊙O的内接四边形,
    ∴∠ACB+∠AEB=180°,
    ∵∠AEB+∠DEB=180°,
    ∴∠DEB=∠ACB,
    ∵AD=AC,BD=BC,AB=AB,
    ∴△ADB≌△ACB(SSS),
    ∴∠ADB=∠ACB,
    ∴∠DEB=∠ADB,
    ∴BD=BE,
    故②正确;
    ∵AC≠AE,
    ∴≠,
    ∴∠AEF≠∠ABE,
    ∴△AEF与△ABE不相似,
    故③不正确;
    连接OB,交EC于点H,

    ∵BD=BE,BD=BC,
    ∴BE=BC,
    ∴=,
    ∴OB⊥CE,
    ∴∠OHE=90°,
    ∵BD∥CE,
    ∴∠OHE=∠OBD=90°,
    ∵OB是⊙O的半径,
    ∴BD为⊙O的切线,
    故④正确;
    所以给出上面四个结论,其中所有正确结论的序号是:①②④,
    故答案为:①②④.

    八.三角形的内切圆与内心(共1小题)
    9.(2022•恩施州)如图,在Rt△ABC中,∠C=90°,AC=4,BC=3,⊙O为Rt△ABC的内切圆,则图中阴影部分的面积为(结果保留π)  5﹣π .

    【解答】解:作OD⊥AC于点D,作OE⊥CB于点E,作OF⊥AB于点F,连接OA、OC、OB,如图,
    ∵∠C=90°,OD=OE=OF,
    ∴四边形CEOD是正方形,
    ∵AC=4,BC=3,∠C=90°,
    ∴AB===5,
    ∵S△ABC=S△AOC+S△COB+S△BOA,
    ∴=,
    解得OD=OE=OF=1,
    ∴图中阴影部分的面积为:﹣1×1﹣π×12×=5﹣π,
    故答案为:5﹣π.

    九.翻折变换(折叠问题)(共1小题)
    10.(2022•十堰)如图,扇形AOB中,∠AOB=90°,OA=2,点C为OB上一点,将扇形AOB沿AC折叠,使点B的对应点B'落在射线AO上,则图中阴影部分的面积为  π+4﹣4 .

    【解答】解:连接AB,
    ∵∠AOB=90°,OA=2,
    ∴OB=OA=2,
    ∴AB==2,
    设OC=x,则BC=B′C=2﹣x,OB′=2﹣2,
    则x2+(2﹣2)2=(2﹣x)2,
    解得x=2﹣2,
    ∴阴影部分的面积是:=π+4﹣4,
    故答案为:π+4﹣4.

    一十.相似三角形的判定与性质(共1小题)
    11.(2022•随州)如图1,在矩形ABCD中,AB=8,AD=6,E,F分别为AB,AD的中点,连接EF.如图2,将△AEF绕点A逆时针旋转角θ(0°<θ<90°),使EF⊥AD,连接BE并延长交DF于点H.则∠BHD的度数为  90° ,DH的长为   .


    【解答】解:如图,设EF交AD于点J,AD交BH于点O,过点E作EK⊥AB于点K.

    ∵∠EAF=∠BAD=90°,
    ∴∠DAF=∠BAE,
    ∵==,
    ∴=,
    ∴△DAF∽△BAE,
    ∴∠ADF=∠ABE,
    ∵∠DOH=∠AOB,
    ∴∠DHO=∠BAO=90°,
    ∴∠BHD=90°,
    ∵AF=3,AE=4,∠EAF=90°,
    ∴EF==5,
    ∵EF⊥AD,
    ∴•AE•AF=•EF•AJ,
    ∴AJ=,
    ∴EJ===,
    ∵EJ∥AB,
    ∴=,
    ∴=,
    ∴OJ=,
    ∴OA=AJ+OJ=+=4,
    ∴OB===4,OD=AD﹣AO=6﹣4=2,
    ∵cos∠ODH=cos∠ABO,
    ∴=,
    ∴=,
    ∴DH=.
    故答案为:90°,.
    一十一.解直角三角形的应用(共1小题)
    12.(2022•荆门)如图,一艘海轮位于灯塔P的北偏东45°方向,距离灯塔100海里的A处,它沿正南方向以50海里/小时的速度航行t小时后,到达位于灯塔P的南偏东30°方向上的点B处,则t= (1+) 小时.

    【解答】解:如图:

    由题意得:
    ∠PAC=45°,∠PBA=30°,AP=100海里,
    在Rt△APC中,AC=AP•cos45°=100×=50(海里),
    PC=AP•sin45°=100×=50(海里),
    在Rt△BCP中,BC===50(海里),
    ∴AB=AC+BC=(50+50)海里,
    ∴t==(1+)小时,
    故答案为:(1+).


    相关试卷

    江苏省2022年各地区中考数学真题按题型难易度分层分类汇编(14套)-04填空题提升题:

    这是一份江苏省2022年各地区中考数学真题按题型难易度分层分类汇编(14套)-04填空题提升题,共36页。

    黑龙江省各地区2022年中考数学真题按题型分层分类汇编-05填空题(提升题):

    这是一份黑龙江省各地区2022年中考数学真题按题型分层分类汇编-05填空题(提升题),共22页。试卷主要包含了如图,直线l等内容,欢迎下载使用。

    湖北省各地区2022年中考数学真题按题型分层分类汇编-08解答题(提升题):

    这是一份湖北省各地区2022年中考数学真题按题型分层分类汇编-08解答题(提升题),共27页。试卷主要包含了问题提出等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map