初中数学北师大版九年级上册1 菱形的性质与判定课时训练
展开1.如图,在平行四边形ABCD中,两条对角线相交于点O,EF经过O且垂直于AC,分别与边AD、BC交于点F、E.
(1)求证:四边形AECF为菱形;
(2)若AD=3,CD=,且∠ADC=45°,求平行四边形的面积;
(3)在(2)的条件下求菱形AECF的周长.
2.如图,四边形ABCD是平行四边形,E、F是对角线AC上的两点,∠1=∠2.
(1)求证:AE=CF.
(2)若BE=ED时,求证:四边形EBFD是菱形.
3.已知:如图,四边形ABCD是平行四边形,分别以AB、AD为腰作等腰三角形△ABF和等腰三角形△ADE,且顶角∠BAF=∠DAE,连结BD、EF相交于点G,BD与AF相交于点H.
(1)求证:BD=EF;
(2)若∠GHF=∠BFG,求证:四边形ABCD是菱形;
(3)在(2)的条件下,当∠BAF=∠DAE=90°时,连结BE,若BF=4,求△BEF的面积.
4.如图,点E、F分别在▱ABCD的边BC、CD上,BE=DF,∠BAF=∠DAE.求证:▱ABCD是菱形.
5.如图,平行四边形ABCD中,以A为圆心,DA的长为半径画弧,交BA于点F,作∠DAB的角平分线,交CD于点E,连接EF.
(1)求证:四边形AFED是菱形;
(2)若AD=4,∠DAB=60°,求四边形AFED的面积.
6.如图,在四边形ABCD中,AD∥BC,对角线BD垂直平分对角线AC,垂足为点O.
(1)求证:四边形ABCD是菱形;
(2)若∠DBC=30°,BC=2,求四边形ABCD的面积.
7.在▱ABCD中,AE平分∠BAD,O为AE的中点,连接BO并延长,交AD于点F,连接EF,OC.
(1)求证:四边形ABEF是菱形;
(2)若点E为BC的中点,且BC=8,∠ABC=60°,求OC的长.
8.如图,在四边形ABCD中,AB∥DC,AB=AD,对角线AC,BD交于点O,AC平分∠BAD,过点C作CE⊥AB交B的延长线于点E,连接OE.
(1)求证:四边形ABCD是菱形:
(2)若BD=2,求OB的长.
9.如图,在△ABC中,∠ABC=90°,BD为AC的中线,过点C作CE⊥BD于点E,过点A作BD的平行线,交CE的延长线于点F,在AF的延长线上截取FG=BD,连接BG、DF.
(1)求证:BD=DF;
(2)求证:四边形BDFG为菱形;
(3)若AG=13,CF=6,求四边形BDFG的周长.
10.如图,△ABC中,D是AB上一点,DE⊥AC于点E,F是AD的中点,FG⊥BC于点G,与DE交于点H,若FG=AF,AG平分∠CAB,连接GE,GD.
(1)求证:△ECG≌△GHD;
(2)小亮同学经过探究发现:AD=AC+EC.请你帮助小亮同学证明这一结论.
(3)若∠B=30°,判定四边形AEGF是否为菱形,并说明理由.
11.如图,在Rt△ABC中,∠B=90°,AC=40cm,∠A=60°,点D从点C出发沿CA方向以4cm/秒的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(0<t≤10).过点D作DF⊥BC于点F,连接DE,EF.
(1)四边形AEFD能构成菱形吗?如果能,求出相应的t值;如果不能,请说明理由;
(2)当t为何值时,△DEF为直角三角形?请说明理由.
12.如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB边上一点,过点D作DE⊥BC,交直线MN于E,垂足为F,连接CD、BE.
(1)求证:CE=AD;
(2)当D在AB中点时,四边形BECD是什么特殊四边形?说明你的理由.
13.如图,四边形ABCD是平行四边形,对角线AC,BD交于点O,BD=2AB,AE∥BD,OE∥AB.
(1)求证:四边形ABOE是菱形;
(2)若AO=2,S四边形ABOE=4,求BD的长.
14.如图,菱形ABCD的对角线AC,BD相交于点O,点E,F分别是边AB,AD的中点.
(1)请判断△OEF的形状,并证明你的结论;
(2)若AB=13,AC=10,请求出线段EF的长.
15.如图,在菱形ABCD中,AC,BD相交于点O,E为AB的中点,DE⊥AB.
(1)求∠ABC的度数;
(2)如果,求DE的长.
16.如图所示,已知四边形ABCD,ADEF都是菱形,∠BAD=∠FAD,∠BAD为锐角.
(1)求证:AD⊥BF;
(2)若BF=BC,求∠ADC的度数.
17.感知:如图①,在菱形ABCD中,AB=BD,点E、F分别在边AB、AD上.若AE=DF,易知△ADE≌△DBF.
探究:如图②,在菱形ABCD中,AB=BD,点E、F分别在BA、AD的延长线上.若AE=DF,△ADE与△DBF是否全等?如果全等,请证明;如果不全等,请说明理由.
拓展:如图③,在▱ABCD中,AD=BD,点O是AD边的垂直平分线与BD的交点,点E、F分别在OA、AD的延长线上.若AE=DF,∠ADB=50°,∠AFB=32°,求∠ADE的度数.
18.如图,在△ABC中,AC=BC,点D,E,F分别是AB,AC,BC的中点,连接DE,DF.求证:四边形DFCE是菱形.
19.如图,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,点D从点C出发沿CA方向以4cm/秒的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D,E运动的时间是t秒(0<t≤15).过点D作DF⊥BC于点F,连接DE,EF.
(1)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,请说明理由;
(2)当t为何值时,△DEF为直角三角形?请说明理由.
20.如图,菱形ABCD对角线交于点O,BE∥AC,AE∥BD,EO与AB交于点F.
(1)求证:EO=DC;
(2)若菱形ABCD的边长为10,∠EBA=60°,求:菱形ABCD的面积.
参考答案
1.(1)证明:∵EF是对角线AC的垂直平分线,
∴AF=CF,AE=CE,OA=OC,
∴∠EAC=∠ECA,∠FAC=∠FCA,
∵四边形ABCD是平行四边形,
∴AD∥BC,
∴∠EAC=∠FCA,
∴∠FAO=∠ECO,
在△AOF和△COE中,
,
∴△AOF≌△COE(ASA),
∴AF=CE,
∵AF=CF,AE=CE,
∴AE=EC=CF=AF,
∴四边形AECF为菱形;
(2)解:过C作CH⊥AD于H,
则∠CHD=∠CHF=90°,
∵∠ADC=45°,
∴△CDH是等腰直角三角形,
∴CH=DH=CD=1,
∴平行四边形ABCD是面积=AD×CH=3×1=3;
(3)解:∵AD=3,DH=1,
∴AH=2,
∵四边形AECF是菱形,
∴AF=CF,
设AF=CF=x,则FH=2﹣x,
在Rt△CHF中,由勾股定理得:CF2=FH2+CH2,
即x2=(2﹣x)2+12,
解得:x=,
∴AF=CF=,
∴菱形AECF的周长=×4=5.
2.证明:(1)∵四边形ABCD是平行四边形,
∴AD=BC,AD∥BC,
∴∠DAE=∠BCF,
∵∠1=∠2,
∴∠AED=∠CFB,
在△ADE与△CBF中,
,
∴△ADE≌△CBF(AAS),
∴AE=CF;
(2)∵∠1=∠2,
∴DE∥BF.
由(1)知,△ADE≌△CBF,
∴DE=BF,
∴四边形EBFD是平行四边形,
又∵BE=ED,
∴平行四边形EBFD是菱形.
3.(1)证明:∵∠BAF=∠DAE,
∴∠BAF+∠FAD=∠DAE+∠FAD,
即∠BAD=∠FAE,
∵AB=AF,AD=AE,
∴△BAD≌△FAE(SAS),
∴BD=EF.
(2)∵∠GHF=∠BFG,
∴∠GFH=∠GBF,
由(1)可知∠GFH=∠ABD,
∴∠ABD=∠GBF,
∵AD∥BC,
∴∠ADB=∠GBF,
∴∠ABD=∠ADB,
∴AB=AD,
∴四边形ABCD是菱形;
(3)延长EA交BC于M,
∵∠DAE=90°.
∴EM⊥AD,
∵四边形ABCD是菱形,
∴AD∥BC,
∴EM⊥BF,
∵AB=AF,BF=4,
∴BM=FM=2,
∵∠BAF=90°,
∴,
∴,
∴,
∴EM=AE+AM=2+2,
∴==4.
4.证明:∵∠BAF=∠DAE,
∴∠BAE=∠DAF,
∵四边形ABCD是平行四边形,
∴∠ABE=∠ADF,
在△ABE和△ADF中,
,
∴△ABE≌△ADF(AAS),
∴AB=AD,
∴四边形ABCD是菱形.
5.(1)证明:∵四边形ABCD是平行四边形,
∴AB∥CD,
∴∠DEA=∠FAE,
∵AE平分∠BAD,
∴∠DAE=∠FAE,
∴∠DEA=∠DAE
∴AD=ED,
∵AD=AF,
∴DE=AF,
∴四边形AFED是平行四边形,
又∵AD=ED,
∴平行四边形AFED是菱形;
(2)解:过D作DG⊥AF于G,如图所示:
∵∠DAB=60°,
∴∠ADG=90°﹣60°=30°,
∴AG=AD=2,
∴DG===2,
由(1)得:四边形AFED是菱形,
∵AF=AD=4,
∴菱形AFED的面积=AF×DG=4×2=8.
6.证明:(1)∵AD∥BC,
∴∠ADO=∠CBO,
∵对角线BD垂直平分对角线AC,
∴OA=OC,
在△ADO与△BCO中,
,
∴△ADO≌△BCO(AAS),
∴AD=BC,
∴四边形ABCD是平行四边形,
∵BD⊥AC,
∴平行四边形ABCD是菱形;
(2)∵四边形ABCD是菱形,
∴AC⊥BD,
∵∠DBC=30°,BC=2,
∴OC=1,OB=,
∴菱形ABCD的面积=.
7.(1)证明:∵四边形ABCD是平行四边形,
∴AD∥BC,
∴AF∥BE,
∴∠FAO=∠BEO,
∵O为AE的中点,
∴OA=OE,
在△AOF和△EOB中,
,
∴△AOF≌△EOB(ASA),
∴AF=BE,
∴四边形ABEF是平行四边形;
∵AE平分∠BAD,
∴∠FAE=∠BAE,
∵∠FAE=∠AEB,
∴∠BAE=∠AEB,
∴BA=BE,
∴四边形ABEF是菱形;
(2)解:过O作OH⊥BC于H,如图所示:
∵E为BC的中点,且BC=8,
∴BE=CE=4,
∵四边形ABEF是菱形,∠ABC=60°,
∴∠OBH=30°,∠BOE=90°,
∴OE=BE=2,∠EOH=∠OBH=90°﹣∠OEH=30°,
∴EH=OE=1,
∴OH===,CH=EH+CE=5,
∴OC===2.
8.(1)证明:∵AC为∠BAD的平分线,
∴∠CAB=∠DAC,
∵AB∥CD,
∴∠CAB=∠DCA,
∴∠DCA=∠DAC,
∴CD=AD,
∵AB=AD,
∴AB=CD,
∵AB∥CD,
∴四边形ABCD是平行四边形,
又∵AB=AD,
∴平行四边形ABCD是菱形;
(2)解:∵四边形ABCD是菱形,BD=2,
∴OB=OD=BD=1.
9.(1)证明:∵∠ABC=90°,BD为AC的中线,
∴BD=AC,
∵AG∥BD,BD=FG,
∴四边形BGFD是平行四边形,
∵CF⊥BD,
∴CF⊥AG,
又∵点D是AC中点,
∴DF=AC,
∴BD=DF;
(2)证明:∵BD=DF,
∴四边形BGFD是菱形,
(3)解:设GF=x,则AF=13﹣x,AC=2x,
∵在Rt△ACF中,∠CFA=90°,
∴AF2+CF2=AC2,即(13﹣x)2+62=(2x)2,
解得:x=5,
∴四边形BDFG的周长=4GF=20.
10.解:(1)∵AF=FG,
∴∠FAG=∠FGA,
∵AG平分∠CAB,
∴∠CAG=∠FAG,
∴∠CAG=∠FGA,
∴AC∥FG,
∵DE⊥AC,
∴FG⊥DE,
∵FG⊥BC,
∴DE∥BC,
∴AC⊥BC,
∴∠C=∠DHG=90°,∠CGE=∠GED,
∵F是AD的中点,FG∥AE,
∴H是ED的中点,
∴FG是线段ED的垂直平分线,
∴GE=GD,∠GDE=∠GED,
∵DE∥BC,
∴∠CGE=∠GED=∠GDE,
∴△ECG≌△GHD(AAS);
(2)证明:过点G作GP⊥AB于P,
∴GC=GP,而AG=AG,
∴△CAG≌△PAG,
∴AC=AP,
由(1)可得EG=DG,
∴Rt△ECG≌Rt△DPG,
∴EC=PD,
∴AD=AP+PD=AC+EC;
(3)四边形AEGF是菱形,
证明:∵∠B=30°,
∴∠ADE=30°,
∴AE=AD,
∴AE=AF=FG,
由(1)得AE∥FG,
∴四边形AEGF是平行四边形,
∴四边形AEGF是菱形.
11.(1)证明:能.
理由如下:在△DFC中,∠DFC=90°,∠C=30°,DC=4t,
∴DF=2t,
又∵AE=2t,
∴AE=DF,
∵AB⊥BC,DF⊥BC,
∴AE∥DF,
又∵AE=DF,
∴四边形AEFD为平行四边形,
当AE=AD时,四边形AEFD为菱形,
即40﹣4t=2t,解得t=.
∴当t=秒时,四边形AEFD为菱形.
(2)①当∠DEF=90°时,由(1)知四边形AEFD为平行四边形,
∴EF∥AD,
∴∠ADE=∠DEF=90°,
∵∠A=60°,
∴∠AED=30°,
∴AD=AE=t,
又AD=40﹣4t,即40﹣4t=t,解得t=8;
②当∠EDF=90°时,四边形EBFD为矩形,在Rt△AED中∠A=60°,则∠ADE=30°,
∴AD=2AE,即40﹣4t=4t,解得t=5.
③若∠EFD=90°,则E与B重合,D与A重合,此种情况不存在.
综上所述,当t=8或5秒时,△DEF为直角三角形.
12.(1)证明:∵DE⊥BC,
∴∠DFB=90°,
∵∠ACB=90°,
∴∠ACB=∠DFB,
∴AC∥DE,
∵MN∥AB,即CE∥AD,
∴四边形ADEC是平行四边形,
∴CE=AD;
(2)解:四边形BECD是菱形,理由如下:
∵D为AB中点,
∴AD=BD,
∵CE=AD,
∴BD=CE,
∵BD∥CE,
∴四边形BECD是平行四边形,
∵∠ACB=90°,D为AB中点,
∴CD=BD,
∴四边形BECD是菱形.
13.(1)证明:∵四边形ABCD是平行四边形,
∴OB=OD=BD,
∵BD=2AB,
∴AB=OB,
∵AE∥BD,OE∥AB,
∴四边形ABOE是平行四边形,
∵AB=OB,
∴四边形ABOE是菱形;
(2)解:连接BE,交OA于F,如图所示:
∵四边形ABOE是菱形,
∴OA⊥BE,AF=OF=OA=1,BF=EF=BE,
∵S四边形ABOE=4,
S四边形ABOE=OA•BE=×2×BE=BE,
∴BE=4,
∴BF=2,
∴OB===,
∴BD=2OB=2.
14.解:(1)△OEF是等腰三角形,
理由:∵四边形ABCD是菱形,
∴AB=AD,AC⊥BD,
∵点E,F分别是边AB,AD的中点,
∴EO=AB,OF=AD,
∴EO=FO,
∴△OEF是等腰三角形;
(2)∵四边形ABCD是菱形,AC=10,
∴AO=5,∠AOB=90°,
∴BO===12,
∴BD=24,
∵点E,F分别是边AB,AD的中点,
∴EFBD,
∴EF=12.
15.解:(1)∵E为AB的中点,DE⊥AB,
∴AD=DB,
∵四边形ABCD是菱形,
∴AB=AD,
∴AD=DB=AB,
∴△ABD为等边三角形.
∴∠DAB=60°.
∵菱形ABCD的边AD∥BC,
∴∠ABC=180°﹣∠DAB=180°﹣60°=120°,
即∠ABC=120°;
(2)∵四边形ABCD是菱形,
∴BD⊥AC于O,AO=AC=×4=2,
由(1)可知DE和AO都是等边△ABD的高,
∴DE=AO=2.
16.(1)证明:如图,连接DB、DF.
∵四边形ABCD,ADEF都是菱形,
∴AB=BC=CD=DA,AD=DE=EF=FA.
在△BAD与△FAD中,
,
∴△BAD≌△FAD,
∴DB=DF,
∴D在线段BF的垂直平分线上,
∵AB=AF,
∴A在线段BF的垂直平分线上,
∴AD是线段BF的垂直平分线,
∴AD⊥BF;
解法二:∵四边形ABCD,ADEF都是菱形,
∴AB=BC=CD=DA,AD=DE=EF=FA.
∴AB=AF,
∵∠BAD=∠FAD,
∴AD⊥BF(等腰三角形三线合一);
(2)方法1:如图,设AD⊥BF于H,作DG⊥BC于G,则四边形BGDH是矩形,
∴DG=BH=BF.
∵BF=BC,BC=CD,
∴DG=CD.
在直角△CDG中,∵∠CGD=90°,DG=CD,
∴∠C=30°,
∵BC∥AD,
∴∠ADC=180°﹣∠C=150°.
方法2:∵BF=BC,BC=AB=AD=AF,
∴BF=AB=AF,即△ABF是等边三角形.
∵AD⊥BF,
∴∠BAD=30°,
∴∠ADC=180°﹣∠BAD=150°.
17.解:
探究:△ADE和△DBF全等.
∵四边形ABCD是菱形,
∴AB=AD.
∵AB=BD,
∴AB=AD=BD.
∴△ABD为等边三角形.
∴∠DAB=∠ADB=60°.
∴∠EAD=∠FDB=120°.
∵AE=DF,
∴△ADE≌△DBF;
拓展:
∵点O在AD的垂直平分线上,
∴OA=OD.
∴∠DAO=∠ADB=50°.
∴∠EAD=∠FDB.
∵AE=DF,AD=DB,
∴△ADE≌△DBF.
∴∠DEA=∠AFB=32°.
∴∠EDA=18°.
18.证明:∵点D,E,F分别是AB,AC,BC的中点,
∴DE∥CF,DE=BC,DF∥CE,DF=AC,
∴四边形DECF是平行四边形,
∵AC=BC,
∴DE=DF,
∴四边形DFCE是菱形;
19.(1)证明:能.
理由如下:在△DFC中,∠DFC=90°,∠C=30°,DC=4t,
∴DF=2t,
又∵AE=2t,
∴AE=DF,
∵AB⊥BC,DF⊥BC,
∴AE∥DF,
又∵AE=DF,
∴四边形AEFD为平行四边形,
当AE=AD时,四边形AEFD为菱形,
即60﹣4t=2t,解得t=10.
∴当t=10秒时,四边形AEFD为菱形.
(2)①当∠DEF=90°时,由(1)知四边形AEFD为平行四边形,
∴EF∥AD,
∴∠ADE=∠DEF=90°,
∵∠A=60°,
∴∠AED=30°,
∴AD=AE=t,
又AD=60﹣4t,即60﹣4t=t,解得t=12;
②当∠EDF=90°时,四边形EBFD为矩形,在Rt△AED中∠A=60°,则∠ADE=30°,
∴AD=2AE,即60﹣4t=4t,解得t=.
③若∠EFD=90°,则E与B重合,D与A重合,此种情况不存在.
综上所述,当t=或12秒时,△DEF为直角三角形.
20.(1)证明:∵BE∥AC,AE∥BD,
∴四边形AEBO是平行四边形.
又∵菱形ABCD对角线交于点O,
∴AC⊥BD.
即∠AOB=90°
∴四边形AEBO是矩形.
∴EO=AB.
在菱形ABCD中,AB=DC,
∴EO=DC.
(2)解:由(1)知四边形AEBO是矩形.
∴∠EBO=90°.
∵∠EBA=60°,
∴∠ABO=30°.
在Rt△ABO中,AB=10,∠ABO=30°,
∴AO=5,BO=5.
∴BD=10.
∴菱形ABCD的面积=△ABD的面积+△BCD的面积
=2×△ABD的面积
=2××10×5
=50.
【课时训练】北师大版数学九年级上册--1.1 菱形的性质与判定(pdf版,含答案): 这是一份【课时训练】北师大版数学九年级上册--1.1 菱形的性质与判定(pdf版,含答案),文件包含课时训练参考答案全册pdf、11菱形的性质与判定pdf等2份试卷配套教学资源,其中试卷共22页, 欢迎下载使用。
初中数学北师大版九年级上册1 菱形的性质与判定测试题: 这是一份初中数学北师大版九年级上册1 菱形的性质与判定测试题,共6页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
初中数学北师大版九年级上册1 菱形的性质与判定优秀综合训练题: 这是一份初中数学北师大版九年级上册1 菱形的性质与判定优秀综合训练题,共8页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。