所属成套资源:【最新版】 新教材人教A版选择性必修一【学案+同步课件】
人教A版 (2019)选择性必修 第一册2.5 直线与圆、圆与圆的位置课文课件ppt
展开
这是一份人教A版 (2019)选择性必修 第一册2.5 直线与圆、圆与圆的位置课文课件ppt,文件包含252圆与圆的位置关系pptx、252圆与圆的位置关系docx等2份课件配套教学资源,其中PPT共60页, 欢迎下载使用。
1.了解圆与圆的位置关系.
2.掌握圆与圆的位置关系的判断方法.
3.能用圆与圆的位置关系解决一些简单问题.
日食是一种天文现象,在民间称此现象为天狗食日.日食只在月球与太阳呈现合的状态时发生.日食分为日偏食、日全食、日环食、全环食.我们将月亮与太阳抽象为圆,
观察到的这些圆在变化的过程中位置关系是怎样的?
前面我们运用直线的方程、圆的方程研究了直线与圆的位置关系,现在我们类比上述研究方法,运用圆的方程,通过定量计算研究圆与圆的位置关系.
1.代数法:设两圆的一般方程为
则方程组解的个数与两圆的位置关系如下:
2.几何法:若两圆的半径分别为r1,r2,两圆连心线的长为d,则两圆的位置关系如下:
(1)利用代数法判断两圆位置关系时,当方程组无解或一组解时,无法判断两圆的位置关系.(2)在判断两圆的位置关系时,优先使用几何法.
已知圆C1:x2+y2-2ax-2y+a2-15=0(a>0),圆C2:x2+y2-4ax-2y+4a2=0(a>0).试求a为何值时,两圆C1,C2的位置关系为:(1)相切;
圆C1,C2的方程,经配方后可得C1:(x-a)2+(y-1)2=16,C2:(x-2a)2+(y-1)2=1,∴圆心C1(a,1),C2(2a,1),半径r1=4,r2=1.
当|C1C2|=r1+r2=5,即a=5时,两圆外切;当|C1C2|=r1-r2=3,即a=3时,两圆内切.
当30),解得r=3.
(2)当r=1时,求经过圆C1与圆C2的交点且和直线l相切的圆的方程.
10.已知圆C:x2+y2-6x-8y+21=0.(1)若直线l1过定点A(1,1),且与圆C相切,求l1的方程;
圆C:x2+y2-6x-8y+21=0化为标准方程为(x-3)2+(y-4)2=4,所以圆C的圆心为(3,4),半径为2.①若直线l1的斜率不存在,即直线为x=1,符合题意.②若直线l1的斜率存在,设直线l1的方程为y-1=k(x-1).即kx-y-k+1=0.由题意知,圆心(3,4)到已知直线l1的距离等于半径2,
综上,所求l1的方程为x=1和5x-12y+7=0.
(2)若圆D的半径为3,圆心在直线l2:x-y+2=0上,且与圆C外切,求圆D的方程.
依题意,设D(a,a+2).又已知圆C的圆心为(3,4),半径为2,由两圆外切,可知|CD|=5,
解得a=-1或a=6.所以D(-1,1)或D(6,8),所以所求圆D的方程为(x+1)2+(y-1)2=9或(x-6)2+(y-8)2=9.
∵两圆与两坐标轴都相切,且都经过点(4,1),∴两圆圆心均在第一象限且都在直线y=x上.设两圆的圆心分别为(a,a),(b,b),则有(4-a)2+(1-a)2=a2,(4-b)2+(1-b)2=b2,即a,b为方程(4-x)2+(1-x)2=x2的两个根,整理得x2-10x+17=0,∴a+b=10,ab=17.∴(a-b)2=(a+b)2-4ab=100-4×17=32,
对于A,由圆O1:x2+y2-2x=0与圆O2:x2+y2+2x-4y=0的交点为A,B,两式作差可得4x-4y=0,即公共弦AB所在直线方程为x-y=0,故A正确;对于B,圆O1:x2+y2-2x=0的圆心为(1,0),又kAB=1,则线段AB中垂线的斜率为-1,即线段AB中垂线的方程为y-0=-1×(x-1),整理可得x+y-1=0,故B正确;
13.如果圆C:(x-a)2+(y-a)2=8上总存在两个点到原点的距离均为 ,则实数a的取值范围是A.(-3,-1)∪(1,3)B.(-3,3)C.[-1,1]D.(-3,-1]∪[1,3)
转化为圆C1:x2+y2=2与圆C:(x-a)2+(y-a)2=8有两个交点,
解得实数a的取值范围是(-3,-1)∪(1,3).
14.过两圆x2+y2-2y-4=0与x2+y2-4x+2y=0的交点,且圆心在直线l:2x+4y-1=0上的圆的方程是_____________________.
x2+y2-3x+y-1=0
设所求圆的方程为x2+y2-4x+2y+λ(x2+y2-2y-4)=0(λ≠-1),则(1+λ)x2+(1+λ)y2-4x+(2-2λ)y-4λ=0,
所以所求圆的方程为x2+y2-3x+y-1=0.
15.在平面直角坐标系Oxy中,圆C:x2-2ax+y2-2ay+2a2-1=0上存
在点P到点(0,1)的距离为2,则实数a的取值范围是________________
______________.
因为圆C:x2-2ax+y2-2ay+2a2-1=0,所以(x-a)2+(y-a)2=1,其圆心C(a,a),半径r=1.因为点P到点(0,1)的距离为2,所以P点的轨迹为x2+(y-1)2=4.因为P又在(x-a)2+(y-a)2=1上,所以圆C与圆x2+(y-1)2=4有交点,
相关课件
这是一份新教材人教A版步步高学习笔记【学案+同步课件】模块综合试卷,文件包含模块综合试卷pptx、模块综合试卷docx等2份课件配套教学资源,其中PPT共60页, 欢迎下载使用。
这是一份人教A版 (2019)必修 第一册5.1 任意角和弧度制图片ppt课件,文件包含511任意角pptx、511任意角docx等2份课件配套教学资源,其中PPT共60页, 欢迎下载使用。
这是一份数学必修 第一册5.6 函数 y=Asin( ωx + φ)教案配套ppt课件,文件包含443不同函数增长的差异pptx、443不同函数增长的差异docx等2份课件配套教学资源,其中PPT共60页, 欢迎下载使用。