搜索
    上传资料 赚现金
    新教材人教A版步步高学习笔记【学案+同步课件】模块综合试卷
    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 课件
      模块综合试卷.pptx
    • 练习
      模块综合试卷.docx
    新教材人教A版步步高学习笔记【学案+同步课件】模块综合试卷01
    新教材人教A版步步高学习笔记【学案+同步课件】模块综合试卷02
    新教材人教A版步步高学习笔记【学案+同步课件】模块综合试卷03
    新教材人教A版步步高学习笔记【学案+同步课件】模块综合试卷04
    新教材人教A版步步高学习笔记【学案+同步课件】模块综合试卷05
    新教材人教A版步步高学习笔记【学案+同步课件】模块综合试卷06
    新教材人教A版步步高学习笔记【学案+同步课件】模块综合试卷07
    新教材人教A版步步高学习笔记【学案+同步课件】模块综合试卷08
    新教材人教A版步步高学习笔记【学案+同步课件】模块综合试卷01
    新教材人教A版步步高学习笔记【学案+同步课件】模块综合试卷02
    新教材人教A版步步高学习笔记【学案+同步课件】模块综合试卷03
    还剩52页未读, 继续阅读
    下载需要5学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    新教材人教A版步步高学习笔记【学案+同步课件】模块综合试卷

    展开
    这是一份新教材人教A版步步高学习笔记【学案+同步课件】模块综合试卷,文件包含模块综合试卷pptx、模块综合试卷docx等2份课件配套教学资源,其中PPT共60页, 欢迎下载使用。


    模块综合试卷
    (时间:120分钟 满分:150分)
    一、单项选择题(本大题共8小题,每小题5分,共40分)1.直线l过点(-3,0),且与直线y=2x-3垂直,则直线l的方程为
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22

    因为直线y=2x-3的斜率为2,
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    又直线l过点(-3,0),
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    抛物线y2=-4x的焦点坐标为(-1,0),∴椭圆的一个焦点坐标为(-1,0),∴c=1,
    16
    17
    18
    19
    20
    21
    22
    3.已知圆C与直线y=-x及x+y-4=0相切,圆心在直线y=x上,则圆C的方程为A.(x-1)2+(y-1)2=2B.(x-1)2+(y+1)2=2C.(x+1)2+(y-1)2=4D.(x+1)2+(y+1)2=4
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    圆心在y=x上,设圆心坐标为(a,a),∵圆C与直线y=-x及x+y-4=0都相切,∴圆心到两直线y=-x及x+y-4=0的距离相等,
    ∴圆C的标准方程为(x-1)2+(y-1)2=2.
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    5.过点P(-2,4)作圆C:(x-2)2+(y-1)2=25的切线l,直线m:ax-3y=0与切线l平行,则切线l与直线m间的距离为
    16
    17
    18
    19
    20
    21
    22

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    根据题意,知点P在圆C上,
    16
    17
    18
    19
    20
    21
    22
    又直线m与切线l平行,∴直线m的方程为4x-3y=0.
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    设A(x1,y1),B(x2,y2),
    因为AB的中点坐标为(2,-1),所以x1+x2=4,y1+y2=-2,
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    7.在长方体ABCD-A1B1C1D1中,AB=1,AD=2,AA1=5,P是棱DD1上的动点,则当△PA1C的面积最小时,DP等于A.1 B.2 C. D.4

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    根据题意,以A为坐标原点,以AB,AD,AA1所在直线为x,y,z轴建立空间直角坐标系,如图所示,设DP=x(0≤x≤5),故可得P(0,2,x),A1(0,0,5),C(1,2,0),
    16
    17
    18
    19
    20
    21
    22
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    当且仅当x=1时,△PA1C的面积最小.故满足题意时,DP=1.
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    8.如图,F1,F2分别是双曲线C的左、右焦点,过F1的直线与双曲线C的左、右两支分别交于A,B两点,若△ABF2为等边三角形,则该双曲线的离心率为

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    根据双曲线的定义,可得|BF1|-|BF2|=2a,∵△ABF2是等边三角形,即|BF2|=|AB|,∴|BF1|-|BF2|=2a,即|BF1|-|AB|=|AF1|=2a,又|AF2|-|AF1|=2a,∴|AF2|=|AF1|+2a=4a.∵在△AF1F2中,|AF1|=2a,|AF2|=4a,∠F1AF2=120°,∴|F1F2|2=|AF1|2+|AF2|2-2|AF1|·|AF2|·cos 120°,
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    二、多项选择题(本大题共4小题,每小题5分,共20分,全部选对的得5分,部分选对的得2分,有选错的得0分)9.若圆C:x2+y2-2x+4y-20=0上有四个不同的点到直线l:4x+3y+c=0的距离为2,则c的取值可能是A.-13 B.13 C.15 D.18
    16
    17
    18
    19
    20
    21
    22


    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    圆C:x2+y2-2x+4y-20=0化为(x-1)2+(y+2)2=25,则圆心C(1,-2),半径r=5,若圆C:x2+y2-2x+4y-20=0上有四个不同的点到直线l:4x+3y+c=0的距离为2,则圆心C(1,-2)到直线l的距离d<3,如图.
    ∴-131
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22


    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    由|PF1|>|PF2|,知△PF1F2不可能为等边三角形,故D正确.
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    11.设抛物线C:y2=2px(p>0)的焦点为F,准线为l,A为C上一点,以F为圆心,|FA|为半径的圆交l于B,D两点,若∠ABD=90°,且△ABF的面积为 ,则A.|BF|=3B.△ABF是等边三角形C.点F到准线的距离为3D.抛物线C的方程为y2=6x



    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    由题意,得以F为圆心,|FA|为半径的圆交l于B,D两点,且∠ABD=90°,由抛物线定义,可得|AB|=|AF|=|BF|,∴△ABF是等边三角形,∴∠FBD=30°,
    又焦点F到准线的距离为p=|BF|sin 30°=3,则抛物线方程为y2=6x,则BCD正确,A错误.
    12.如图,在四棱锥P-ABCD中,底面为直角梯形,AD∥BC,∠BAD=90°,PA⊥底面ABCD,且PA=AD=AB=2BC,M,N分别为PC,PB的中点.则A.CD⊥ANB.BD⊥PCC.PB⊥平面ANMDD.BD与平面ANMD所成的角为30°
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22


    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    以A为坐标原点,AB,AD,AP所在直线分别为x,y,z轴建立空间直角坐标系(图略),设BC=1,则A(0,0,0),B(2,0,0),C(2,1,0),D(0,2,0),P(0,0,2),
    设平面ANMD的法向量为n=(x,y,z),
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    令x=1,得n=(1,0,-1).
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    ∴BD与平面ANMD所成的角为30°,∴D正确.
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    三、填空题(本大题共4小题,每小题5分,共20分)13.直线l到其平行直线x-2y+4=0的距离和原点到直线l的距离相等,则直线l的方程是______________.
    16
    17
    18
    19
    20
    21
    22
    x-2y+2=0
    根据题意,设所求直线l的方程为x-2y+C=0(C≠4),
    解得C=2,故直线l的方程为x-2y+2=0.
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    2
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    ∴M为AB的中点.过点B作BP⊥准线l于点P,则∠ABP=60°,∴∠BAP=30°.
    ∴p=2.
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    15.在正四棱锥S-ABCD中,O为顶点S在底面上的射影,P为侧棱SD的中点,且SO=OD,则直线BC与平面PAC所成的角的大小是________.
    30°
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    如图,以O为原点建立空间直角坐标系Oxyz.设OD=OS=OA=OB=OC=a,
    设平面PAC的法向量为n=(x,y,z),
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    ∴直线BC与平面PAC所成的角为30°.
    16.直线mx+y-2=0(m∈R)与圆C:x2+y2-2y-1=0相交于A,B两点,弦长|AB|的最小值为____,若△ABC的面积为 ,则m的值为______.
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    ±1
    2
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    即弦长|AB|的最小值为2.
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    设弦AB的中点为N,
    四、解答题(本大题共6小题,共70分)17.(10分)已知方程(2+λ)x-(1+λ)y-2(3+2λ)=0与点P(-2,2).证明:(1)对任意的实数λ,该方程都表示直线,且这些直线都经过同一定点,并求出这一定点的坐标;
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    显然2+λ与-(1+λ)不可能同时为零,故对任意的实数λ,该方程都表示直线.∵方程可变形为2x-y-6+λ(x-y-4)=0,
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    故直线经过定点M(2,-2).
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    过P作直线的垂线段PQ(图略),由垂线段小于斜线段知|PQ|≤|PM|,当且仅当Q与M重合时,|PQ|=|PM|,此时对应的直线方程是y+2=x-2,即x-y-4=0.但直线系方程不能表示直线x-y-4=0,
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    ∵焦点F的坐标为(1,0),∴c=1.
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    设A(x1,y1),B(x2,y2).
    得(2k2+1)x2+8k2x+8k2-2=0,
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    19.(12分)如图,在四棱锥P-ABCD中,底面ABCD为正方形,PA⊥底面ABCD,PA=AB,E为线段PB的中点.(1)求证:点F在线段BC上移动时,△AEF为直角三角形;
    ∵PA=AB,E为线段PB的中点,∴AE⊥PB.∵PA⊥底面ABCD,BC⊂平面ABCD,∴PA⊥BC.∵底面ABCD为正方形,∴BC⊥AB.又PA∩AB=A,PA,AB⊂平面PAB,∴BC⊥平面PAB.
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    ∵AE⊂平面PAB,∴BC⊥AE.∵PB∩BC=B,PB,BC⊂平面PBC,∴AE⊥平面PBC.∵EF⊂平面PBC,∴AE⊥EF,∴点F在线段BC上移动时,△AEF为直角三角形.
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    (2)若F为线段BC的中点,求平面AEF与平面EFD夹角的余弦值.
    如图,以AB,AD,AP所在直线分别为x,y,z轴建立空间直角坐标系,连接DF,令PA=2,则A(0,0,0),B(2,0,0),E(1,0,1),F(2,1,0),D(0,2,0),
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    设平面AEF的法向量为m=(x,y,z),
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    设平面DEF的法向量为n=(a,b,c),
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    20.(12分)如图,已知以点A(-1,2)为圆心的圆与直线l1:x+2y+7=0相切.过点B(-2,0)的动直线l与圆A交于M,N两点.(1)求圆A的方程;
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    设圆A的半径为r.∵圆A与直线l:x+2y+7=0相切,
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    ∴圆A的方程为(x+1)2+(y-2)2=20.
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    ①当直线l与x轴垂直时,直线l的方程为x=-2,
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    ②当直线l与x轴不垂直时,设直线l的方程为y=k(x+2),即kx-y+2k=0.取MN的中点Q,连接AQ,则AQ⊥MN.
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    ∴直线l的方程为3x-4y+6=0.综上,直线l的方程为x=-2或3x-4y+6=0.
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    (1)求证:A1D⊥平面BCED;
    由已知可得AE=2,AD=1,∠A=60°.
    故AD2+DE2=AE2,∴A1D⊥DE,BD⊥DE.∴∠A1DB为二面角A1-DE-B的平面角.又二面角A1-DE-B为直二面角,∴∠A1DB=90°,即A1D⊥DB.
    ∵DE∩DB=D,且DE,DB⊂平面BCED,∴A1D⊥平面BCED.
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    (2)在线段BC上是否存在点P,使直线PA1与平面A1BD所成的角为60°?若存在,求出PB的长;若不存在,请说明理由.
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    存在.由(1)知ED⊥DB,A1D⊥平面BCED,以D为坐标原点,以射线DB,DE,DA1分别为x轴,y轴,z轴的正半轴建立空间直角坐标系,如图,假设存在点P,过P作PH∥DE交BD于点H,设PB=2a(0≤2a≤3),
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    ∵DE⊥平面A1BD,
    ∵直线PA1与平面A1BD所成的角为60°,
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    ∴2a=|PF1|+|PF2|=4,a=2.
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    (2)设椭圆C的左、右顶点分别为A,B,过点Q(1,0)的动直线l与椭圆C相交于M,N两点,直线AN与直线x=4的交点为R,求证:点R总在直线BM上.
    由题意知A(-2,0),B(2,0).
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    ∴点R在直线BM上.②当直线l不与x轴垂直时,设直线l的方程为y=k(x-1),M(x1,y1),N(x2,y2),R(4,y0),
    得(1+4k2)x2-8k2x+4k2-4=0,
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    需证明B,M,R共线,
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    ∴B,M,R共线,即点R总在直线BM上.
    相关课件

    新教材人教B版步步高学习笔记【同步课件】模块综合试卷(二): 这是一份新教材人教B版步步高学习笔记【同步课件】模块综合试卷(二),共60页。

    新教材人教B版步步高学习笔记【同步课件】模块综合试卷(一): 这是一份新教材人教B版步步高学习笔记【同步课件】模块综合试卷(一),共60页。

    新教材人教A版步步高学习笔记【学案+同步课件】综合检测试卷: 这是一份新教材人教A版步步高学习笔记【学案+同步课件】综合检测试卷,文件包含综合检测试卷pptx、综合检测试卷docx等2份课件配套教学资源,其中PPT共54页, 欢迎下载使用。

    • 精品推荐
    • 所属专辑
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        新教材人教A版步步高学习笔记【学案+同步课件】模块综合试卷
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map