|课件下载
终身会员
搜索
    上传资料 赚现金
    新教材人教A版步步高学习笔记【学案+同步课件】2.2.2 直线的两点式方程
    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 课件
      2.2.2 直线的两点式方程.pptx
    • 2.2.2 直线的两点式方程.docx
    新教材人教A版步步高学习笔记【学案+同步课件】2.2.2 直线的两点式方程01
    新教材人教A版步步高学习笔记【学案+同步课件】2.2.2 直线的两点式方程02
    新教材人教A版步步高学习笔记【学案+同步课件】2.2.2 直线的两点式方程03
    新教材人教A版步步高学习笔记【学案+同步课件】2.2.2 直线的两点式方程04
    新教材人教A版步步高学习笔记【学案+同步课件】2.2.2 直线的两点式方程05
    新教材人教A版步步高学习笔记【学案+同步课件】2.2.2 直线的两点式方程06
    新教材人教A版步步高学习笔记【学案+同步课件】2.2.2 直线的两点式方程07
    新教材人教A版步步高学习笔记【学案+同步课件】2.2.2 直线的两点式方程08
    新教材人教A版步步高学习笔记【学案+同步课件】2.2.2 直线的两点式方程01
    新教材人教A版步步高学习笔记【学案+同步课件】2.2.2 直线的两点式方程02
    新教材人教A版步步高学习笔记【学案+同步课件】2.2.2 直线的两点式方程03
    还剩49页未读, 继续阅读
    下载需要5学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    选择性必修 第一册2.2 直线的方程集体备课课件ppt

    展开
    这是一份选择性必修 第一册2.2 直线的方程集体备课课件ppt,文件包含222直线的两点式方程pptx、222直线的两点式方程docx等2份课件配套教学资源,其中PPT共57页, 欢迎下载使用。

    1.根据确定直线位置的几何要素,探索并掌握直线的两点式方程.
    2.了解直线的截距式方程的形式特征及适用范围.
    斜拉桥又称斜张桥,桥身简约刚毅,力感十足.若以桥面所在直线为x轴,桥塔所在直线为y轴建立平面直角坐标系,那么斜拉索可看成过桥塔上一点与桥面上一点的直线.怎样表示直线的方程呢?
    问题1 我们知道已知两点也可以确定一条直线,在平面直角坐标系中,给定一个点P0(x0,y0)和斜率k,可得出直线方程.若给定直线上两点P1(x1,y1),P2(x2,y2)(x1≠x2,y1≠y2),你能否得出直线的方程呢?
    经过两点P1(x1,y1),P2(x2,y2)(其中x1≠x2,y1≠y2)的直线方程 ,我们把它叫做直线的两点式方程,简称 .
    (1)当经过两点(x1,y1),(x2,y2)的直线斜率不存在(x1=x2)或斜率为0(y1=y2)时,不能用两点式方程表示.(2)两点式方程与这两个点的顺序无关.(3)方程中等号两边表达式中分子之比等于分母之比,也就是同一条直线的斜率相等.
    已知A(-3,2),B(5,-4),C(0,-2),在△ABC中:(1)求BC边所在的直线方程;
    BC边过两点B(5,-4),C(0,-2),
    故BC边所在的直线方程为2x+5y+10=0.
    (2)求BC边上的中线所在直线的方程.
    设BC的中点为M(a,b),
    又BC边的中线过点A(-3,2),
    所以BC边上的中线所在直线的方程为10x+11y+8=0.
    延伸探究 若本例条件不变,试求BC边的垂直平分线所在的直线方程.
    即10x-4y-37=0.
    利用两点式求直线的方程首先要判断是否满足两点式方程的适用条件.若满足即可考虑用两点式求方程.在斜率存在的情况下,也可以先应用斜率公式求出斜率,再用点斜式写方程.
    (1)过点A(-2,1),B(3,-3)的直线方程为_____________.
    因为直线过点(-2,1)和(3,-3),
    化简得4x+5y+3=0.
    (2)已知直线经过点A(1,0),B(m,1),求这条直线的方程.
    由直线经过点A(1,0),B(m,1),因此该直线斜率不可能为零,但有可能不存在.(1)当直线斜率不存在,即m=1时,直线方程为x=1;
    即x-(m-1)y-1=0.综上可得,当m=1时,直线方程为x=1;当m≠1时,直线方程为x-(m-1)y-1=0.
    问题2 若给定直线上两点A(a,0),B(0,b)(a≠0,b≠0),你能否得出直线的方程呢?
    我们把方程 叫做直线的截距式方程,简称截距式.直线与x轴的交点(a,0)的横坐标a叫做直线 ,此时直线在y轴上的截距是 .
    (1)如果已知直线在两坐标轴上的截距,可以直接代入截距式求直线的方程.(2)将直线的方程化为截距式后,可以观察出直线在x轴和y轴上的截距,这一点常被用来作图.(3)与坐标轴平行和过原点的直线都不能用截距式表示.(4)过原点的直线的横、纵截距都为零.
    求过点A(3,4),且在两坐标轴上的截距互为相反数的直线l的方程.
    (2)当直线l在两坐标轴上的截距互为相反数且为0时,即直线l过原点时,设直线l的方程为y=kx,因为l过点(3,4),所以4=k·3,解得k= ,直线l的方程为y= x,即4x-3y=0.综上,直线l的方程为x-y+1=0或4x-3y=0.
    延伸探究  1.若将点A的坐标改为“A(-3,-4)”,其他条件不变,又如何求解?
    (1)当直线l在两坐标轴上的截距互为相反数且不为0时,
    (2)当直线l过原点时,设直线l的方程为y=kx,由于l过点(-3,-4),所以-4=k·(-3),解得k= .所以直线l的方程为4x-3y=0.综上,直线l的方程为x-y-1=0或4x-3y=0.
    2.若将本例中“截距互为相反数”改为“截距相等”呢?
    所以直线l的方程为x+y-7=0.
    (2)当截距为0时,设直线l的方程为y=kx,
    综上,直线l的方程为x+y-7=0或4x-3y=0.
    截距式方程应用的注意事项(1)如果问题中涉及直线与坐标轴相交,则可考虑选用截距式方程,用待定系数法确定其系数即可.(2)选用截距式方程时,必须首先考虑直线能否过原点以及能否与两坐标轴垂直.(3)要注意截距式方程的逆向应用.
    求过点P(6,-2),且在x轴上的截距比在y轴上的截距大1的直线方程.
    即2x+3y-6=0或x+2y-2=0.
    1.知识清单: (1)直线的两点式方程. (2)直线的截距式方程.2.方法归纳:分类讨论法、数形结合法.3.常见误区:利用截距式求直线方程时忽略过原点的情况导致漏解.
    1.在x轴、y轴上的截距分别是-3,4的直线方程是
    2.过点(1,2),(5,3)的直线方程是
    ∵所求直线过点(1,2),(5,3),
    3.过点P(1,2)且在两坐标轴上截距的和为0的直线方程为______________________.
    当直线过原点即在坐标轴上的截距均为零时,得直线方程为2x-y=0;当在坐标轴上的截距不为零时,
    将x=1,y=2代入方程可得a=-1,得直线方程为x-y+1=0.∴直线方程为2x-y=0或x-y+1=0.
    4.已知点A(3,2),B(-1,4),则经过点C(2,5)且经过线段AB的中点的直线方程为____________.
    线段AB的中点坐标为(1,3),
    1.过两点(-2,1)和(1,4)的直线方程为A.y=x+3 B.y=-x+1C.y=x+2 D.y=-x-2
    2.已知直线l:ax+y-2=0在x轴和y轴上的截距相等,则实数a的值是A.1 B.-1C.-2或-1 D.-2或1
    ∵直线l:ax+y-2=0在x轴和y轴上的截距相等,
    3.若直线 =1过第一、二、三象限,则A.a>0,b>0 B.a>0,b<0C.a<0,b>0 D.a<0,b<0
    因为直线l在x轴上的截距为a,在y轴上的截距为b,且经过第一、二、三象限,故a<0,b>0.
    4.经过点A(2,5),B(-3,6)的直线在x轴上的截距为A.2 B.-3C.-27 D.27
    5.已知△ABC的顶点坐标分别为A(1,2),B(3,6),C(5,2),M为AB的中点,N为AC的中点,则中位线MN所在的直线方程为A.2x+y-8=0 B.2x-y+8=0C.2x+y-12=0 D.2x-y-12=0
    由中点坐标公式可得M(2,4),N(3,2),
    依题意知,a=2,P(0,5).设A(x0,2x0),B(-2y0,y0),
    所以A(4,8),B(-4,2),
    7.已知点P(x,2)在过M(-2,1)和N(3,-4)两点的直线上,则x的值是___.
    又P(x,2)在此直线上,所以当y=2时,x=-3.
    8.若直线l与直线y=1,x=7分别交于点P,Q,且线段PQ的中点坐标为(1,-1),则直线l的方程为____________.
    9.已知直线l过点P(4,1).(1)若直线l过点Q(-1,6),求直线l的方程;
    ∵直线l过点P(4,1),Q(-1,6),
    (2)若直线l在y轴上的截距是在x轴上的截距的2倍,求直线l的方程.
    综上,直线l的方程为x-4y=0或2x+y-9=0.
    10.已知△ABC的三个顶点分别为A(0,4),B(-2,6),C(-8,0).(1)求边AC和AB所在直线的方程;
    由截距式,得边AC所在直线的方程为
    (2)求AC边上的中线BD所在直线的方程.
    由题意,得点D的坐标为(-4,2),
    即2x-y+10=0.
    11.(多选)过点A(4,1)且在两坐标轴上截距相等的直线方程为A.x+y=5B.x-y=5C.x-4y=0D.x+4y=0
    把(4,1)代入,解得a=5,所以直线方程为x+y=5.综上可知,直线方程为x+y=5或x-4y=0.
    12.已知△ABC的三个顶点分别为A(2,8),B(-4,0),C(6,0),则过点B将△ABC的面积平分的直线方程为A.2x-y+4=0 B.x+2y+4=0C.2x+y-4=0 D.x-2y+4=0
    由A(2,8),C(6,0),得AC的中点坐标为D(4,4),则过点B将△ABC的面积平分的直线过点D(4,4),则所求直线方程为 ,即x-2y+4=0.
    14.过点A(3,-1)且在两坐标轴上截距的绝对值相等的直线有__条,方程为________________________________.
    x+3y=0,x+y-2=0,x-y-4=0
    15.已知A(3,0),B(0,4),直线AB上一动点P(x,y),则xy的最大值是___.
    16.若直线l与两坐标轴围成一个等腰直角三角形,且此三角形的面积为18,求直线l的方程.
    ∵直线l与两坐标轴围成一个等腰直角三角形,∴直线l在两坐标轴上的截距相等或互为相反数且不为0.若l在两坐标轴上的截距相等,且设为a(a≠0),
    ∴a=±6,∴直线l的方程为x+y±6=0.
    相关课件

    高中人教B版 (2019)2.6.1 双曲线的标准方程背景图ppt课件: 这是一份高中人教B版 (2019)2.6.1 双曲线的标准方程背景图ppt课件,共60页。PPT课件主要包含了直线的方程的概念,知识梳理,Fxy=0,反思感悟,直线的点斜式方程,点斜式方程,注意点,y=2,x=-1,直线的斜截式方程等内容,欢迎下载使用。

    人教B版 (2019)选择性必修 第一册2.2.2 直线的方程背景图ppt课件: 这是一份人教B版 (2019)选择性必修 第一册2.2.2 直线的方程背景图ppt课件,共60页。PPT课件主要包含了直线的两点式方程,知识梳理,两点式,注意点,反思感悟,直线的截距式方程,在x轴上的截距,解得a=1,随堂演练,y=2x或y=x+1等内容,欢迎下载使用。

    人教B版 (2019)选择性必修 第一册2.2.2 直线的方程授课课件ppt: 这是一份人教B版 (2019)选择性必修 第一册2.2.2 直线的方程授课课件ppt,共60页。PPT课件主要包含了直线的一般式方程,知识梳理,一般式方程,y=kx+b,Ax+By+C=0,注意点,即2x+y-3=0,即x+3y+3=0,y-2=0,反思感悟等内容,欢迎下载使用。

    • 精品推荐
    • 所属专辑
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        新教材人教A版步步高学习笔记【学案+同步课件】2.2.2 直线的两点式方程
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map