终身会员
搜索
    上传资料 赚现金
    新教材人教B版步步高学习笔记【同步课件】第二章 2.2.2 第3课时 直线的一般式方程
    立即下载
    加入资料篮
    新教材人教B版步步高学习笔记【同步课件】第二章 2.2.2 第3课时 直线的一般式方程01
    新教材人教B版步步高学习笔记【同步课件】第二章 2.2.2 第3课时 直线的一般式方程02
    新教材人教B版步步高学习笔记【同步课件】第二章 2.2.2 第3课时 直线的一般式方程03
    新教材人教B版步步高学习笔记【同步课件】第二章 2.2.2 第3课时 直线的一般式方程04
    新教材人教B版步步高学习笔记【同步课件】第二章 2.2.2 第3课时 直线的一般式方程05
    新教材人教B版步步高学习笔记【同步课件】第二章 2.2.2 第3课时 直线的一般式方程06
    新教材人教B版步步高学习笔记【同步课件】第二章 2.2.2 第3课时 直线的一般式方程07
    新教材人教B版步步高学习笔记【同步课件】第二章 2.2.2 第3课时 直线的一般式方程08
    还剩52页未读, 继续阅读
    下载需要15学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    人教B版 (2019)选择性必修 第一册2.2.2 直线的方程授课课件ppt

    展开
    这是一份人教B版 (2019)选择性必修 第一册2.2.2 直线的方程授课课件ppt,共60页。PPT课件主要包含了直线的一般式方程,知识梳理,一般式方程,y=kx+b,Ax+By+C=0,注意点,即2x+y-3=0,即x+3y+3=0,y-2=0,反思感悟等内容,欢迎下载使用。

    1.理解直线的一般式方程的特点,以及与其他方程形式的区别与联系.
    2.掌握直线的一般式方程与其他方程形式之间的相互转化,进一步掌握求直线方程的方法.
      同学们,前面我们学习了直线的点斜式、斜截式、两点式、截距式方程,我们知道每一种形式都有它的适用范围,而且发现它们都是二元一次方程,我们今天要研究的是能否用统一的一个方程来表示上述四种形式.
    问题1 直线y=2x+1可以化成二元一次方程吗?方程2x-y+3=0表示一条直线吗?
    提示 y=2x+1可以化成2x-y+1=0的形式,可以化为二元一次方程.2x-y+3=0可以化为y=2x+3,可以表示直线.
    1.直线的一般式方程关于x,y的二元一次方程Ax+By+C=0(A,B不能同时为0,即A2+B2≠0)表示直线的方程.我们把Ax+By+C=0称为直线的      .(1)A,B不能同时为0,即A2+B2≠0.(2)直线的一般式方程能表示所有的直线方程,在求直线方程时,最后结果一般都化成      .
    2.直线方程五种形式的比较
    y-y1=k(x-x1)
    不垂直于x,y轴的直线
    (1)直线一般式方程的结构特征①方程是关于x,y的二元一次方程.②方程中等号的左侧自左向右一般按x,y,常数的先后顺序排列.③x的系数一般不为分数和负数.④虽然直线方程的一般式有三个参数,但只需两个独立的条件即可求得直线的方程.
    (2)当直线方程Ax+By+C=0的系数A,B,C满足下列条件时,直线Ax+By+C=0有如下性质:①当A≠0,B≠0时,直线与两条坐标轴都相交;②当A≠0,B=0,C≠0时,直线只与x轴相交,即直线与y轴平行,与x轴垂直;③当A=0,B≠0,C≠0时,直线只与y轴相交,即直线与x轴平行,与y轴垂直;④当A=0,B≠0,C=0时,直线与x轴重合;⑤当A≠0,B=0,C=0时,直线与y轴重合.
    根据下列条件分别写出直线的方程,并化为一般式方程:
    (2)经过A(-1,5),B(2,-1)两点;
    (3)在x轴、y轴上的截距分别为-3,-1;
    (4)经过点B(4,2),且平行于x轴.
    求直线一般式方程的策略在求直线方程时,设一般式方程有时并不简单,常用的还是根据给定条件选出四种特殊形式之一求方程,然后转化为一般式.
    根据下列各条件写出直线的方程,并化成一般式:
    (3)经过点P1(3,-2),P2(5,-4).
    直线的法向量与一般式方程的关系
    问题2 如何用直线的一般式的系数表示直线的方向向量和法向量?
    a=(B,-A)为直线Ax+By+C=0的一个方向向量.v=(A,B)为直线Ax+By+C=0的一个法向量.
    求下列直线的方程:(1)经过点(2,1),且一个法向量为v=(2,-3);
    ∵直线的一个法向量为v=(2,-3),∴设直线的一般式方程为2x-3y+C=0,代入点(2,1)得4-3+C=0,解得C=-1,∴直线的方程为2x-3y-1=0.
    (2)经过点(2,-3),且一个方向向量为a=(2,4).
    方法一 ∵直线的一个方向向量为a=(2,4),
    故所求直线方程为y+3=2(x-2),即2x-y-7=0.方法二 ∵直线的一个方向向量为a=(2,4),∴直线的一个法向量为v=(4,-2),故设直线的一般式方程为4x-2y+C=0,代入点(2,-3)有8+6+C=0,解得C=-14,∴所求直线方程为4x-2y-14=0,即2x-y-7=0.
    已知直线的方向向量或法向量求直线方程的思路(1)若已知直线的法向量(m,n),可直接设直线的方程为mx+ny+C=0,然后代点求C;(2)若已知直线的方向向量,可先求直线的斜率,然后利用点斜式求直线的方程,但需要考虑斜率不存在的情况,或转化为直线的法向量.
    直线2x+y-3=0的一个方向向量为a=(m,-6),则m=____.
    由直线的一般式方程可知,该直线的一个法向量v=(2,1),所以a⊥v,所以2m-6=0,解得m=3.
    直线的一般式方程的应用
    设直线l的方程为(m2-2m-3)x-(2m2+m-1)y+6-2m=0.(1)已知直线l在x轴上的截距为-3,求m的值;
    由题意知m2-2m-3≠0,即m≠3且m≠-1,
    (2)已知直线l的斜率为1,求m的值.
    由题意知,2m2+m-1≠0,
    由直线l化为斜截式方程
    延伸探究对于本例中的直线l的方程,若直线l与y轴平行,求m的值.
    含参直线方程的研究策略(1)若方程Ax+By+C=0表示直线,则需满足A,B不同时为0.(2)令x=0可得在y轴上的截距.令y=0可得在x轴上的截距.若确定直线斜率存在,可将一般式化为斜截式.(3)解分式方程要注意验根.
    (1)已知直线l的方程为3x+4y-12=0,直线l与坐标轴交于A,B两点,则△AOB的面积为_____.
    直线l的方程为3x+4y-12=0,令x=0得y=3,令y=0得x=4,
    (2)直线l的方程为kx-y+2k+1=0(k∈R),则该直线过定点________.
    直线l的方程可化为y-1=k(x+2),由直线的点斜式方程可知,直线过定点(-2,1).
    1.知识清单: (1)直线的一般式方程. (2)直线的一般式方程与其他四种形式的区别与联系以及相互转化. (3)直线的法向量与一般式方程的关系. (4)直线的一般式方程的应用.2.方法归纳:数形结合、公式法、分类讨论.3.常见误区:直线的一般式方程转化为其他四种形式时易忽视讨论斜率不存在的 情况.
    3.直线ax+3my+2a=0(m≠0)过点(1,-1),则直线的斜率k等于
    由点(1,-1)在直线上,可得a-3m+2a=0(m≠0),解得m=a,故直线方程为ax+3ay+2a=0(a≠0),
    4.若直线(2m2-5m+2)x-(m2-4)y+5m=0的倾斜角是45°,则实数m的值为_____.
    1.过点(2,1),斜率k=-2的直线方程为A.x-1=-2(y-2) B.2x+y-1=0C.y-2=-2(x-1) D.2x+y-5=0
    根据直线方程的点斜式可得,y-1=-2(x-2),即2x+y-5=0.
    2.已知过点M(2,1)的直线与x轴、y轴分别交于P,Q两点.若M为线段PQ的中点,则这条直线的方程为A.2x-y-3=0 B.2x+y-5=0C.x+2y-4=0 D.x-2y+3=0
    依题意P(4,0),Q(0,2),
    即x+2y-4=0,故选C.
    3.直线的一个方向向量为a=(1,-3),且经过点(0,2),则直线的方程为A.3x-y+2=0 B.3x+y-2=0C.3x+y+2=0 D.3x-y-2=0
    ∵直线的方向向量为a=(1,-3),∴k=-3,∴直线的方程为y=-3x+2,即3x+y-2=0.
    4.若直线ax+by+c=0经过第一、二、三象限,则A.ab>0,bc>0 B.ab>0,bc<0C.ab<0,bc>0 D.ab<0,bc<0
    即ab<0,bc<0.
    5.(多选)直线l:mx-m2y+3=0经过点P(2,1),则倾斜角与直线l的倾斜角互为补角且过点P的直线的方程可以是A.x-y-1=0 B.3x-y-5=0C.x+y-3=0 D.x+3y-5=0
    将点(2,1)代入直线方程有m2-2m-3=0,解得m=3或m=-1,当m=3时直线l的方程为x-3y+1=0,
    当m=-1时,直线l的方程为x+y-3=0,即y=-x+3,斜率为-1,故所求直线的斜率为k=1,方程为y-1=1·(x-2),即x-y-1=0.故选AD.
    6.(多选)下列有关直线l:x+my-1=0(m∈R)的说法不正确的是A.直线l的斜率为-B.直线l过定点(1,0)C.直线l在y轴上的截距为D.直线l的方程可化为截距式
    当m=0时,直线l:x-1=0表示一条垂直于x轴的直线,斜率不存在,与y轴无交点,故A,C,D不正确;又当y=0时,x=1,故直线过定点(1,0),故B正确.
    7.直线l的一个法向量为v=(3,2)且过点(2,3),则直线l的方程为________________.
    ∵直线l的一个法向量为v=(3,2),故设直线l的方程为3x+2y+C=0,代入点(2,3),有6+6+C=0,即C=-12,故直线l的方程为3x+2y-12=0.
    8.已知直线(a+2)x+(a2-2a-3)y-2a=0在x轴上的截距为3,则该直线在y轴上的截距为______.
    把(3,0)代入已知方程,得(a+2)×3-2a=0,∴a=-6,∴直线方程为-4x+45y+12=0,
    9.求满足下列条件的直线方程.(1)经过点A(-1,-3),且斜率等于直线3x+8y-1=0斜率的3倍;
    即9x+8y+33=0.
    (2)过点M(0,4),且与两坐标轴围成的三角形的面积为12.
    即2x+3y-12=0或2x-3y+12=0.
    10.已知在△ABC中,点A的坐标为(1,3),AB,AC边上的中线所在直线的方程分别为x-2y+1=0和y-1=0,求△ABC各边所在直线的方程.
    设AB,AC边上的中线分别为CD,BE,其中D,E分别为AB,AC的中点,∵点B在中线BE:y-1=0上,∴设B点坐标为(x,1).又∵A点坐标为(1,3),D为AB的中点,
    又∵点D在中线CD:x-2y+1=0上,
    ∴B点坐标为(5,1).同理可求出C点的坐标是(-3,-1).故可求出△ABC三边AB,BC,AC所在直线的方程分别为x+2y-7=0,x-4y-1=0和x-y+2=0.
    直线xsin θ+y+m=0(θ∈R)的斜率k=-sin θ,因为-1≤sin θ≤1,所以k∈[-1,1], 由直线的倾斜角为α,所以tan α∈[-1,1],
    13.已知直线l过原点且平分▱ABCD的面积,若平行四边形的两个顶点分别为B(1,4),D(5,0),则直线l的方程为_______.
    直线l平分▱ABCD的面积,∴直线l过BD的中点(3,2),又直线l过点(0,0),
    14.若直线(2m2+m-3)x+(m2-m)y-(4m-1)=0在x轴上的截距等于1,则m=________.
    由题意知,2m2+m-3≠0.
    15.如图所示,在平面直角坐标系xOy中,已知点A(0,2),B(-2,0),C(1,0),分别以AB,AC为边向外作正方形ABEF与ACGH,则直线FH的一般式方程为______________.
    过点H,F分别作y轴的垂线,垂足分别为M,N(图略).∵四边形ACGH为正方形,∴Rt△AMH≌Rt△COA,∵OC=1,MH=OA=2,∴OM=OA+AM=3,∴点H的坐标为(2,3),同理得到F(-2,4),
    化为一般式方程为x+4y-14=0.
    16.设直线l的方程为(a+1)x+y+2-a=0(a∈R).(1)若l在两坐标轴上的截距相等,求l的方程;
    依题意知,直线在两坐标轴上的截距都存在,∴a+1≠0,∴a≠-1,令x=0,y=a-2,
    当a=2时,直线l的方程为3x+y=0,当a=0时,直线l的方程为x+y+2=0.综上所述,所求直线l的方程为3x+y=0或x+y+2=0.
    相关课件

    高中人教B版 (2019)2.6.1 双曲线的标准方程背景图ppt课件: 这是一份高中人教B版 (2019)2.6.1 双曲线的标准方程背景图ppt课件,共60页。PPT课件主要包含了直线的方程的概念,知识梳理,Fxy=0,反思感悟,直线的点斜式方程,点斜式方程,注意点,y=2,x=-1,直线的斜截式方程等内容,欢迎下载使用。

    人教B版 (2019)选择性必修 第一册2.2.2 直线的方程背景图ppt课件: 这是一份人教B版 (2019)选择性必修 第一册2.2.2 直线的方程背景图ppt课件,共60页。PPT课件主要包含了直线的两点式方程,知识梳理,两点式,注意点,反思感悟,直线的截距式方程,在x轴上的截距,解得a=1,随堂演练,y=2x或y=x+1等内容,欢迎下载使用。

    高中数学人教B版 (2019)选择性必修 第一册2.6.1 双曲线的标准方程习题课件ppt: 这是一份高中数学人教B版 (2019)选择性必修 第一册2.6.1 双曲线的标准方程习题课件ppt,共60页。PPT课件主要包含了知识梳理,反思感悟,x-3y-4=0,x+y-8=0,过定点的直线系方程,随堂演练,x+y-4=0,课时对点练,x-y-2=0,x-2y+7=0等内容,欢迎下载使用。

    • 精品推荐
    • 所属专辑
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        新教材人教B版步步高学习笔记【同步课件】第二章 2.2.2 第3课时 直线的一般式方程
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map