辽宁省2022年中考数学卷真题分题型分层汇编-04选择题(中档题)
展开
这是一份辽宁省2022年中考数学卷真题分题型分层汇编-04选择题(中档题),共22页。
辽宁省2022年中考数学卷真题分题型分层汇编-04选择题(中档题)
一.实数大小比较(共1小题)
1.(2022•营口)在,0,﹣1,2这四个实数中,最大的数是( )
A.0 B.﹣1 C.2 D.
二.同底数幂的除法(共1小题)
2.(2022•辽宁)下列运算正确的是( )
A.(a2)4=a6 B.a2•a4=a6 C.a2+a4=a6 D.a2÷a4=a6
三.单项式乘单项式(共1小题)
3.(2022•辽宁)下列运算正确的是( )
A.2a2•3a=6a3 B.(2a)3=2a3
C.a6÷a2=a3 D.3a2+2a3=5a5
四.由实际问题抽象出二元一次方程组(共1小题)
4.(2022•盘锦)《九章算术》是中国传统数学重要的著作,奠定了中国传统数学的基本框架.其中《盈不足》卷记载了一道有趣的数学问题:“今有共买物,人出八,赢三;人出七,不足四.问人数、物价各几何?”译文:“今有人合伙购物,每人出8钱,会多出3钱;每人出7钱,又差4钱.问人数、物价各多少?”设人数为x人,物价为y钱,根据题意,下面所列方程组正确的是( )
A. B.
C. D.
五.根的判别式(共2小题)
5.(2022•辽宁)下列一元二次方程无实数根的是( )
A.x2+x﹣2=0 B.x2﹣2x=0 C.x2+x+5=0 D.x2﹣2x+1=0
6.(2022•营口)关于x的一元二次方程x2+4x﹣m=0有两个实数根,则实数m的取值范围为( )
A.m<4 B.m>﹣4 C.m≤4 D.m≥﹣4
六.解分式方程(共1小题)
7.(2022•营口)分式方程=的解是( )
A.x=2 B.x=﹣6 C.x=6 D.x=﹣2
七.动点问题的函数图象(共2小题)
8.(2022•辽宁)如图,在等边三角形ABC中,BC=4,在Rt△DEF中,∠EDF=90°,∠F=30°,DE=4,点B,C,D,E在一条直线上,点C,D重合,△ABC沿射线DE方向运动,当点B与点E重合时停止运动.设△ABC运动的路程为x,△ABC与Rt△DEF重叠部分的面积为S,则能反映S与x之间函数关系的图象是( )
A.
B.
C.
D.
9.(2022•盘锦)如图,四边形ABCD是边长为2cm的正方形,点E,点F分别为边AD,CD中点,点O为正方形的中心,连接OE,OF,点P从点E出发沿E﹣O﹣F运动,同时点Q从点B出发沿BC运动,两点运动速度均为1cm/s,当点P运动到点F时,两点同时停止运动,设运动时间为ts,连接BP,PQ,△BPQ的面积为Scm2,下列图象能正确反映出S与t的函数关系的是( )
A.
B.
C.
D.
八.一次函数的图象(共1小题)
10.(2022•辽宁)如图,在同一平面直角坐标系中,一次函数y=k1x+b1与y=k2x+b2的图象分别为直线l1和直线l2,下列结论正确的是( )
A.k1•k2<0 B.k1+k2<0 C.b1﹣b2<0 D.b1•b2<0
九.二次函数图象与系数的关系(共1小题)
11.(2022•辽宁)抛物线y=ax2+bx+c的部分图象如图所示,对称轴为直线x=﹣1,直线y=kx+c与抛物线都经过点(﹣3,0).下列说法:①ab>0;②4a+c>0;③若(﹣2,y1)与(,y2)是抛物线上的两个点,则y1<y2;④方程ax2+bx+c=0的两根为x1=﹣3,x2=1;⑤当x=﹣1时,函数y=ax2+(b﹣k)x有最大值.其中正确的个数是( )
A.2 B.3 C.4 D.5
一十.二次函数综合题(共1小题)
12.(2022•丹东)如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(5,0),与y轴交于点C,其对称轴为直线x=2,结合图象分析如下结论:①abc>0;②b+3a<0;③当x>0时,y随x的增大而增大;④若一次函数y=kx+b(k≠0)的图象经过点A,则点E(k,b)在第四象限;⑤点M是抛物线的顶点,若CM⊥AM,则a=.其中正确的有( )
A.1个 B.2个 C.3个 D.4个
一十一.平行线的性质(共2小题)
13.(2022•营口)如图,直线DE∥FG,Rt△ABC的顶点B,C分别在DE,FG上,若∠BCF=25°,则∠ABE的大小为( )
A.55° B.25° C.65° D.75°
14.(2022•辽宁)如图,直线m∥n,AC⊥BC于点C,∠1=30°,则∠2的度数为( )
A.140° B.130° C.120° D.110°
一十二.圆内接四边形的性质(共1小题)
15.(2022•营口)如图,点A,B,C,D在⊙O上,AC⊥BC,AC=4,∠ADC=30°,则BC的长为( )
A.4 B.8 C.4 D.4
一十三.弧长的计算(共1小题)
16.(2022•丹东)如图,AB是⊙O的直径,C是⊙O上一点,连接AC,OC,若AB=6,∠A=30°,则的长为( )
A.6π B.2π C.π D.π
一十四.扇形面积的计算(共1小题)
17.(2022•鞍山)如图,在矩形ABCD中,AB=2,BC=,以点B为圆心,BA长为半径画弧,交CD于点E,连接BE,则扇形BAE的面积为( )
A. B. C. D.
一十五.作图—基本作图(共2小题)
18.(2022•辽宁)如图,OG平分∠MON,点A,B是射线OM,ON上的点,连接AB.按以下步骤作图:①以点B为圆心,任意长为半径作弧,交AB于点C,交BN于点D;②分别以点C和点D为圆心,大于CD长为半径作弧,两弧相交于点E;③作射线BE,交OG于点P.若∠ABN=140°,∠MON=50°,则∠OPB的度数为( )
A.35° B.45° C.55° D.65°
19.(2022•营口)如图,在△ABC中,AB=AC,∠A=36°,由图中的尺规作图得到的射线与AC交于点D,则以下推断错误的是( )
A.BD=BC B.AD=BD C.∠ADB=108° D.CD=AD
一十六.作图—复杂作图(共1小题)
20.(2022•盘锦)如图,线段AB是半圆O的直径.分别以点A和点O为圆心,大于的长为半径作弧,两弧交于M,N两点,作直线MN,交半圆O于点C,交AB于点E,连接AC,BC,若AE=1,则BC的长是( )
A. B.4 C.6 D.
参考答案与试题解析
一.实数大小比较(共1小题)
1.(2022•营口)在,0,﹣1,2这四个实数中,最大的数是( )
A.0 B.﹣1 C.2 D.
【解答】解:∵﹣1<0<<2,
∴最大的数是2;
故选:C.
二.同底数幂的除法(共1小题)
2.(2022•辽宁)下列运算正确的是( )
A.(a2)4=a6 B.a2•a4=a6 C.a2+a4=a6 D.a2÷a4=a6
【解答】解:A.(a2)4=a8,故A选项错误;
B.a2•a4=a6,故B选项正确;
C.a2+a4≠a6,故C选项错误;
D.a2÷a4=a﹣2=,故D选项错误;
故选:B.
三.单项式乘单项式(共1小题)
3.(2022•辽宁)下列运算正确的是( )
A.2a2•3a=6a3 B.(2a)3=2a3
C.a6÷a2=a3 D.3a2+2a3=5a5
【解答】解:A、2a2•3a=6a3,故A符合题意;
B、(2a)3=8a3,故B不符合题意;
C、a6÷a2=a4,故C不符合题意;
D、3a2与2a3不能合并,故D不符合题意;
故选:A.
四.由实际问题抽象出二元一次方程组(共1小题)
4.(2022•盘锦)《九章算术》是中国传统数学重要的著作,奠定了中国传统数学的基本框架.其中《盈不足》卷记载了一道有趣的数学问题:“今有共买物,人出八,赢三;人出七,不足四.问人数、物价各几何?”译文:“今有人合伙购物,每人出8钱,会多出3钱;每人出7钱,又差4钱.问人数、物价各多少?”设人数为x人,物价为y钱,根据题意,下面所列方程组正确的是( )
A. B.
C. D.
【解答】解:设人数为x人,物价为y钱,
依题意得:.
故选:B.
五.根的判别式(共2小题)
5.(2022•辽宁)下列一元二次方程无实数根的是( )
A.x2+x﹣2=0 B.x2﹣2x=0 C.x2+x+5=0 D.x2﹣2x+1=0
【解答】解:A、Δ=12﹣4×1×(﹣2)=9>0,则该方程有两个不相等的实数根,故本选项不符合题意;
B、Δ=(﹣2)2﹣4×1×0=4>0,则该方程有两个不相等的实数根,故本选项不符合题意;
C、Δ=12﹣4×1×5=﹣19<0,则该方程无实数根,故本选项符合题意;
D、Δ=(﹣2)2﹣4×1×1=0,则该方程有两个相等的实数根,故本选项不符合题意;
故选:C.
6.(2022•营口)关于x的一元二次方程x2+4x﹣m=0有两个实数根,则实数m的取值范围为( )
A.m<4 B.m>﹣4 C.m≤4 D.m≥﹣4
【解答】解:∵关于x的一元二次方程x2+4x﹣m=0有两个实数根,
∴Δ=42﹣4×1×(﹣m)=16+4m≥0,
解得:m≥﹣4,
故选:D.
六.解分式方程(共1小题)
7.(2022•营口)分式方程=的解是( )
A.x=2 B.x=﹣6 C.x=6 D.x=﹣2
【解答】解:=,
方程两边都乘x(x﹣2),得3(x﹣2)=2x,
解得:x=6,
检验:当x=6时,x(x﹣2)≠0,
所以x=6是原方程的解,
即原方程的解是x=6,
故选:C.
七.动点问题的函数图象(共2小题)
8.(2022•辽宁)如图,在等边三角形ABC中,BC=4,在Rt△DEF中,∠EDF=90°,∠F=30°,DE=4,点B,C,D,E在一条直线上,点C,D重合,△ABC沿射线DE方向运动,当点B与点E重合时停止运动.设△ABC运动的路程为x,△ABC与Rt△DEF重叠部分的面积为S,则能反映S与x之间函数关系的图象是( )
A.
B.
C.
D.
【解答】解:过点A作AM⊥BC,交BC于点M,
在等边△ABC中,∠ACB=60°,
在Rt△DEF中,∠F=30°,
∴∠FED=60°,
∴∠ACB=∠FED,
∴AC∥EF,
在等边△ABC中,AM⊥BC,
∴BM=CM=BC=2,AM=BM=2,
∴S△ABC=BC•AM=4,
①当0<x≤2时,设AC与DF交于点G,此时△ABC与Rt△DEF重叠部分为△CDG,
由题意可得CD=x,DG=x
∴S=CD•DG=x2;
②当2<x≤4时,设AB与DF交于点G,此时△ABC与Rt△DEF重叠部分为四边形AGDC,
由题意可得:CD=x,则BC=4﹣x,DG=(4﹣x),
∴S=S△ABC﹣S△BDG=4﹣×(4﹣x)×(4﹣x),
∴S=﹣x2+4x﹣4=﹣(x﹣4)2+4,
③当4<x≤8时,设AB与EF交于点G,过点G作GM⊥BC,交BC于点M,
此时△ABC与Rt△DEF重叠部分为△BEG,
由题意可得CD=x,则CE=x﹣4,DB=x﹣4,
∴BE=x﹣(x﹣4)﹣(x﹣4)=8﹣x,
∴BM=4﹣x
在Rt△BGM中,GM=(4﹣x),
∴S=BE•GM=(8﹣x)×(4﹣x),
∴S=(x﹣8)2,
综上,选项A的图像符合题意,
故选:A.
9.(2022•盘锦)如图,四边形ABCD是边长为2cm的正方形,点E,点F分别为边AD,CD中点,点O为正方形的中心,连接OE,OF,点P从点E出发沿E﹣O﹣F运动,同时点Q从点B出发沿BC运动,两点运动速度均为1cm/s,当点P运动到点F时,两点同时停止运动,设运动时间为ts,连接BP,PQ,△BPQ的面积为Scm2,下列图象能正确反映出S与t的函数关系的是( )
A.
B.
C.
D.
【解答】解:当0≤t≤1时,
∵正方形ABCD的边长为2,点O为正方形的中心,
∴直线EO垂直BC,
∴点P到直线BC的距离为2﹣t,BQ=t,
∴S=;
当1<t≤2时,
∵正方形ABCD的边长为2,点E,点F分别为边AD,CD中点,点O为正方形的中心,
∴直线OF∥BC,
∴点P到直线BC的距离为1,BQ=t,
∴S=;
故选D.
八.一次函数的图象(共1小题)
10.(2022•辽宁)如图,在同一平面直角坐标系中,一次函数y=k1x+b1与y=k2x+b2的图象分别为直线l1和直线l2,下列结论正确的是( )
A.k1•k2<0 B.k1+k2<0 C.b1﹣b2<0 D.b1•b2<0
【解答】解:∵一次函数y=k1x+b1的图象过一、二、三象限,
∴k1>0,b1>0,
∵一次函数y=k2x+b2的图象过一、三、四象限,
∴k2>0,b2<0,
∴A、k1•k2>0,故A不符合题意;
B、k1+k2>0,故B不符合题意;
C、b1﹣b2>0,故C不符合题意;
D、b1•b2<0,故D符合题意;
故选:D.
九.二次函数图象与系数的关系(共1小题)
11.(2022•辽宁)抛物线y=ax2+bx+c的部分图象如图所示,对称轴为直线x=﹣1,直线y=kx+c与抛物线都经过点(﹣3,0).下列说法:①ab>0;②4a+c>0;③若(﹣2,y1)与(,y2)是抛物线上的两个点,则y1<y2;④方程ax2+bx+c=0的两根为x1=﹣3,x2=1;⑤当x=﹣1时,函数y=ax2+(b﹣k)x有最大值.其中正确的个数是( )
A.2 B.3 C.4 D.5
【解答】解:∵抛物线的开口方向向下,
∴a<0.
∵抛物线的对称轴为直线x=﹣1,
∴﹣=﹣1,
∴b=2a,b<0.
∵a<0,b<0,
∴ab>0,
∴①的结论正确;
∵抛物线y=ax2+bx+c经过点(﹣3,0),
∴9a﹣3b+c=0,
∴9a﹣3×2a+c=0,
∴3a+c=0.
∴4a+c=a<0,
∴②的结论不正确;
∵抛物线的对称轴为直线x=﹣1,
∴点(﹣2,y1)关于直线x=﹣1对称的对称点为(0,y1),
∵a<0,
∴当x>﹣1时,y随x的增大而减小.
∵>0>﹣1,
∴y1>y2.
∴③的结论不正确;
∵抛物线的对称轴为直线x=﹣1,抛物线经过点(﹣3,0),
∴抛物线一定经过点(1,0),
∴抛物线y=ax2+bx+c与x轴的交点的横坐标为﹣3,1,
∴方程ax2+bx+c=0的两根为x1=﹣3,x2=1,
∴④的结论正确;
∵直线y=kx+c经过点(﹣3,0),
∴﹣3k+c=0,
∴c=3k.
∵3a+c=0,
∴c=﹣3a,
∴3k=﹣3a,
∴k=﹣a.
∴函数y=ax2+(b﹣k)x
=ax2+(2a+a)x
=ax2+3ax
=a﹣a,
∵a<0,
∴当x=﹣时,函数y=ax2+(b﹣k)x有最大值,
∴⑤的结论不正确.
综上,结论正确的有:①④,
故选:A.
一十.二次函数综合题(共1小题)
12.(2022•丹东)如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(5,0),与y轴交于点C,其对称轴为直线x=2,结合图象分析如下结论:①abc>0;②b+3a<0;③当x>0时,y随x的增大而增大;④若一次函数y=kx+b(k≠0)的图象经过点A,则点E(k,b)在第四象限;⑤点M是抛物线的顶点,若CM⊥AM,则a=.其中正确的有( )
A.1个 B.2个 C.3个 D.4个
【解答】解:∵抛物线开口向上,
∴a>0,
∵对称轴是直线x=2,
∴﹣=2,
∴b=﹣4a<0
∵抛物线交y轴的负半轴,
∴c<0,
∴abc>0,故①正确,
∵b=﹣4a,a>0,
∴b+3a=﹣a<0,故②正确,
观察图象可知,当0<x≤2时,y随x的增大而减小,故③错误,
一次函数y=kx+b(k≠0)的图象经过点A,
∵b<0,
∴k>0,此时E(k,b)在第四象限,故④正确.
∵抛物线经过(﹣1,0),(5,0),
∴可以假设抛物线的解析式为y=a(x+1)(x﹣5)=a(x﹣2)2﹣9a,
∴M(2,﹣9a),C(0,﹣5a),
过点M作MH⊥y轴于点H,设对称轴交x轴于点K.
∵AM⊥CM,
∴∠AMC=∠KMH=90°,
∴∠CMH=∠KMA,
∵∠MHC=∠MKA=90°,
∴△MHC∽△MKA,
∴=,
∴=,
∴a2=,
∵a>0,
∴a=,故⑤正确,
故选:D.
一十一.平行线的性质(共2小题)
13.(2022•营口)如图,直线DE∥FG,Rt△ABC的顶点B,C分别在DE,FG上,若∠BCF=25°,则∠ABE的大小为( )
A.55° B.25° C.65° D.75°
【解答】解:∵DE∥FG,∠BCF=25°,
∴∠CBE=∠BCF=25°,
∵∠ABC=90°,
∴∠ABE=∠ABC﹣∠CBE=65°.
故选:C.
14.(2022•辽宁)如图,直线m∥n,AC⊥BC于点C,∠1=30°,则∠2的度数为( )
A.140° B.130° C.120° D.110°
【解答】解:∵AC⊥BC于点C,
∴∠ACB=90°,
∴∠ABC+∠1=90°,
∴∠ABC=90°﹣30°=60°,
∵m∥n,
∴∠2=180°﹣∠ABC=120°.
故选:C.
一十二.圆内接四边形的性质(共1小题)
15.(2022•营口)如图,点A,B,C,D在⊙O上,AC⊥BC,AC=4,∠ADC=30°,则BC的长为( )
A.4 B.8 C.4 D.4
【解答】解:连接AB,如图所示,
∵AC⊥BC,
∴∠ACB=90°.
∵∠ADC=30°,
∴∠ABC=∠ADC=30°.
∴在Rt△ABC中,
tan∠ABC=,
∴BC=.
∵AC=4,
∴BC==4.
故选:A.
一十三.弧长的计算(共1小题)
16.(2022•丹东)如图,AB是⊙O的直径,C是⊙O上一点,连接AC,OC,若AB=6,∠A=30°,则的长为( )
A.6π B.2π C.π D.π
【解答】解:∵直径AB=6,
∴半径OB=3,
∵圆周角∠A=30°,
∴圆心角∠BOC=2∠A=60°,
∴的长是=π,
故选:D.
一十四.扇形面积的计算(共1小题)
17.(2022•鞍山)如图,在矩形ABCD中,AB=2,BC=,以点B为圆心,BA长为半径画弧,交CD于点E,连接BE,则扇形BAE的面积为( )
A. B. C. D.
【解答】解:∵四边形ABCD是矩形,
∴∠ABC=∠C=90°,
∵BA=BE=2,BC=,
∴cos∠CBE==,
∴∠CBE=30°,
∴∠ABE=90°﹣30°=60°,
∴S扇形BAE==,
故选:C.
一十五.作图—基本作图(共2小题)
18.(2022•辽宁)如图,OG平分∠MON,点A,B是射线OM,ON上的点,连接AB.按以下步骤作图:①以点B为圆心,任意长为半径作弧,交AB于点C,交BN于点D;②分别以点C和点D为圆心,大于CD长为半径作弧,两弧相交于点E;③作射线BE,交OG于点P.若∠ABN=140°,∠MON=50°,则∠OPB的度数为( )
A.35° B.45° C.55° D.65°
【解答】解:由作法得BP平分∠ABN,
∴∠PBN=∠ABN=×140°=70°,
∵OG平分∠MON,
∴∠BOP=∠MON=×50°=25°,
∵∠PBN=∠POB+∠OPB,
∴∠OPB=70°﹣25°=45°.
故选:B.
19.(2022•营口)如图,在△ABC中,AB=AC,∠A=36°,由图中的尺规作图得到的射线与AC交于点D,则以下推断错误的是( )
A.BD=BC B.AD=BD C.∠ADB=108° D.CD=AD
【解答】解:在△ABC中,
∵AB=AC,
∴∠ABC=∠ACB.
∵∠A=36°,
∴∠ABC=∠C=(180°﹣36°)=72°.
∵BD平分∠ABC,
∴∠ABD=∠CBD=36°.
∴∠ABD=∠A.
∴AD=BD.故选项B正确;
∵∠BDC=∠A+∠ABD=72°.
∴∠C=∠BDC.
∴BD=BC.故选项A正确;
∵∠BDC=72°,
∴∠ADB=108°.故选项C正确;
在△BCD与△ACB中,
∵∠CBD=∠A=36°,∠C为公共角.
∴△BCD∽△ACB.
∴.
∴BC2=AC•CD.
∵BC=BD=AD,AC=AD+CD.
∴AD2=(AD+CD)•CD.整理得,CD2﹣AD•CD﹣AD2=0.
解得,CD=AD.
∴CD≠AD.故选项D错误.
故选:D.
一十六.作图—复杂作图(共1小题)
20.(2022•盘锦)如图,线段AB是半圆O的直径.分别以点A和点O为圆心,大于的长为半径作弧,两弧交于M,N两点,作直线MN,交半圆O于点C,交AB于点E,连接AC,BC,若AE=1,则BC的长是( )
A. B.4 C.6 D.
【解答】解:如图,连接OC.
根据作图知CE垂直平分AO,
∴AC=OC,AE=OE=1,
∴OC=OB=AO=AE+EO=2,
∴AC=OC=AO=AE+EO=2,
即AB=AO+BO=4,
∵线段AB是半圆O的直径,
∴∠ACB=90°,
在Rt△ACB中,根据勾股定理得,,
故选A.
相关试卷
这是一份辽宁省2022年中考数学卷真题分题型分层汇编-02选择题(基础题),共19页。试卷主要包含了5D.1等内容,欢迎下载使用。
这是一份辽宁省2022年中考数学卷真题分题型分层汇编-03选择题(基础提升),共13页。试卷主要包含了1,36,5B.8,8,5cmB.23,5,98D.98,2环,方差分别是s甲2=0,5,S乙2=8,12,s乙2=0等内容,欢迎下载使用。
这是一份辽宁省2022年中考数学卷真题分题型分层汇编-07填空题(中档题),共21页。试卷主要包含了5,则CD的长为 .,55,s乙2=0等内容,欢迎下载使用。